
Testbench Configuration Mantra

Stephen D’Onofrio

Paradigm Works
Paradigm Works, Inc., MA, USA

stephen.donofrio@paradigm-works.com

ABSTRACT
All testbenches, even the simplest testbenches, need some kind of
configuration knobs (sometimes called configuration fields or
configuration parameters) that are used to control setting up some
feature in the verification environment. Ideally, the environment
also includes some kind of mechanism that allows test writers a way
to override a configuration knob’s default value. Configuration
knobs are typically setup in the testbench during the building phase
and directly used for DUT (Design Under Test) initialization. There
are various categories of configuration knobs including (but not
limited to) testbench topology knobs, simulation specific knobs,
verification component knobs, and testbench specific knobs.

More sophisticated random testbenches generally contain more
configuration knobs. Properly placing all these configuration knobs
in a testbench may get out of hand quickly. A testbench with a poorly
set up configuration structure will most likely inhibit test
controllability, perhaps degrades the overall testbench randomness,
and may prohibit easy future reuse.

There are no practical guidelines available in VMM and OVM
methodologies for structuring configuration knobs in a testbench.
However, both these methodologies provide two sophisticated
configuration techniques: (1) field automation/structural control
configuration mechanism (i.e. registering configuration knobs and
using set_config_*/get_config_* calls) and (2) configuration classes
that are used in conjunction with the factory. Both these techniques
have their own mechanisms that allow test writers means for
overriding default configuration field values.

Testbench developers are now plagued with the question of what
style configuration technique should they use. Should both these
techniques coexist? In addition, the OVM and VMM methodologies
do not include suggestions for classifying and compartmentalizing
configuration knobs in a testbench that helps promote reuse.

Finally, we will show users templates for OVM and VMM code that
contains the configuration techniques discuses above. The templates
help enforces a consistent look and feel and enable rapid
development and maintenance of the verification code across
multiple-sites and cultural barriers.

General Terms

Verification component – In this paper this term is equivalent to both
a VMM Transactor (see page 14 reference [2]) or VIP (Verification
Intellectual Property) and an OVM OVC (see page 10 in reference
[1]).

Configuration mechanism – In this paper this term is equivalent to
the OVM configuration mechanism that uses
get_config*/set_config* and VMM structural control
get*/set*configuration mechanism

Configuration class – This is a class that encapsulates configuration
fields

Horizontal reuse - reuse from project to project

Vertical reuse - unit level to system level reuse

1. Introduction

This paper takes a pragmatic view of the configuration techniques
utilized by the VMM and OVM methodologies. With the release of
VMM 1.2, it appears that the OVM and VMM configuration options
are converging. Verification teams need to understand the
advantages and limitations of the configuration options that are
available in these methodologies so that they can make intelligent
decisions.

Today’s large verification efforts include tremendous amounts of
configuration knobs. These verification efforts require using
techniques that allow for reuse and extensibility. The methodology in
which you use to declare configuration, layer configuration and the
techniques used for your configuration can help or hinder your
verification effort. This paper focuses on the techniques we
successfully used in the past and steps through the evaluation process
we went through.

This paper discusses configuration technique for:

(1) Structuring and programming testbenches
(2) Programming the DUT
(3) Controlling scenarios and tests

Both the field automation/structural control configuration mechanism
utilized by OVM and VMM and configuration class configuration
techniques is examined in this paper.

RTL configuration described in the VMM User Guide [2] and
verilog libmap techniques that connect a testbench to RTL are
beyond the scope of this paper.

The primary focus of the paper is on the testbench configuration that
occurs once before a test (simulation) is executed. From our
experience, this is generally the only time configuration is setup,
randomized, and dispersed throughout the testbench. Occasionally, it
may be a requirement to change the configuration dynamically
during a simulation. This paper only touches on this subject by

setting up a simple example of a single configuration field in the
middle of a simulation.

We find that testbench configuration may be broken up into several
categories that are described in the next section. As mentioned
above, there are two configuration techniques – the configuration
class technique and configuration mechanism technique. This paper
will examine how each of the configuration categories size up
against each configuration techniques.

