

1

Testbench flexiblity as a foundation for success
Verification coding methodology to achieve a flexible testbench, increase code

reuse, enable parallel verification execution and ease of integration

Ana Sanz Carretero, Xilinx, Dublin, Ireland (asanzcar@xilinx.com)

Katherine Garden, Xilinx, Edinburgh, United Kingdom (kgarden@xilinx.com)

Wei Wei Cheong, Xilinx, Edinburgh, United Kingdom (weiweic@xilinx.com)

Abstract— This paper presents a flexible verification architecture and coding methodology that allows a single UVM

testbench to adapt and support all levels of integration (unit-level, top-level, system level, encrypted simulation model

level, etc.), maximizing code reuse and de-risking any potential last-minute DUT top-level architectural changes. It

targets multi-block designs where the specific number of block instances, type of block instances and their dependencies

may vary in the future. This methodology has strong foundations in Object Oriented Programming (OOP) and

leverages some of its techniques for verification to increase testbench code reuse, facilitate integration, unify and

standardize development, facilitate parallel verification execution, as well as reducing the overall verification time.

Keywords— UVM, SystemVerilog, flexibility, reuse, integration, OOP, methodology, testbench, environment,

configuration, constrained random testing, directed testing, Device Under Test (DUT)

I. INTRODUCTION

A diverse ecosystem of customer applications in the market demands highly adaptable designs that are power and

cost-efficient. Xilinx Zynq RFSoC DFE [1] provides an adaptive combination of soft and hard IP that can evolve

with 5G standards and provide flexibility to customers for a diverse range of use cases. Flexible hardware designs

require a flexible verification architecture to ensure that the testbench can adapt quickly to potential architectural

changes as blocks develop and through future device generations.

Project cycles have become shorter over time to remain competitive in the market, leaving verification with very

aggressive schedules. Enabling parallel verification development while reducing integration effort, maximizing

code reuse and reducing testbench debug time have become critical to achieve first-time right silicon in a short

project cycle.

This paper presents a UVM verification architecture and methodology with strong foundations in OOP that was

used to successfully verify a multi-block design similar to Figure 1 top-level diagram. This design is composed of

a number N of IPs that we will refer to as blocks, e.g. BLOCK A. These blocks are grouped together in different

configurations to form different Hard IPs, e.g. “HardIP 1” contains 2 instances of BLOCK A IP and 1 of BLOCK

B IP. This is what we refer to as top-level verification. These blocks can be chained together to form a final system

to meet the customer needs. This is what we refer to as system-level verification.

By using this architecture and methodology, we achieved:

• A flexible testbench that allowed us to support:

o Unit-level DUTs (for all different Block types),

o Top-level DUTs (for all different Hard IP types),

o System-level DUTs for a configurable system type

• Maintainable and reusable coding that facilitated vertical and horizontal reuse

• Reduced testbench debug

• Maximal reuse of tests at the different integration levels

mailto:asanzcar@xilinx.com
mailto:kgarden@xilinx.com
mailto:weiweic@xilinx.com

2

BLOCK A
Instance 0

BLOCK A
Instance 0

BLOCK F
Instance 0

BLOCK E
Instance 0

HardIP 2HardIP 1 HardIP 3

HardIP 4

BLOCK C
Instance 0

BLOCK C

Instance 1

BLOCK C
Instance 2

BLOCK F
Instance 0

BLOCK A
Instance 0

BLOCK E
Instance 0

BLOCK A
Instance 0

BLOCK A
Instance 1

BLOCK B
Instance 0

BLOCK B
Instance 0

BLOCK B

Instance 1

BLOCK D
Instance 0

BLOCK D
Instance 1HardIP 5

BLOCK F
Instance 0

BLOCK G
Instance 0

Unit-level System-level

Top-level views

Figure 1 Examples of multi-block design levels of integration for verification

II. UNIFIED TESTBENCH METHODOLOGY FOR REUSE AND INTEGRATION

A. Flexible testbench architecture

In order to achieve a flexible testbench architecture that supports unit-level, top-level, and system-level

verification, as well as other required internal integration levels, it is critical to have a testbench that can adapt to

match the final DUT.

