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Agenda

• Intro

– SystemC Flow

– Floating/Fixed Point Arithmetic

• Formal Verification on SystemC

– Automatic Fixed Point Verification

– SVA assertions

– Design exploration
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SystemC HLS Flow
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C/C++ Algorithms

• Use IEEE 754 floating point numbers

• Cover wide range of numbers with “good” precision

• Ideal for software due to CPU hardware support

• Floating point hardware very complex - see
FDIV bug 1995

• Floating point algorithms not synthesizable
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Fixed Point Arithmetic

• sign + n-bit binary value (like signed Verilog types)

• additional m bits binary fraction

• Bit value a[i] * 2^i

– First fractional bit valued 0.5, then 0.25, …

• n+m bits precision without scaling exponent

• Hardware basically just integer hardware 

integer fraction
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Float vs. Fixed
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• Fixed may actually be more precise due to 10 bits 
added precision

• Fixed “good enough” for numbers in specific range

• Synthesizable, fully templatized fixed point classes 
with overloaded operators in SystemC

• Need “right” number of bits before/after .

64-bit float 64-bit fixed

53 bits precision (mantissa) 63 bits precision

11 bits exponent for scaling -

Complex hardware Simple hardware



Example: FIR Filter with Fixed Point
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Formal Verification
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FIR Filter in Debugger
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Automated formal analysis

• Generated “assertions” to check for

– Arithmetic overflow
• Does individual operation produce overflow?

– Redundant bits
• Is MSB of unsigned fixed float always 0?

• Are 2 MSBs of signed fixed float always equal?

• Prove “right” number of fixed float bits formally
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Redundant Bits
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Overflow Detection
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SVA assertions on SystemC

• SVA allows to “bind” monitors to Verilog and VHDL

• Additional support for SystemC allows full-fledged 
SVA support on top of SystemC

– Temporal assertion with sequences of interesting values

– Liveness assertions

– Requires SVA extension to support fixed point data types

• Derive assertions from specification to automatically

– proves absence of failures or

– Finds corner case failures
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Interactive Formal Analysis

• Express interesting sequence of output values in SVA

© Accellera Systems Initiative 14

Formal tool finds input 
sequence producing 

desired output sequence



Summary

• Formal verification of SystemC with fixed float types

– Automatic checks for redundant bits and overflows

• Full SVA support on SystemC

– Extension for fixed float types in SVA

– Design exploration with interesting sequences of outputs

– Assertion development from spec for formal verification

• All verification and debugging on original SystemC
using high level data types like fixed float
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Questions?
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