2. Configuration Categories

There are four categories of configuration fields that we find in a
testbench:

(1) Design configuration knobs
(2) Verification component configuration knobs
(3) Topology configuration knobs
(4) Test configuration knobs

(1) Design Configuration Knobs
All DUTs with any level of complexity have large number amounts
of features. Often these features are controlled by registers that are
accessible to software, verilog parameters, preprocessor defines,
configuration pins, or core generators. For example, a PCIE core
may include link-width field that contains the value of the size that is
created by a core generator tool. Another example is a pace_mode
option for a MAC interface that is set or cleared by software writing
to a register via a CPU interface.

Typically features are controlled by registers in a design that can be
accessed via software. The verification environment normally
includes an initialization sequence that is responsible for taking the
design configuration fields (these fields are typically randomized)
and driving its data into the register via a CPU interface.

Occasionally, the testbench will need to verify variations of DUT
features that are controlled via compile time parameters or core
generator switches. This requires advanced testbench DUT
connection schemes that are beyond the scope of this paper.

Design configuration knobs are typically randomized in a random
testbench. Occasionally, design configuration fields need to be
constrained in order to close coverage holes or reproduce scenarios
that may have occurred in the lab.

(2) Verification Component Configuration Knobs
Verification components typically include various knobs for setting
up modes, controlling stimulus and responses sent into the DUT. For
example, most verification components have knobs for controlling
the size of the intra gap delay between packets. Another example for
a PCIE Express verification component, the component may have a
field that controls different acceptable link widths for link
initialization.

Verification component configuration fields, similar to design
configuration fields, are typically heavily randomized in order to
stress the DUT but may also need to be constrained in order to hit
specific corner cases.

(3) Topology Configuration Knobs
Both VMM and OVM describe testbench topology configuration
knobs. These knobs control how the testbench structure is built.
Robust VIP includes topology knobs for disabling/enabling

monitors, drives, and agents. These knobs are significant for
promoting vertical and horizontal verification component reuse.

For example, the OVM User Guide [1] describes knobs (or fields) for
controlling whether an agent is passive or active, how many
slave/master agents, and whether to build a “bus” monitor.

Similarly, the VMM User Guide [2] describes topology
configuration knobs for controlling monitors and xactors are
proactive, reactive, and passive (see section 8).

Topology configuration knobs are typically fixed (not dynamically
randomized). For example, it does not make sense to randomly
enable/disable a driver component on a per simulation basis. Its
value is fixed based on the topology of the testbench.

Test Configuration Knobs
Testbench configuration knobs are also described in both VMM and
OVM. These configuration knobs describe what kind and how much
stimulus to drive into the design. Additional, other examples of test
control fields are switches for enabling checkers, coverage, and
assertions.

For example, the OVM User Guide [1] figure 5.3 describes standard
configuration fields for enabling checker and coverage on page 69.
Test/sequence configuration is described on pages 80-82.

Similarly, throughout the VMM User Guide [2] it describes
test/scenario configuration fields for controlling and ending
simulations.

What should NOT be included in Configuration?
Often teams will add non-configuration field variables that have
nothing to do with configuration. Since a configuration object is
referenced in multiple components that do not have visibility to each
other, sometimes teams will use the configuration object reference to
pass information to/from multiple components. For example, a
monitor may capture the state of the bus and stuff the value in a
property in the configuration object. A sequence then may read the
state value from the configuration object and do something with it.
This practice pollutes the configuration class and causes maintenance
headaches. Additionally, it may prohibit easy reuse of the
components because they rely on each other via the configuration
object. VMM Channels or TLM interfaces should be used to
communicate to/from multiple components.

3. What does OVM and VMM offer for
configuration?

Both OVM and VMM have similar configuration capabilities.

(1) Configuration class technique

• Configuration descriptions (knobs) are encapsulated in a
configuration class

• Configuration field descriptions may be random and have
an associated default constraint

• Configuration is randomized before the simulation occurs
• Some steps need to be taken to pass down the

configuration object to lower layer testbench components
• Test cases may customize (or override) the default

configuration constraints using the factory

(2) OVM/VMM Configuration mechanism

This approach goes by different names. In the OVM Manual [1] it is
called the “OVM Configuration Mechanism” and in VMM it is
called “Hierarchical/Structural Configuration"

• Configuration field descriptions (knobs) are embedded in
the verification components – i.e. inside the driver,
sequencer, monitor

• Configuration field descriptions have a default value
• The configuration data is NOT randomized unless you do

some extra work – this paper described a technique for
accomplishing this task

• There are library calls “set_*” that allow higher layers such
as the “test case” layer override the default values in the
lower component layers.

o Wild * card searches via the testbench hierarchy
can be made to distinguish which downstream
component to override

• VMM allows overriding configuration using command line
options. OVM also has a contribution for command line
option.