1) Makefile and compilation

We implemented different compilation targets as part of the Makefile to enable selective and independent

DUT compilation. By using separate DUT file lists at the different integration levels and compile time defines,

we were able to provide the flexibility required. See Makefile sample code in Figure 2.

2) Testbench top

The testbench top instantiates the selected DUT(s) by using compile time defines from the Makefile. It also

generates the appropriate modules that we refer to as DUT wrappers that hold the DUT interfaces and take care

of the interface connections and interface encapsulation into a virtual interface bundle. This interface bundle is

passed from the tb_top to the top-level environment. Refer to Figure 3 for tb_top diagram and code snippet.

NUM_BLOCKA ?= 0

NUM_BLOCKB ?= 0

#...

ifeq ($(TOPOLOGY), BLOCKA)

 NUM_BLOCKA := 1

 DEFINES += +define+TB_BLOCKA

endif

Other blocks

ifeq ($(TOPOLOGY), TOP_HARDIP1)

 NUM_BLOCKA := 2

 NUM_BLOCKB := 1

 DEFINES += +define+TB_TOP_HARDIP1

endif

Other top-level or system level views

#--

Block Makefile variables

#--

ifneq ($(NUM_BLOCKA), 0)

 BLOCK_INCDIR += +incdir+$(VERIF)/env/blocks/blocka

 BLOCK_PKGS += $(VERIF)/env/blocks/blocka/blocka_env_pkg.sv

 BLOCK_IFS += $(VERIF)/env/blocks/blocka/blocka_vif.sv

 BLOCK_DUT_WRAP += $(VERIF)/tb/blocka_dut_wrapper.sv

 BLOCK_DEFINES += +define+TB_NUM_BLOCKA=$(NUM_BLOCKA)

endif

#...

Figure 2 Makefile topologies, defines and include implementation sample code

3

block<A..Z>_base_test tb_top

top_env

blockA_env [NUM_BLOCKA]

agentZ componentY

top_vif

top_cfg

top_vsqr

blockA_vsqr

blockA_cfg

blockA_vif
top_vif

blockF_env [NUM_BLOCKF]

agentP componentQ

blockF_vsqr

blockF_cfg

blockF_vif

blockA_vif

blockF_vif

HardIP 4

BLOCK F
DUT

BLOCK A
DUT

config_db
set/get

agentP_if

componentQ_if

agentZ_if

componentY_if

blockA_wrapper

blockF_wrapper

module tb_top;
 top_vif top_vif();

 initial begin
 uvm_config_db #(virtual top_vif)::set(.cntxt(null), .inst_name("*"),
.field_name("top_vif"), .value(top_vif));
 end

 generate
 begin: GEN_BLOCKA
 for (genvar i_g = 0; i_g < NUM_BLOCKA; i_g++) begin:INST
 blockA_dut_wrapper blockA(.blockA_vif_bundle (blockA_vif_q[i_g]));
 initial begin // Assign blocks' VIF handle to TOP VIF
 top_vif.blokcA_vif[i_g] = blockA_vif_q[i_g];
 end
 end
 end: GEN_BLOCKA
 endgenerate
 // Rest of block wrapper generation and DUT instantiation
endmodule : tb_top

DUT

Figure 3 Testbench top integration example of one supported topology (HardIP 4) and testbench top sample code

3) Configuration

One of the main challenges that presents when providing coarse (pseudo-random testing) and fine (directed

testing) configuration granularity is ensuring in both cases that it is consistent and coherent at all integration levels.

One of the key benefits of this methodology approach can be seen especially at system-level, where we require

certain inter-block dependencies to be aligned in both the blocks under test as well as in the verification

components. This testbench architecture and methodology addresses:

1. Providing the capability for fine-grain configuration granularity while exploiting the benefits of

pseudo-random verification (coarse-grain).

2. Ensuring the DUT configuration is valid and within the system requirements and expectations at all

simulation levels including when inter-connecting multiple blocks together for system level

simulations. This helps reduce TB debug time due to misconfiguration/time spent testing non-

supported configurations.

