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Abstract— This paper presents a flexible verification architecture and coding methodology that allows a single UVM 

testbench to adapt and support all levels of integration (unit-level, top-level, system level, encrypted simulation model 

level, etc.), maximizing code reuse and de-risking any potential last-minute DUT top-level architectural changes. It 

targets multi-block designs where the specific number of block instances, type of block instances and their dependencies 

may vary in the future. This methodology has strong foundations in Object Oriented Programming (OOP) and 

leverages some of its techniques for verification to increase testbench code reuse, facilitate integration, unify and 

standardize development, facilitate parallel verification execution, as well as reducing the overall verification time. 
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I.  INTRODUCTION 

A diverse ecosystem of customer applications in the market demands highly adaptable designs that are power and 

cost-efficient. Xilinx Zynq RFSoC DFE [1] provides an adaptive combination of soft and hard IP that can evolve 

with 5G standards and provide flexibility to customers for a diverse range of use cases. Flexible hardware designs 

require a flexible verification architecture to ensure that the testbench can adapt quickly to potential architectural 

changes as blocks develop and through future device generations. 

Project cycles have become shorter over time to remain competitive in the market, leaving verification with very 

aggressive schedules. Enabling parallel verification development while reducing integration effort, maximizing 

code reuse and reducing testbench debug time have become critical to achieve first-time right silicon in a short 

project cycle. 

This paper presents a UVM verification architecture and methodology with strong foundations in OOP that was 

used to successfully verify a multi-block design similar to Figure 1 top-level diagram. This design is composed of 

a number N of IPs that we will refer to as blocks, e.g. BLOCK A. These blocks are grouped together in different 

configurations to form different Hard IPs, e.g. “HardIP 1” contains 2 instances of BLOCK A IP and 1 of BLOCK 

B IP. This is what we refer to as top-level verification. These blocks can be chained together to form a final system 

to meet the customer needs. This is what we refer to as system-level verification. 

By using this architecture and methodology, we achieved: 

• A flexible testbench that allowed us to support: 

o Unit-level DUTs (for all different Block types),  

o Top-level DUTs (for all different Hard IP types),  

o System-level DUTs for a configurable system type  

• Maintainable and reusable coding that facilitated vertical and horizontal reuse 

• Reduced testbench debug 

• Maximal reuse of tests at the different integration levels 

mailto:asanzcar@xilinx.com
mailto:kgarden@xilinx.com
mailto:weiweic@xilinx.com


 

2 
   
 

BLOCK A
Instance 0

BLOCK A
Instance 0

BLOCK F
Instance 0

BLOCK E
Instance 0

HardIP 2HardIP 1 HardIP 3

HardIP 4

BLOCK C
Instance 0

BLOCK C

Instance 1

BLOCK C
Instance 2

BLOCK F
Instance 0

BLOCK A
Instance 0

BLOCK E
Instance 0

BLOCK A
Instance 0

BLOCK A
Instance 1

BLOCK B
Instance 0

BLOCK B
Instance 0

BLOCK B

Instance 1

BLOCK D
Instance 0

BLOCK D
Instance 1HardIP 5

BLOCK F
Instance 0

BLOCK G
Instance 0

Unit-level System-level

Top-level views

 

Figure 1 Examples of multi-block design levels of integration for verification 

II. UNIFIED TESTBENCH METHODOLOGY FOR REUSE AND INTEGRATION 

A. Flexible testbench architecture 

In order to achieve a flexible testbench architecture that supports unit-level, top-level, and system-level 

verification, as well as other required internal integration levels, it is critical to have a testbench that can adapt to 

match the final DUT. 

 

1) Makefile and compilation 

We implemented different compilation targets as part of the Makefile to enable selective and independent 

DUT compilation. By using separate DUT file lists at the different integration levels and compile time defines, 

we were able to provide the flexibility required. See Makefile sample code in Figure 2. 

2) Testbench top 

The testbench top instantiates the selected DUT(s) by using compile time defines from the Makefile. It also 

generates the appropriate modules that we refer to as DUT wrappers that hold the DUT interfaces and take care 

of the interface connections and interface encapsulation into a virtual interface bundle. This interface bundle is 

passed from the tb_top to the top-level environment. Refer to Figure 3 for tb_top diagram and code snippet. 