OVM and VMM provide advanced capabilities for controlling the
configuration fields through the configuration mechanism. The
primary purpose of the configuration mechanism is to control the
field value setup during the build phase. The build phase occurs
before any simulation time is advanced. The fields may also be
changed during simulation time (or the run phase) but requires
additional work and is beyond the scope of this paper.

The configuration mechanism gives test writers and higher layer
testbench components (i.e. module/system OVCs or subenvs) the
ability to override the default field settings of the components. A
testbench hierarchy is established in top-down fashion where parent
components are built before their child components. Higher-level
testbench layers (test cases) and components (system/module OVCs
or subenvs) can override default configuration settings. Increasing
configuration override priority is from right to left in Figure 1.

4. Configuration and testbench architecture

Advanced testbench architectures are typically composed with an
environment (or testbench layer) that encapsulates one or more
verification components. The verification components model a
specific protocol. The environment typically also includes
scoreboards. Scoreboards and their associated transfer functions are
connected to the verification components and verify the data
integrity by comparing actual data against expected results. In
addition, more advanced testbenches may include subenvs (or
module OVCs as described in section 3.4 in Step-by-Step Functional
Verification with SystemVerilog and OVM[3]). These components
further enhance reuse by assisting in bringing unit level testbench
components into the higher level testbenches (or perhaps a system
level testbench).

All these testbench components need some access to configuration
data. This paper is going to examine various configuration
approaches using both OVM and VMM testbenches. The
testbenches built for this paper include three verification components
– a CPU interface, PCIE interface, and MAC interface. Additionally,
the examples show how to connect configuration data to
initialization sequences.

Below is a drawing of an OVM testbench architecture used for this
paper.

DUT

testbench (env)
test cases ...

packet
scoreboard

pwr virtual
sequence

CPU
OVC

PCIE
OVC Config:

master=2
slaves=2

Config:
master=1
slave=0

Module OVC

master
agent

Config:
active

Config:
active

master
agent

master
agent

Config:
active

monitor

Config:
master=1
slaves=1

MAC
OVC

slave
agent

Config:
active

slave
agent

Config:
passive

Figure 2 OVM Testbench

This testbench includes a DUT, three interface OVCs – the CPU,
PCIE, and MAC OVCs, a Module OVC, a scoreboard and virtual
sequencer.

Below is a drawing of a VMM testbench architecture used for this
paper.

OVM
Tests

Interface
UVC(s)

Testbench infrastructure
may override default configuration

Tests may override
the default configuration

Config:
parity_kind

Module
OVC(s)
or Sub Env

System
OVC
or subenvs

Default
configuration

Testbench
Env

Override priority

Figure 1 Testbench Configuration Mechanism Flow

DUT

drv

gen

rmon

chk

tmon

cpu_vip

scoreboard

my_cpu_rw_xlate
RAL

consensus
(end_test)

Testbench
Cfg

gen

drv rmon

chk

tmon

gen

drv rmon

chk

tmon

pcie_vip

mac_vip

Figure 3 Typical VMM Testbench
This testbench includes a DUT, three VIPs – the CPU, PCIE, and
MAC, RAL, consensus, and a scoreboard.

The following table lists the configuration knobs that are examined
in this paper.

Location Configuration Category

MAC pace_en design/verification component

MAC min_ifg design/verification component

MAC num_masters Topology

MAC num_slaves Topology

MAC intf_checks_enable Test

MAC has_bus_monitor Test

MAC intf_checks_enable Test

MAC has_bus_monitor Test

PCIE lane_reversal_support design/verification component

PCIE supported_link_width design/verification component

PCIE max_payload_size design/verification component

PCIE bar_0..7_start design/verification component

PCIE bar_0..7_end design/verification component

PCIE num_masters Topology

PCIE num_slaves Topology

CPU Parity design/verification component

CPU num_masters Topology

CPU num_slaves Topology

CPU intf_checks_enable Test

CPU has_bus_monitor Test

MOD Mode design/verification component

SEQ num_mac_packets Test

SEQ num_pcie_packets Test

SEQ mac_seq_kind Test

SEQ pcie_seq_kind Test

Table 1 Configuration Knobs

5. Managing Configuration

As described above there are two techniques for handling
configuration in both VMM and OVM. In this section, methodology
for configuration breakdown, configuration coordination,
randomizing configuration, and overriding configuration is described
showing both of these techniques. The examples in this section are
all done with OVM.