3. Providing a maintainable and scalable configuration: modular code that facilitates horizontal and

vertical reuse. Vertical integration is critical and often takes a significant amount of time in the

verification schedule.

This methodology creates one main configuration uvm_object per environment and encapsulates any other

block/subblock agent/component configuration object instance within the class centralizing all relevant information

in a common place. In other words, the configuration object hierarchy mirrors the component hierarchy – see Figure

4. Similar to one of the recommendations from [2], we avoid using uvm_config_db with single fields and centralize

all the rand variables into random configuration objects. It includes all required information related to testbench

topology, test sequencing, DUT and stimulus configuration. This approach provides a modular and self-contained

structure for ease of use and integration. It facilitates having access to all the relevant information by using object

handles to navigate through the hierarchy while providing a coherent and consistent configuration view.

4

top_envtop_cfg

Variables
rand topology_e topology;
rand int unsigned num_blockA;
rand int unsigned num_blockB;
...

Inter-block constraints

blockA_cfg [NUM_BLOCKA] blockB_cfg [NUM_BLOCKB]

Constraints

agentZ_cfg

Other blocks configuration objects

Constraints

blockA_env [NUM_BLOCKA] blockB_env [NUM_BLOCKB]

Other blocks environments

agentZcomponentY_cfg componentY agentW componentX

top_viftop_cfg

blockB_vif

top_vsqr

blockB_vsqrblockA_vsqr

blockA_cfg blockB_cfg

agentW_cfg componentX_cfg

Variables

rand bit uplink_mode;
rand ;

Variables

rand bit uplink_mode;
rand ;

constraint syslevel_c {
 (topology == SYSLEVEL) ->
 (blockA_cfg[0].uplink_mode ==
 blockB_cfg[0].uplink_mode);
}Top-level constraints

blockA_vif

Figure 4 Configuration object and environment structure

As shown in Figure 5, the top-level configuration object defines as rand any other sub-component

configuration object and creates them as part of the top-level configuration object new function. The top-level

configuration object is being randomized at the start of the build_phase and by doing so, the entire configuration

object hierarchy is randomized while satisfying the constraints at all different levels. This provides a coherent and

valid view of the testbench topology, sequencing, DUT configuration and stimulus configuration to be used by

the test. Randomizing and resolving inter/intra-block constraints as a whole is crucial when multiple blocks are

Figure 5 Top level and block level configuration object creation

class top_cfg extends uvm_object;

 rand topology_e topology;

 rand blockA_cfg blockA_cfg_h[$];

 rand blockB_cfg blockB_cfg_h[$];

 //...

 `uvm_object_utils(top_cfg)

 function new(string name ="top_cfg");

 super.new(name);

 for(int unsigned i = 0; i < NUM_BLOCKA; i++)

 blockA_cfg_h[i] = blockA_cfg::type_id::create($sformatf("blockA_cfg_h%0d",i));

 for(int unsigned i = 0; i < NUM_BLOCKB; i++)

 blockB_cfg_h[i] = blockB_cfg::type_id::create($sformatf("blockB_cfg_h%0d",i));

 //...

 endfunction : new

 // Rest of class (functions, constraints, etc.)

endclass : top_cfg

class block_base_cfg extends uvm_object;

 rand int unsigned id;

 string dut_hdl_path;

 rand bit has_coverage;

 rand uvm_active_passive_enum is_active;

 rand test_config test_cfg_h; // Defines main test sequencing used by the test

 rand stimulus_config stim_cfg_h; // Stimulus being used by the block if active

 `uvm_object_utils(block_base_cfg)

 // ...

endclass : block_base_cfg

class blockA_cfg extends block_base_cfg;

 rand agentA_cfg agentA_cfg_h;

 rand componentB_cfg componentB_cfg_h;

 //Other BlockA component configs

 //BlockA DUT specific configuration knobs

 `uvm_object_utils(blockA_cfg)

 function new(string name ="blockA_cfg");

 super.new(name);

 agentA_cfg_h[i] = agentA_cfg::type_id::create("agentA_cfg_h");

 componentB_cfg_h[i] = componentB_cfg::type_id::create("componentB_cfg_h");

 //Other blockA component configs creation

 endfunction : new

 // Rest of class (functions, constraints, etc.)

endclass : blockA_cfg

5

inter-connected together to form a system and inter-dependencies need to be resolved. In this case, inter-block

dependencies will be implemented in constraints as part of the top-level configuration object class (see Figure 4).

