
The Application of Formal Technology on 
Fixed-Point Arithmetic SystemC Designs

Sven Beyer, Dominik Straßer, Dave Kelf
OneSpin Solutions GmbH

first.last@onespin-solutions.com

© Accellera Systems Initiative 1



Agenda

• Intro

– SystemC Flow

– Floating/Fixed Point Arithmetic

• Formal Verification on SystemC

– Automatic Fixed Point Verification

– SVA assertions

– Design exploration

© Accellera Systems Initiative 2



SystemC HLS Flow

© Accellera Systems Initiative 3

C/C++ algorithm

executable 

specification

C++/SystemC

Loosely Timed

MicroArchitecture

SystemC

Cycle Accurate 

Model

High Level 

Synthesis

(HLS)

Verilog / VHDL

RTL

RTL Synthesis

P&R

Gate 

P&R

C++/SystemC Verilog/VHDL

OR



C/C++ Algorithms

• Use IEEE 754 floating point numbers

• Cover wide range of numbers with “good” precision

• Ideal for software due to CPU hardware support

• Floating point hardware very complex - see
FDIV bug 1995

• Floating point algorithms not synthesizable

© Accellera Systems Initiative 4

exponent mantissas

11 52



Fixed Point Arithmetic

• sign + n-bit binary value (like signed Verilog types)

• additional m bits binary fraction

• Bit value a[i] * 2^i

– First fractional bit valued 0.5, then 0.25, …

• n+m bits precision without scaling exponent

• Hardware basically just integer hardware 

integer fraction

1 0 -1 -2 -mn-1 2

s



Float vs. Fixed

© Accellera Systems Initiative 6

• Fixed may actually be more precise due to 10 bits 
added precision

• Fixed “good enough” for numbers in specific range

• Synthesizable, fully templatized fixed point classes 
with overloaded operators in SystemC

• Need “right” number of bits before/after .

64-bit float 64-bit fixed

53 bits precision (mantissa) 63 bits precision

11 bits exponent for scaling -

Complex hardware Simple hardware



Example: FIR Filter with Fixed Point

© Accellera Systems Initiative 7

Σ Σ 

Input [15:0] 

RND 

Output [15:0] 

16 16 

16 16 16 

Fixed 
Coeff 0-1 

Fixed 
Coeff 0-1 

Fixed 
Coeff 0-1 

? 

? ? 

? ? 

? 



Formal Verification

© Accellera Systems Initiative 8

C/C++ algorithm

executable 

specification

C++/SystemC

Loosely Timed

MicroArchitecture

SystemC

Cycle Accurate 

Model

High Level 

Synthesis

(HLS)

C++/SystemC

OR
Formal

Verification

Apply on 
source code

Question 

about DUT

(“assertion”)

to find 
simulation 

traces

or prove that 
none exist

…



FIR Filter in Debugger

© Accellera Systems Initiative 9

Values in 
original type

Values in 
original type



Automated formal analysis

• Generated “assertions” to check for

– Arithmetic overflow
• Does individual operation produce overflow?

– Redundant bits
• Is MSB of unsigned fixed float always 0?

• Are 2 MSBs of signed fixed float always equal?

• Prove “right” number of fixed float bits formally

© Accellera Systems Initiative 10



Redundant Bits

© Accellera Systems Initiative 11

1 redundant 
bit identified



Overflow Detection

© Accellera Systems Initiative 12

-1.5-0.51 
overflows to 

positive



SVA assertions on SystemC

• SVA allows to “bind” monitors to Verilog and VHDL

• Additional support for SystemC allows full-fledged 
SVA support on top of SystemC

– Temporal assertion with sequences of interesting values

– Liveness assertions

– Requires SVA extension to support fixed point data types

• Derive assertions from specification to automatically

– proves absence of failures or

– Finds corner case failures

© Accellera Systems Initiative 13



Interactive Formal Analysis

• Express interesting sequence of output values in SVA

© Accellera Systems Initiative 14

Formal tool finds input 
sequence producing 

desired output sequence



Summary

• Formal verification of SystemC with fixed float types

– Automatic checks for redundant bits and overflows

• Full SVA support on SystemC

– Extension for fixed float types in SVA

– Design exploration with interesting sequences of outputs

– Assertion development from spec for formal verification

• All verification and debugging on original SystemC
using high level data types like fixed float

© Accellera Systems Initiative 15



Questions?

© Accellera Systems Initiative 16