 

 

 

 

 

 

NUM_BLOCKA ?= 0 

NUM_BLOCKB ?= 0 

#... 

ifeq ($(TOPOLOGY), BLOCKA) 

  NUM_BLOCKA := 1 

  DEFINES    += +define+TB_BLOCKA 

endif 

# Other blocks 

ifeq ($(TOPOLOGY), TOP_HARDIP1) 

  NUM_BLOCKA := 2 

  NUM_BLOCKB := 1 

  DEFINES    += +define+TB_TOP_HARDIP1 

endif 

# Other top-level or system level views 

#------------------------------------------------ 

# Block Makefile variables 

#------------------------------------------------ 

ifneq ($(NUM_BLOCKA), 0) 

  BLOCK_INCDIR   += +incdir+$(VERIF)/env/blocks/blocka 

  BLOCK_PKGS     += $(VERIF)/env/blocks/blocka/blocka_env_pkg.sv 

  BLOCK_IFS      += $(VERIF)/env/blocks/blocka/blocka_vif.sv 

  BLOCK_DUT_WRAP += $(VERIF)/tb/blocka_dut_wrapper.sv 

  BLOCK_DEFINES  += +define+TB_NUM_BLOCKA=$(NUM_BLOCKA) 

endif 

#... 

 

Figure 2 Makefile topologies, defines and include implementation sample code 
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module tb_top;
  top_vif top_vif();
  
  initial begin
    uvm_config_db #(virtual top_vif)::set(.cntxt(null), .inst_name("*"), 
.field_name("top_vif"), .value(top_vif));
  end

  generate
    begin: GEN_BLOCKA
      for (genvar i_g = 0; i_g < NUM_BLOCKA; i_g++) begin:INST
        blockA_dut_wrapper  blockA(.blockA_vif_bundle (blockA_vif_q[i_g]));
        initial begin  // Assign blocks' VIF handle to TOP VIF
          top_vif.blokcA_vif[i_g] = blockA_vif_q[i_g];
        end
      end
    end: GEN_BLOCKA
  endgenerate
    // Rest of block wrapper generation and DUT instantiation
endmodule : tb_top

DUT

 
 

Figure 3 Testbench top integration example of one supported topology (HardIP 4) and testbench top sample code 

3) Configuration 

One of the main challenges that presents when providing coarse (pseudo-random testing) and fine (directed 

testing) configuration granularity is ensuring in both cases that it is consistent and coherent at all integration levels. 

One of the key benefits of this methodology approach can be seen especially at system-level, where we require 

certain inter-block dependencies to be aligned in both the blocks under test as well as in the verification 

components. This testbench architecture and methodology addresses: 

1. Providing the capability for fine-grain configuration granularity while exploiting the benefits of 

pseudo-random verification (coarse-grain). 

2. Ensuring the DUT configuration is valid and within the system requirements and expectations at all 

simulation levels including when inter-connecting multiple blocks together for system level 

simulations. This helps reduce TB debug time due to misconfiguration/time spent testing non-

supported configurations. 

3. Providing a maintainable and scalable configuration: modular code that facilitates horizontal and 

vertical reuse. Vertical integration is critical and often takes a significant amount of time in the 

verification schedule. 

This methodology creates one main configuration uvm_object per environment and encapsulates any other 

block/subblock agent/component configuration object instance within the class centralizing all relevant information 

in a common place. In other words, the configuration object hierarchy mirrors the component hierarchy – see Figure 

4. Similar to one of the recommendations from [2], we avoid using uvm_config_db with single fields and centralize 

all the rand variables into random configuration objects. It includes all required information related to testbench 

topology, test sequencing, DUT and stimulus configuration. This approach provides a modular and self-contained 

structure for ease of use and integration. It facilitates having access to all the relevant information by using object 

handles to navigate through the hierarchy while providing a coherent and consistent configuration view. 
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Figure 4 Configuration object and environment structure 

As shown in Figure 5, the top-level configuration object defines as rand any other sub-component 

configuration object and creates them as part of the top-level configuration object new function. The top-level 

configuration object is being randomized at the start of the build_phase and by doing so, the entire configuration 

object hierarchy is randomized while satisfying the constraints at all different levels. This provides a coherent and 

valid view of the testbench topology, sequencing, DUT configuration and stimulus configuration to be used by 

the test. Randomizing and resolving inter/intra-block constraints as a whole is crucial when multiple blocks are 

Figure 5 Top level and block level configuration object creation 

class top_cfg extends uvm_object; 

  rand topology_e                   topology; 

 

  rand blockA_cfg                   blockA_cfg_h[$]; 

  rand blockB_cfg                   blockB_cfg_h[$]; 

  //... 