Because the configuration is randomized and resolved at the start of build_phase providing a valid solution

from the overall possibilities space, this methodology expects that configuration to remain constant for the whole

duration of the test hence not supporting later manual changes. Intervening at a later point partially modifying the

configuration could potentially violate some of the constraints that were already resolved and cause unnecessary

debug. This is an approach we do not recommend or use with this methodology. In order to intervene or provide

input to the configuration for the randomization process, the main techniques used by this methodology are:

a) Using pre_randomize function and plusargs: run-time arguments are an efficient technique to feed in a

specific fixed knob into the constraint randomization process without the need to recompile. If the run-

time plusarg is provided, it will be processed as part of the pre_randomize function as we can see in

Figure 6 example and num_plusarg_c will ensure that the random variable num takes the plusarg value.

If on the other hand we are not making use of the plusarg, we expect the rand variable to be fully

randomized within the allowed space defined by the configuration object constraints. In this case, we

disable the num_plusarg_c constraint by setting its constraint_mode to 0.

b) Extending the configuration object class and using UVM factory overrides: another option to provide

input into the randomization process is by extending the configuration object class as we see in Figure 7.

In this case, the child class is applying a more restrictive rule to the variable num by a new constraint

implementation in num_small_range_c. Then we apply a UVM factory override as part of the testcase

class blockA_cfg extends block_base_cfg;

 rand int unsigned num;

 int unsigned num_plusarg;

 //...

 `uvm_object_utils(blockA_cfg)

 constraint num_range_c {

 num inside {[1:16]};

 }

 constraint num_plusarg_c {

 num == num_plusarg;

 }

 //...

 function void pre_randomize();

 super.pre_randomize();

 if ($value$plusargs("NUM=%d", num_plusarg))

 `uvm_info(get_name(), $sformatf("Reading plusarg NUM=%d", num_plusarg), UVM_MEDIUM)

 else // Disable num_plusarg_c constraint

 num_plusarg_c.constraint_mode(0);

 endfunction : pre_randomize

endclass : blockA_cfg

class blockA_usecase0_cfg extends blockA_cfg;

 `uvm_object_utils(blockA_usecase0_cfg)

 function new (string name = "blockA_usecase0_cfg");

 super.new(name);

 endfunction : new

 constraint num_small_range_c {

 num inside {[1:4]};

 }

endclass : blockA_usecase0_test

class blockA_usecase0_test extends blockA_base_test;

 `uvm_component_utils(blockA_usecase0_test)

 function new (string name="blockA_usecase0_test", uvm_component parent);

 super.new(name, parent);

 // Constraining to set number within range 1-4

 set_type_override_by_type(blockA_cfg::get_type(), blockA_usecase0_cfg::get_type());

 endfunction : new

endclass : blockA_usecase0_test

Figure 6 Example of configuration override using pre_randomize and plusargs

Figure 7 Example of configuration override using factory override

6

new function. The example in Figure 7 reduces the solution space in the extended class. Expanding the

solution space can also be done by following the same technique and disabling the parent class contraints

or overriding them with a new implementation. This methodology usually expects the block

configuration object to capture the wider valid solution space to exploit the pseudo-random testing

approach and it uses this technique to reduce the space trending towards a more directed testing approach.

4) Environment

Environments are dynamically generated to meet the overall DUT needs by creating only the required

components and sub-components. The top-level environment holds dynamic structures of each block environment

class that will be populated as required during the build phase, following the selected testbench configuration

(Figure 8, A).