5.1 Configuration breakdown
In this section we describe various ways for breaking down
configuration fields using a configuration class and then using the
configuration mechanism.

5.1.1 Configuration class breakdown
In this section the configuration class breakdown methodology is
examined in detail. A testbench usually contains one or more
verification components. Each of these verification components will
likely need to access configuration. Advanced testbenches that use
subenvs (module OVCs) may also include configuration. The
testbench environment may additionally include its own
configuration.

It is relatively straight forward to model the configuration for the
module OVC and testbench – usually one configuration class for the
testbench and one configuration class for the module OVC.

The verification component is made up of multiple components.
Verification teams need to make decisions on how to break up the
configuration for the components. The remainder of this section
show several options of how one may consider breaking down
configuration classes inside a “verification component”.

Option A – One Environment Configuration

In this example the "testbench cfg" block maintains the configuration
fields for the verification component(s). The verification component
uses the testbench configuration.

• Pros
o Only one configuration file to find all

configuration knobs
• Cons

Subenv or Module OVC

Gen/Sequencer

Chk/Coverage

Monitor Driver

Verification component

Testbench

Cfg

Cfg

Cfg

n n

n n

Figure 4 Configuration Class Example

o Inhibits reuse because there is not a separation
between the “Verification Components” and the
Testbench Environment

o Difficult to maneuver through the configuration
file because too many configuration knobs in one
class

Option B – Each Component defines configuration

With this option each components inside the verification component
includes its own configuration class.

The configuration classes for each of the components inside the
verification component are instantiated and randomized inside the
testbench. Each of the configuration class instances are referenced
inside their associated component inside the verification component.

Option B Pros/Cons

• Pros
o Each component has its own configuration object

 All the configuration knobs belong to
the component. This is certainly not
the case for option A.

 Nice for reuse. Easy to take out
individual components from the
“verification component”.

• Cons
o Lots of configuration objects.

 Extra work for the environment
configuration to coordinate all the
configurations.

o Potentially many configuration knobs will be
duplicated within the same verification
component

 How do you handle constraints for the
duplicated configuration knobs?

 Some extra coding and perhaps
processing time (problem not an issue)

 What happens if the configuration
needs to change in mid simulation?

• Need to re sync all the
duplicate fields

Option C - Each Layer has a single Configuration

In this example, the gen/sequencer and checker/coverage are
considered the top layer and the driver/monitor are considered the
bottom layer. Each of these layers includes their own configuration
class.

Again, the configuration classes for this verification component are
instantiated and randomized inside the testbench. This time there are
two fewer configuration classes that need to be instantiated. The
configuration class instances are referenced inside the verification
component.

testbench…

Gen/Sequencer

Driver
n

n

Chk

Monitor

Cfg Cfg

n

n

Verification component

Cfg

Cfg Gen/Sequencer

Driver
n

Chk/Coveragev

Monitor

Cfg

Cfg Cfg

Cfg
n

Verification component

n

n

Figure 5 Configuration class for each component

Figure 8 Testbench - configuration class for each layer

testbench…

Gen/Sequencer

Driver
n

n

Chk

Monitor

Cfg Cfg
Cfg Cfg

n

n

Verification component

Cfg

Figure 6 Testbench - configuration class for each
component

Cfg Gen/Sequencer

Driver
n

Chk/Coverage

Monitor Cfg

Cfg
n

Verification component

n

n

Figure 7 Configuration class for each layer

Option C Pros/Cons

• Pros
o Each layer of components has its own

configuration class
 Most of the configuration knobs

belong to the component. Although
there is some potential for an unused
field (i.e. the check_enable is only used
in the monitor and not in the
“gen/sequencer”)

 Somewhat easy for reuse. Easy to take
out individual components from the
“verification components”

o Less configuration classes compared to option B

• Cons
o Still two configuration classes for a single

verification component needs to maintain.
o Potentially there may be configuration knobs

duplicated within the same verification
component – Same as Option B

Option D - Verification Component has a single
Configuration

In this example, each layer of components inside the verification
component shares the same configuration class.

Again, the configuration class for this verification component is
instantiated and randomized inside the testbench. This time the
testbench only needs to instantiates a single configuration classes.
The configuration class instances need to be referenced by all the
components in the verification component.