  `uvm_object_utils(top_cfg) 

   

  function new(string name ="top_cfg"); 

    super.new(name); 

    for(int unsigned i = 0; i < NUM_BLOCKA; i++) 

      blockA_cfg_h[i] = blockA_cfg::type_id::create($sformatf("blockA_cfg_h%0d",i)); 

    for(int unsigned i = 0; i < NUM_BLOCKB; i++) 

      blockB_cfg_h[i] = blockB_cfg::type_id::create($sformatf("blockB_cfg_h%0d",i)); 

    //... 

  endfunction : new 

  // Rest of class (functions, constraints, etc.) 

endclass : top_cfg 
 

class block_base_cfg extends uvm_object; 

  rand int unsigned                     id; 

  string                                dut_hdl_path; 

  rand bit                              has_coverage; 

  rand uvm_active_passive_enum          is_active; 

  rand test_config                      test_cfg_h; // Defines main test sequencing used by the test 

  rand stimulus_config                  stim_cfg_h; // Stimulus being used by the block if active 

 

  `uvm_object_utils(block_base_cfg) 

  // ... 

endclass : block_base_cfg 
 

class blockA_cfg extends block_base_cfg; 

  rand agentA_cfg                   agentA_cfg_h; 

  rand componentB_cfg               componentB_cfg_h; 

  //Other BlockA component configs 

  //BlockA DUT specific configuration knobs 
 

  `uvm_object_utils(blockA_cfg) 

   

  function new(string name ="blockA_cfg"); 

    super.new(name); 

    agentA_cfg_h[i]     = agentA_cfg::type_id::create("agentA_cfg_h"); 

    componentB_cfg_h[i] = componentB_cfg::type_id::create("componentB_cfg_h"); 

    //Other blockA component configs creation 

  endfunction : new 

  // Rest of class (functions, constraints, etc.) 

endclass : blockA_cfg 



 

5 
   
 

inter-connected together to form a system and inter-dependencies need to be resolved. In this case, inter-block 

dependencies will be implemented in constraints as part of the top-level configuration object class (see Figure 4). 
 

Because the configuration is randomized and resolved at the start of build_phase providing a valid solution 

from the overall possibilities space, this methodology expects that configuration to remain constant for the whole 

duration of the test hence not supporting later manual changes. Intervening at a later point partially modifying the 

configuration could potentially violate some of the constraints that were already resolved and cause unnecessary 

debug. This is an approach we do not recommend or use with this methodology. In order to intervene or provide 

input to the configuration for the randomization process, the main techniques used by this methodology are: 

a) Using pre_randomize function and plusargs: run-time arguments are an efficient technique to feed in a 

specific fixed knob into the constraint randomization process without the need to recompile. If the run-

time plusarg is provided, it will be processed as part of the pre_randomize function as we can see in 

Figure 6 example and num_plusarg_c will ensure that the random variable num takes the plusarg value. 

If on the other hand we are not making use of the plusarg, we expect the rand variable to be fully 

randomized within the allowed space defined by the configuration object constraints. In this case, we 

disable the num_plusarg_c constraint by setting its constraint_mode to 0. 

b) Extending the configuration object class and using UVM factory overrides: another option to provide 

input into the randomization process is by extending the configuration object class as we see in Figure 7. 

In this case, the child class is applying a more restrictive rule to the variable num by a new constraint 

implementation in num_small_range_c. Then we apply a UVM factory override as part of the testcase 

class blockA_cfg extends block_base_cfg; 
 

  rand int unsigned          num; 

  int unsigned               num_plusarg; 

  //... 

  `uvm_object_utils(blockA_cfg) 

 

  constraint num_range_c { 

    num inside {[1:16]}; 

  } 

 

  constraint num_plusarg_c { 

    num == num_plusarg; 

  } 

  //... 

  function void pre_randomize(); 

    super.pre_randomize(); 
 

    if ($value$plusargs("NUM=%d", num_plusarg)) 

      `uvm_info(get_name(), $sformatf("Reading plusarg NUM=%d", num_plusarg), UVM_MEDIUM) 

    else // Disable num_plusarg_c constraint 

      num_plusarg_c.constraint_mode(0); 
 

  endfunction : pre_randomize 
 

endclass : blockA_cfg 

 

class blockA_usecase0_cfg extends blockA_cfg; 