Consideration: a compile-time optimization is a more suitable solution for designs with high number of

different block types. In this case, the environment declaration and creation is guarded by compile-time defines,

class top_env extends uvm_env;

 top_cfg top_cfg_h;

 blockA_env blockA_env_h[$];

 blockB_env blockB_env_h[$];

 blockC_env blockC_env_h[$];

 //...

 virtual interface top_vif top_vif_h;

 `uvm_component_utils(top_env)

 extern function void build_phase(uvm_phase phase);

 extern function void connect_phase(uvm_phase phase);

 //Rest of functions

endclass : top_env

function void top_env::build_phase(uvm_phase phase);

 super.build_phase(phase);

 // TOP-LEVEL ENV

 if(top_cfg_h == null) begin

 top_cfg_h = top_cfg::type_id::create($sformatf("top_cfg_h"),this);

 if (!top_cfg_h.randomize())

 `uvm_fatal(get_name(), "Failed to randomize top_cfg_h class")

 end

 if(top_vif_h == null && !uvm_config_db#(virtual top_vif)::get(this, "", "top_vif", top_vif_h))

 `uvm_fatal(get_type_name(), "Interface top_vif_h not found")

 top_vsqr_h = top_vsqr::type_id::create("top_vsqr_h", this);

 // BLOCKS

 if(top_cfg_h.topology inside {TOP_HARDIP1, TOP_HARDIP2, BLOCKA_TOP}) begin

 for (int i=0; i<top_cfg_h.num_blockA; i++) begin

 blockA_env_h[i] = blockA_env::type_id::create($sformatf("blockA_env_h%0d",i), this);

 blockA_env_h[i].blockA_cfg_h = top_cfg_h.blockA_cfg_h[i];

 // Assigning VIF

 blockA_env_h[i].blockA_vif_h = top_vif_h.blockA_vif[i];

 blockA_env_h[i].blockA_cfg_h.blockA_vif = top_vif_h.blockA_vif[i];

 end

 end

 // Same as above for the rest of blocks

endfunction : build_phase

function void top_env::connect_phase(uvm_phase phase);

 super.connect_phase(phase);

 top_vsqr_h.top_env_cfg_h = top_env_cfg_h;

 top_vsqr_h.top_vif_h = top_vif_h;

 //BLOCKA

 if(top_cfg_h.topology inside {TOP_HARDIP1, TOP_HARDIP2, BLOCKA_TOP}) begin

 for (int i=0; i<top_cfg_h.num_blockA; i++)

 begin

 // Assigning VSQR handles from block-level environments

 top_vsqr_h.blockA_vsqr_h[i] = blockA_env_h[i].blockA_vsqr_h;

 end

 // Same as above for the rest of blocks

endfunction : connect_phase

Figure 8 Top environment and sub-environment creation and handles setup

A

B

C

A
B

C

D

7

the environment uses static arrays and the associated environment package files are only compiled if the block is

actually used by the selected topology. This approach greatly reduces the overall testbench compile time.

B. Facilitating vertical and horizontal reuse and reducing testbench debug

1) The OOP-style integration – no more uvm_config_db calls (* see footnote)

uvm_config_db get and set calls are based on strings that can use wildcards, which can be cumbersome and

difficult to debug. As the database increases with more entries and because it is a string-based search, it creates

a performance overhead that becomes unacceptable [2].

This methodology removes all (but two (*)) uvm_config_db calls often used to:

• Set configuration fields

• Pass configuration object handles

• Pass virtual interface handles

• Pass sequencer handles

The configuration object structure as per section A.3) automatically generates as part of one single phase all

configuration objects providing a consistent view with all the information required to build the testbench

components, configure them, the DUT, stimulus and test flow. It is the environment which takes a key role in

this process. The environment as part of the build phase ensures that any component created will have:

• The configuration objects required by passing down the handles to all the different components and

agents (Figure 8, B)

• The interfaces they need. If this environment is the top-level one, it retrieves a virtual bundle interface

by a single uvm_config_db call (*) and assigns the relevant interface handles down the hierarchy as

required. If it is not the top-level environment, it will be provided with the virtual interface bundle at

this level and distribute the sub-components interface handles following the same strategy as before

(Figure 8, C)

• The sequencer. Following a similar self-contained structure as the configuration objects and virtual

interfaces, the environment virtual sequencer class contains handles to all the sub-component

sequencers (Figure 9). Once created, the environment ensures that all components created within have

their sequencers set accordingly during build phase (Figure 8, D).