Option D – Pros/Cons

• Pros
o Each “verification component” has a single

configuration class
 This option provides us with single

configuration class that may easily be
ported for vertical and horizontal reuse

o The testbench only needs to maintain a single
configuration class for the verification
component

• Cons
o The individual components (monitor, driver, and

generator) that make up the “verification
component” most likely configuration do not use
all the knobs included in the configuration class.
For example, if there may be configuration field
such as “drive_n_packets” in the configuration
class that only the used by the driver component.

o It is not as easily to reuse individual components
(monitor, driver, and generator) because the
configuration class is at the “verification
component” level of abstraction.

Evaluating verification component options

• Option A has no reuse potential so it is out of the question
• Option B has the most reuse potential but has a large

amount of testbench overhead and maintenance for
keeping track of the configuration data. In our example, we
have a cpu driver and monitor that include a CPU
configuration field called "parity_kind". If we use this
option then we always need to make sure the value of the
"parity_kind" field need to stay in sync inside both the cpu
driver and monitor. This is not a scalable methodology as
the amount of configuration fields in a testbench grows.

• Option C has some of the same maintenance issues as
option B. It is a hybrid option between options B and D. It
does not seem valuable to break up configuration between
these layers.

• Option D has the least amount of testbench maintenance
overhead. Looking at our example of the "parity_kind"

testbench…

Gen/Sequencer

Driver
n

n

Chk

Monitor

Cfg

n

n

Verification component

Cfg

Gen/Sequencer

Driver
n

Chk/Coverage

Monitor
n

Verification component

n

n

Figure 9 Single configuration class

Figure 10 Testbench - single configuration class

configuration field, now the driver and monitor reference
the same configuration object – there is no sync issues.
Verification component reuse is achievable with this
option. However, using this option make it more difficult
to reuse individual components compared to option B. But
our main objective is usually not to break apart verification
components and reuse only the monitor, driver, and
sequencer. This option seems the most viable solution for
breaking down configuration for a verification component.

5.2.2 Configuration mechanism breakdown
When using the configuration mechanism, the configuration fields
are embedded directly inside the component in which the
configuration is needed rather than a separate configuration class.
For example, the parity_kind field for the CPU verification
component is included in both the CPU driver and the CPU monitor.
The driver needs to calculate the proper parity when driving data into
the Host interface on the DUT and the monitor needs to check if the
DUT is properly transmitting the data.

5.3 Verification component configuration knobs
This section describes how to populate configuration fields inside a
verification component using the configuration class technique and
the configuration mechanism technique.

5.3.1 Configuration class knobs

A configuration class is implemented as a standalone file and
included in the verification components distribution. This
configuration class needs to be self-contained for easy vertical and
horizontal reuse. In other words, it should only contain generic fields
and constraints. When adding a verification component to a
testbench, the verification component's configuration may be
extended to allow for testbench specific constraints.

Below is the code snippet of the example MAC OVC configuration
class using configuration breakdown option D.

The mac_config class inherits the ovm_object base class. The light
weight ovm_object base class allows us to declare configuration
fields and register the configuration class with the OVM factory.
Furthermore, the fields are registered the fields with the OVM
automation macros. This automates our fields for copy, compare, and
print operations.

Alternatively, one could have inherited the configuration class from
the ovm_component base class. This would have added the MAC
configuration class into the testbench hierarchy and allow controls
for the set_* configuration. However, when dynamically building the
testbench components, we ran into race conditions between
randomizing the configuration class and the dynamic build. This is
due to the nature of the top-down builds methodology. The testbench
level build (where the dynamic build occurs) took place before the
child configuration build occurs. Therefore, it is safest to inherit the
configuration class from the ovm_object class to ensure that test
writers can only use the factory to override the configuration class.