  `uvm_object_utils(blockA_usecase0_cfg) 

 

  function new (string name = "blockA_usecase0_cfg"); 

    super.new(name); 

  endfunction : new 

 

  constraint num_small_range_c { 

    num inside {[1:4]}; 

  } 

endclass : blockA_usecase0_test 

 

class blockA_usecase0_test extends blockA_base_test; 

  `uvm_component_utils(blockA_usecase0_test) 

 

  function new (string name="blockA_usecase0_test", uvm_component parent); 

    super.new(name, parent); 

    // Constraining to set number within range 1-4 

    set_type_override_by_type(blockA_cfg::get_type(), blockA_usecase0_cfg::get_type()); 

  endfunction : new 

 

endclass : blockA_usecase0_test 

 

Figure 6 Example of configuration override using pre_randomize and plusargs 

Figure 7 Example of configuration override using factory override 
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new function. The example in Figure 7 reduces the solution space in the extended class. Expanding the 

solution space can also be done by following the same technique and disabling the parent class contraints 

or overriding them with a new implementation. This methodology usually expects the block 

configuration object to capture the wider valid solution space to exploit the pseudo-random testing 

approach and it uses this technique to reduce the space trending towards a more directed testing approach. 

4) Environment 

Environments are dynamically generated to meet the overall DUT needs by creating only the required 

components and sub-components. The top-level environment holds dynamic structures of each block environment 

class that will be populated as required during the build phase, following the selected testbench configuration 

(Figure 8, A).  

Consideration: a compile-time optimization is a more suitable solution for designs with high number of 

different block types. In this case, the environment declaration and creation is guarded by compile-time defines, 

class top_env extends uvm_env; 

  top_cfg                           top_cfg_h; 

   

  blockA_env                        blockA_env_h[$]; 

  blockB_env                        blockB_env_h[$]; 

  blockC_env                        blockC_env_h[$]; 

  //... 

  virtual interface top_vif         top_vif_h; 

   

  `uvm_component_utils(top_env) 

   

  extern function void build_phase(uvm_phase phase); 

  extern function void connect_phase(uvm_phase phase); 

  //Rest of functions 

endclass : top_env 

 

function void top_env::build_phase(uvm_phase phase); 

    super.build_phase(phase); 

     

  // TOP-LEVEL ENV 

  if(top_cfg_h == null) begin 

    top_cfg_h = top_cfg::type_id::create($sformatf("top_cfg_h"),this); 

    if (!top_cfg_h.randomize()) 

      `uvm_fatal(get_name(), "Failed to randomize top_cfg_h class" ) 

  end 

 

  if(top_vif_h == null && !uvm_config_db#(virtual top_vif)::get(this, "", "top_vif", top_vif_h)) 

    `uvm_fatal(get_type_name(), "Interface top_vif_h not found") 

 

  top_vsqr_h = top_vsqr::type_id::create("top_vsqr_h", this); 

    

  // BLOCKS 

   if(top_cfg_h.topology inside {TOP_HARDIP1, TOP_HARDIP2, BLOCKA_TOP}) begin 

    for (int i=0; i<top_cfg_h.num_blockA; i++) begin 

      blockA_env_h[i] = blockA_env::type_id::create($sformatf("blockA_env_h%0d",i), this); 

      blockA_env_h[i].blockA_cfg_h = top_cfg_h.blockA_cfg_h[i]; 

 

      // Assigning VIF 

      blockA_env_h[i].blockA_vif_h              = top_vif_h.blockA_vif[i]; 

      blockA_env_h[i].blockA_cfg_h.blockA_vif   = top_vif_h.blockA_vif[i]; 

    end 

  end 

  // Same as above for the rest of blocks 

endfunction : build_phase 

 
function void top_env::connect_phase(uvm_phase phase); 

  super.connect_phase(phase); 

 

  top_vsqr_h.top_env_cfg_h  = top_env_cfg_h; 

  top_vsqr_h.top_vif_h      = top_vif_h; 

 

  //BLOCKA 

  if(top_cfg_h.topology inside {TOP_HARDIP1, TOP_HARDIP2, BLOCKA_TOP}) begin 

    for (int i=0; i<top_cfg_h.num_blockA; i++) 

    begin 

      // Assigning VSQR handles from block-level environments 

      top_vsqr_h.blockA_vsqr_h[i] = blockA_env_h[i].blockA_vsqr_h; 

    end 

  // Same as above for the rest of blocks 

endfunction : connect_phase 

 
 

 
Figure 8 Top environment and sub-environment creation and handles setup 

A 

B 

C 

A 
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C 
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the environment uses static arrays and the associated environment package files are only compiled if the block is 

actually used by the selected topology. This approach greatly reduces the overall testbench compile time. 