• Sequences retrieve all necessary handles from the parent sequencer before they start (Figure 10).

2) Constrained-random configuration

Ensuring that the configuration is aligned across multiple blocks through constraints reduces testbench debug

time due to DUT misconfiguration/unsupported system setup. Any configuration inconsistency will make the

simulation fail during randomization i.e. at the start of the test simulation, saving time by failing early.

(*) Note that a single uvm_config_db set/get pair was required to pass the virtual interface bundle from the testbench to

the environment

class top_vsqr extends uvm_sequencer;

 top_cfg top_cfg_h;

 virtual interface top_vif top_vif_h;

 blockA_vsqr blockA_vsqr_h[$];

 blockB_vsqr blockB_vsqr_h[$];

 //...

 `uvm_component_utils(top_vsqr)

 // Class functions

endclass : top_vsqr

Figure 10 Handles setup in sequences

function void blockA_vseq::set_handles();

 blockA_cfg_h = p_sequencer.blockA_cfg_h;

 blockA_vif_h = p_sequencer.blockA_vif_h;

 test_cfg_h = blockA_cfg_h.test_cfg_h;

 //Other handle retrievals

endfunction : set_handles

Figure 9 Top level sequencer class

8

3) Base testbench classes automatically generated

Because of the systematic approach of this methodology, we were able to automatically generate all base classes

and testbench skeleton at the start of the project securing a strong foundation with which to begin. Leveraging

from OOP inheritance, we were also able to unify all block base classes maximizing reuse and maintainability.

4) SVA and the “no absolute hierarchical probes” strategy

The approach taken to SystemVerilog Assertions (SVA) is to use binds where possible and relative hierarchical

probes as part of the checking modules. This helps with integration and reuse by providing an adaptable method

to connect to the DUT and also removing fixed dependencies created by absolute probes. Use of any absolute

hierarchical probes should be avoided to facilitate both vertical and horizontal integration.

C. Maximize reuse of test sequences at the different integration levels

1) Sequences

A base sequence class (block_base_vseq in Figure 12) was used as a template for all the blocks to implement

and unify the different stages of the test sequence (power-on-reset, enable/control settings, register

configuration, applying stimulus/sending transactions, wait for output transactions, etc.). This systematic

structure allowed us to reuse unit-level sequences for system-level integration.

2) Tests

A common approach is to have components/environment setup code as part of the test classes. Following that

approach makes the testbench difficult to maintain, reuse and prone to errors as this code is typically not run

at the higher integration levels. This methodology implements environment components to be self-contained

keeping tests simple and mainly targeting configuration overrides to constrain the configuration to suit the test

(example in Figure 7).

As part of the main base test class (top_base_test), we instantiate the top-level environment. Because of the

OOP approach and systematic integration structure, we have access to any child class without incurring any

significant testbench performance penalty.

a) Unit-level

Each block base test extends the main base test class and creates handle aliases to their environment,

configuration object and sequencer for ease of use as shown in Figure 11. A plusarg ID option is used to

select which specific block instance we run the test sequence in, which defaults to instance 0 for unit-level

as there is only a single block DUT instance.

class blockA_base_test extends top_base_test;

 blockA_env blockA_env_h;

 blockA_cfg blockA_cfg_h;

 blockA_vsqr blockA_vsqr_h;

 blockA_base_vseq blockA_vseq_h;

 `uvm_component_utils(blockA_base_test)

 //...

endclass : blockA_base_test

function blockA_base_test::new(string name, uvm_component parent);

 super.new(name, parent);

 top_vseq_h = top_base_vseq::type_id::create("top_vseq_h");

 get_env_id_plusargs();

endfunction : new

function void blockA_base_test::connect_phase(uvm_phase phase);

 super.connect_phase(phase);

