
TEMPLATE DESIGN © 2008

www.PosterPresentations.com

Testing the Testbench
Stan Sokorac, stan.sokorac@arm.com

ARM Inc., 5707 Southwest Pkwy, Building 1 Suite 100, Austin, TX 78735

The Problem

Modern CPU testbenches are undeniably
complex software. The memory subsystem
testbench on the previous generation CPU core
had 310,000 lines of code. According to research
from Microsoft[1], experienced programmers
make about 10-20 errors per 1,000 lines of code,
which leads us to expect between 3,000 and
6,000 bugs in a modern testbench. In the
software industry, using untested software of
this size would be unthinkable, though in our
industry, it is common practice. This puts
design and verification engineers in an
unnecessarily tough situation – the verification
engineers are working through their bugs to get
the testbench up and running to the point where
it can find RTL bugs, while RTL engineers are
developing increasingly complex features on top
of their completely untested micro-architecture.

Virtual Prototyping

Shift Left

Unit Testing with SVUnit

Checkers are notoriously difficult to test,
because false passes are very likely to go on
unnoticed. Unit testing through SVUnit allowed
us to deal with this problem by feeding faulty
stimulus directly into the checker, and confirming
that it flags it as expected.

During a typical “why did we not catch this” bug
analysis, there are few things more disappointing
than the discovery that stimulus properly
exposed a bug in RTL but a faulty checker never
fired. This methodology allowed us to close
this hole in the verification process.

A variant of the Virtual Prototyping methodology
was used to tackle this problem, in which a
testbench was developed that can be tested and
debugged as soon as it is written, without any
dependence on the RTL. Because of this
decoupling, the testbench reached a higher level
of quality much earlier in the project, and was
available to stress-test RTL as soon as it was
written, yielding additional efficiency
improvements in RTL workflow.

Effort

// Test two stores, and bad data
// for overlapping load
`SVTEST(two_stores_bad_overlapping_load)

longint unsigned addr0 = 0;
longint unsigned addr1 = addr0 + 1;
longint unsigned addr2 = addr0 + 2;
int load_id;

api.store(cxu0, addr0, .data('h5544));
api.store(cxu0, addr2, .data('haa98));

load_id = api.load(cxu0, addr1, .size(2));

// wrong data
uvm_report_mock::expect_fatal();
api.load_result(load_id, .data('h9876));

`FAIL_IF(
!uvm_report_mock::verify_complete());

`SVTEST_END

Lines of Code
Full testbench 190 K
Virtual Prototypes 30 K
Traditional BFMs
on previous projects

10 K

The amount of code written for the virtual
prototypes added slightly over 10% to the time
spent on writing new code. However, with
research [2] showing that verification engineers
spend only 22% of their time developing and
debugging testbenches, we are looking at an
increase of only about 2% to the overall
verification effort.

Modern testbenches are complex pieces of
software, and like any other software, they are
full of bugs the first time they are written. In order
to improve the efficiency of verification
engineers, we have developed a testbench
structure that allowed us to develop and test
verification code without the need for working
RTL. The incremental effort in development was
offset many times over through efficiency gains
in debugging and writing tests, which is where
most of engineers’ time is spent. Having high-
quality testbenches and RTL earlier in the
project allowed us to pull in later project
milestones, completing the project earlier
compared to traditional methods.

Conclusion

Decoupling testbench design from RTL design
tightens the development/feedback loop,
increasing efficiency, producing better results,
sooner in the project schedule.

All components in green can be fully developed,
tested, and thoroughly stressed with models for LS
and L2 blocks in place, without any need for working
RTL.

References

[1] Steve McConnell, “Code Complete 2”, 2004, p. 521
[2] Mentor Graphics, “2014 Wilson Research Group Functional
Verification Study”, Part 8

Models are written to communicate over real
RTL interfaces. With that in place we can build:

1. Monitors, to produce transactions seen on
interfaces

2. Drivers, to wiggle the pins on interfaces
3. Scoreboards, to track transactions across

interfaces
4. Checkers, to check both low-level interface

and high-level block behaviour
5. Stimulus, to exercise all of the components

above

At this point, most of the testbench is up and
running, without a line of real RTL!

SVUnit tests are very quick to write, and easy to
maintain. In just a few lines of code above, we’ve
verified that our checker catches bad load data due to
overlapping stores being mishandled.

	Slide Number 1