B. Facilitating vertical and horizontal reuse and reducing testbench debug 

1) The OOP-style integration – no more uvm_config_db calls (* see footnote) 

uvm_config_db get and set calls are based on strings that can use wildcards, which can be cumbersome and 

difficult to debug. As the database increases with more entries and because it is a string-based search, it creates 

a performance overhead that becomes unacceptable [2]. 

 

This methodology removes all (but two (*)) uvm_config_db calls often used to: 

• Set configuration fields 

• Pass configuration object handles 

• Pass virtual interface handles 

• Pass sequencer handles 

 

The configuration object structure as per section A.3) automatically generates as part of one single phase all 

configuration objects providing a consistent view with all the information required to build the testbench 

components, configure them, the DUT, stimulus and test flow. It is the environment which takes a key role in 

this process. The environment as part of the build phase ensures that any component created will have: 
 

• The configuration objects required by passing down the handles to all the different components and 

agents (Figure 8, B) 

• The interfaces they need. If this environment is the top-level one, it retrieves a virtual bundle interface 

by a single uvm_config_db call (*) and assigns the relevant interface handles down the hierarchy as 

required. If it is not the top-level environment, it will be provided with the virtual interface bundle at 

this level and distribute the sub-components interface handles following the same strategy as before 

(Figure 8, C) 

• The sequencer. Following a similar self-contained structure as the configuration objects and virtual 

interfaces, the environment virtual sequencer class contains handles to all the sub-component 

sequencers (Figure 9). Once created, the environment ensures that all components created within have 

their sequencers set accordingly during build phase (Figure 8, D). 

• Sequences retrieve all necessary handles from the parent sequencer before they start (Figure 10). 

2) Constrained-random configuration 

Ensuring that the configuration is aligned across multiple blocks through constraints reduces testbench debug 

time due to DUT misconfiguration/unsupported system setup. Any configuration inconsistency will make the 

simulation fail during randomization i.e. at the start of the test simulation, saving time by failing early. 

 

 

(*) Note that a single uvm_config_db set/get pair was required to pass the virtual interface bundle from the testbench to 

the environment 

class top_vsqr extends uvm_sequencer; 

  top_cfg                               top_cfg_h; 

  virtual interface top_vif             top_vif_h; 

 

  blockA_vsqr                           blockA_vsqr_h[$]; 

  blockB_vsqr                           blockB_vsqr_h[$]; 

  //... 

  `uvm_component_utils(top_vsqr) 

 

  // Class functions 

endclass : top_vsqr 

Figure 10 Handles setup in sequences 

function void blockA_vseq::set_handles(); 

  blockA_cfg_h       = p_sequencer.blockA_cfg_h; 

  blockA_vif_h       = p_sequencer.blockA_vif_h; 

  test_cfg_h         = blockA_cfg_h.test_cfg_h; 

  //Other handle retrievals 

endfunction : set_handles 

Figure 9 Top level sequencer class 
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3) Base testbench classes automatically generated 

Because of the systematic approach of this methodology, we were able to automatically generate all base classes 

and testbench skeleton at the start of the project securing a strong foundation with which to begin. Leveraging 

from OOP inheritance, we were also able to unify all block base classes maximizing reuse and maintainability. 

 

4) SVA and the “no absolute hierarchical probes” strategy 

The approach taken to SystemVerilog Assertions (SVA) is to use binds where possible and relative hierarchical 

probes as part of the checking modules. This helps with integration and reuse by providing an adaptable method 

to connect to the DUT and also removing fixed dependencies created by absolute probes. Use of any absolute 

hierarchical probes should be avoided to facilitate both vertical and horizontal integration. 

C. Maximize reuse of test sequences at the different integration levels 

1) Sequences 

A base sequence class (block_base_vseq in Figure 12) was used as a template for all the blocks to implement 

and unify the different stages of the test sequence (power-on-reset, enable/control settings, register 

configuration, applying stimulus/sending transactions, wait for output transactions, etc.). This systematic 

structure allowed us to reuse unit-level sequences for system-level integration. 