 // “Alias” handles for unit level testing

 blockA_env_h = top_env_h.blockA_env_h[id];

 blockA_vsqr_h = top_env_h.top_vsqr_h.blockA_vsqr_h[id];

 blockA_cfg_h = top_cfg_h.blockA_cfg_h[id];

endfunction : connect_phase

function void blockA_base_test::get_env_id_plusargs();

 if ($value$plusargs("BLOCKA_ID=%d", id))

 if ((id < 0) || (id >= NUM_BLOCKA))

 `uvm_fatal(get_name(), $sformatf("Specified BLOCKA_ID is outside bounds. BLOCKA_ID: %d. Range

permitted: [%d,%d]", id, 0, NUM_BLOCKA-1))

 else

 `uvm_info(get_name(), $sformatf("Overriden by plusarg BLOCKA_ID = %0d",id), UVM_MEDIUM)

endfunction : get_env_id_plusargs

Figure 11 Block unit-level base test class with environment ID plusarg

9

b) Top-level

In the case of top-level verification, this plusarg ID will be specified by the regression list to target all the

various instance IDs that form the HardIP. By following this approach, we achieved a 100% vertical testcase

reuse, from unit-level to top-level, as well as reusing horizontally across all possible block instances in the

HardIP. Note that 100% vertical reuse may not be possible for all architectures, but this approach should

maximize reuse and ease of integration at the next level.

c) System-level

The system-level approach is slightly different as there are inter-dependencies in the configuration of the

blocks forming the system as well as the sequencing. The main block sequences were also fully reused to

form the final system level sequence as shown in syslevel_vseq in Figure 12. The system-level sequence,

following the same virtual sequence tasks as the base class, reuses blockA and blockB implementation from

the unit-level virtual sequence implementation. New constraints were also implemented as part of the top-

level configuration object to ensure alignment in configuration across inter-connected blocks (e.g. Figure

4) and allowing us to set all the component configurations accordingly (UVM_ACTIVE / UVM_PASSIVE).

block_base_vseq

block<A..Z>_vseq syslevel_vseq

block<A..Z>_base_test

power_on_reset

init_block

configure_block

apply_stimulus

wait_for_output

power_down

block<A..Z>_vseq

top_base_test

block<A..Z>_base_test

block<A..Z>_<name0>_test

syslevel_base_test

syslevel_<name0>_test

syslevel_<name1>_test

etc.

block<A..Z>_<name1>_test

etc.

power_on_reset

init_block

configure_block

apply_stimulus

wait_for_output

power_down

syslevel_vseq

blockA_vseq
power_on_reset()

blockA_vseq
init_block()

blockA_vseq
configure_block()

blockA_vseq
apply_stimulus()

blockA_vseq
wait_for_output()

blockB_vseq
power_down()

blockB_vseq
power_on_reset()

blockB_vseq
init_block()

blockB_vseq
configure_block()

blockB_vseq
apply_stimulus()

blockB_vseq
wait_for_output()

blockB_vseq
power_down()

syslevel_base_test

Unit-level and top-level tests

System-level tests

A

B

Inheritance: class B extends class A

Figure 12 Virtual sequences and test inheritance structure and test sequencing implementation

III. CONCLUSIONS

This testbench architecture and coding methodology was implemented to successfully verify Xilinx RFSoC

DFE [1] and it follows generic guidelines that can be applied to other type of ASIC and SoC designs. Its adoption

achieves a single UVM testbench with maintainable and reusable code to support all levels of integration while

enabling parallel verification execution and ease of integration. By using the proposed methodology, we achieved

100% vertical and horizontal test reuse from unit-level to top-level. Its flexibility and configurability de-risks

potential top-level DUT changes as well as providing a flexible framework for new custom system-level use cases.

REFERENCES

[1] Xilinx RFSoC DFE: https://www.xilinx.com/products/silicon-devices/soc/rfsoc/zynq-ultrascale-plus-rfsoc-dfe.html

[2] R. Edelman, C. Spear, “UVM – Stop Hitting Your Brother Coding Guidelines”, DVCON US 2020

[3] IEEE 1800-2017 – IEEE Standard for SystemVerilog – Unified Hardware Design, Specification, and Verification Language

https://www.xilinx.com/products/silicon-devices/soc/rfsoc/zynq-ultrascale-plus-rfsoc-dfe.html