2) Tests 

A common approach is to have components/environment setup code as part of the test classes. Following that 

approach makes the testbench difficult to maintain, reuse and prone to errors as this code is typically not run 

at the higher integration levels. This methodology implements environment components to be self-contained 

keeping tests simple and mainly targeting configuration overrides to constrain the configuration to suit the test 

(example in Figure 7). 

As part of the main base test class (top_base_test), we instantiate the top-level environment. Because of the 

OOP approach and systematic integration structure, we have access to any child class without incurring any 

significant testbench performance penalty. 

a) Unit-level 

Each block base test extends the main base test class and creates handle aliases to their environment, 

configuration object and sequencer for ease of use as shown in Figure 11. A plusarg ID option is used to 

select which specific block instance we run the test sequence in, which defaults to instance 0 for unit-level 

as there is only a single block DUT instance. 

class blockA_base_test extends top_base_test; 

  blockA_env               blockA_env_h; 

  blockA_cfg               blockA_cfg_h; 

  blockA_vsqr              blockA_vsqr_h; 

  blockA_base_vseq         blockA_vseq_h; 

 

  `uvm_component_utils(blockA_base_test) 

  //... 

endclass : blockA_base_test 

 

function blockA_base_test::new(string name, uvm_component parent); 

  super.new(name, parent); 

  top_vseq_h = top_base_vseq::type_id::create("top_vseq_h"); 

  get_env_id_plusargs(); 

endfunction : new 

 

function void blockA_base_test::connect_phase(uvm_phase phase); 

  super.connect_phase(phase); 
 

  // “Alias” handles for unit level testing 

  blockA_env_h  = top_env_h.blockA_env_h[id]; 

  blockA_vsqr_h = top_env_h.top_vsqr_h.blockA_vsqr_h[id]; 

  blockA_cfg_h  = top_cfg_h.blockA_cfg_h[id]; 
 

endfunction : connect_phase 

 

function void blockA_base_test::get_env_id_plusargs(); 
 

  if ($value$plusargs("BLOCKA_ID=%d", id)) 

    if ( (id < 0) || (id >= NUM_BLOCKA)) 

      `uvm_fatal(get_name(), $sformatf("Specified BLOCKA_ID is outside bounds. BLOCKA_ID: %d. Range 

permitted: [%d,%d]", id, 0, NUM_BLOCKA-1)) 

    else 

      `uvm_info(get_name(), $sformatf("Overriden by plusarg BLOCKA_ID = %0d",id), UVM_MEDIUM) 

endfunction : get_env_id_plusargs 

 
Figure 11 Block unit-level base test class with environment ID plusarg 
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b) Top-level 

In the case of top-level verification, this plusarg ID will be specified by the regression list to target all the 

various instance IDs that form the HardIP. By following this approach, we achieved a 100% vertical testcase 

reuse, from unit-level to top-level, as well as reusing horizontally across all possible block instances in the 

HardIP. Note that 100% vertical reuse may not be possible for all architectures, but this approach should 

maximize reuse and ease of integration at the next level. 

c) System-level 

The system-level approach is slightly different as there are inter-dependencies in the configuration of the 

blocks forming the system as well as the sequencing. The main block sequences were also fully reused to 

form the final system level sequence as shown in syslevel_vseq in Figure 12. The system-level sequence, 

following the same virtual sequence tasks as the base class, reuses blockA and blockB implementation from 

the unit-level virtual sequence implementation. New constraints were also implemented as part of the top-

level configuration object to ensure alignment in configuration across inter-connected blocks (e.g. Figure 

4) and allowing us to set all the component configurations accordingly (UVM_ACTIVE / UVM_PASSIVE).  
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Figure 12 Virtual sequences and test inheritance structure and test sequencing implementation 

III. CONCLUSIONS 

This testbench architecture and coding methodology was implemented to successfully verify Xilinx RFSoC 

DFE [1] and it follows generic guidelines that can be applied to other type of ASIC and SoC designs. Its adoption 

achieves a single UVM testbench with maintainable and reusable code to support all levels of integration while 

enabling parallel verification execution and ease of integration. By using the proposed methodology, we achieved 

100% vertical and horizontal test reuse from unit-level to top-level. Its flexibility and configurability de-risks 

potential top-level DUT changes as well as providing a flexible framework for new custom system-level use cases. 
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