5.3.2 Configuration mechanism knobs

This section describes embedding design/verification configuration
fields inside a verification component. The following two code
snippets show how the CPU parity design/verification configuration
field is declared inside the driver and monitor. The monitor has
additional test configuration fields to enable checking and coverage.
The OVM macros are used to turn on field automation. Field
automation not only automates our fields for copy, compare, and
print operations but it additionally registers the field with the
configuration mechanism.

class cpu_master_driver extends ovm_driver #(cpu_transfer);

 cpu_parity_t parity;

 `ovm_component_utils_begin(cpu_master_driver)
 `ovm_field_enum(cpu_parity_t, parity, OVM_ALL_ON)
 `ovm_component_utils_end

class mac_config extends ovm_object;
 rand bit pace_mode;
 rand int unsigned min_ifg;
 rand int unsigned num_masters = 1;
 …

 `ovm_object_utils_begin(mac_config)
 `ovm_field_int(pace_mode, OVM_ALL_ON)
 `ovm_field_int(min_ifg, OVM_ALL_ON)
 `ovm_field_int(num_masters, OVM_ALL_ON)
 …
 `ovm_object_utils_end

 function new(string name ="")
 super.new(name);
 endfunction

endclass

Alternatively, the above code snippets may be implemented without
the OVM macros by explicitly calling out the get_config* code. The
following code snippet shows the extra code that is needed to avoid
the OVM macro. It is recommended to avoid this extra code that will
cost the verification team extra implementation, potential debugging,
and extra code maintenance.

At this point the parity field inside the cpu_master_driver and
cpu_master_monitor can be set to ODD or EVEN by higher layer
components using the set_config_int* function. However, it is
requirement for the CPU verification component that both the
cpu_master_driver and cpu_master_monitor contain the same parity
value. So care must be taken when setting up the parity field value.

By default we want the configuration fields inside a verification
component to operate with random values – i.e. random parity ODD
or EVEN. To accomplish this, a parity configuration field is added at
the top-level cpu_env.

The snippet of the cpu_env is shown below. The parity field in the
cpu_env is declared using SystemVerilog ‘rand’ keyword.
Additionally, in the build phase, SystemVerilog randomize () call is

added. Without these two additions the parity configuration field
would not randomize. Finally, the set_config_int* call synchronizes
the parity field in the cpu_master_driver and cpu_master_monitor
with the value set in the cpu_env.

5.4 Coordinating multiple configurations

This section describes how to coordinate configuration data between
a verification component and a subenv (module OVC). Coordinating
using the configuration class technique is discussed first and
followed by the configuration mechanism technique.

5.4.1 Coordinating multiple configurations with
configuration class

A design may operate in multiple modes which affects the
setup/randomization of the verification component’s configuration.
The design modes are DUT specific and modeled in the module
configuration.

For the example testbenches shown in Figure 2 and 3, there are four
operational modes at the module level - MODE_1,
MODE_1_NO_MAC, MODE_2, and MODE_3. A module
configuration class is added to model this behavior using a design
configuration field called mode.

class cpu_env extends ovm_env;

 rand cpu_parity_t parity;

`ovm_component_utils_begin(cpu_env)
 `ovm_field_enum(cpu_parity_t, parity, OVM_ALL_ON)
 `ovm_component_utils_end

function void cpu_env::build();

 if (this.randomize() == 0)
 ovm_report_fatal("build", "randomize failed");
 super.build();

 set_config_int("*", "parity", parity);
 …
endfunction : build
…

class cpu_master_driver extends ovm_driver #(cpu_transfer);

 cpu_parity_t parity;

 `ovm_component_utils_begin(cpu_master_driver)
 `ovm_component_utils_end

function void build();
 int unsigned loc_parity;
 super.build();

 if (!get_config_int("parity", loc_parity)) begin
 string msg;
 $sformat(msg, "\"parity\" is NOT in the configuration database, using
default value");
 ovm_report_warning("build", msg);
 end
 else begin
 string msg;
 $cast(parity, loc_parity);

 $sformat(msg, "\"parity\" is in the configuration database with value
%0d: enum value %s", loc_parity, parity.name());
 ovm_report_info("build", msg);
 end

endfunction : build

 class cpu_master_monitor extends ovm_monitor;

 // This field controls if this monitor has its checkers enabled
 // (by default checkers are on)
 bit checks_enable = 1;

 // This field controls if this monitor has its coverage enabled
 // (by default coverage is on)
 bit coverage_enable = 1;

 cpu_parity_t parity;

 `ovm_component_utils_begin(cpu_master_monitor)
 `ovm_field_int(checks_enable, OVM_ALL_ON)
 `ovm_field_int(coverage_enable, OVM_ALL_ON)
 `ovm_field_enum(cpu_parity_t, parity, OVM_ALL_ON)
 `ovm_component_utils_end

class my_module_ovc_config extends ovm_object;

 rand mode_kind_t mode;

 // factory registration
 `ovm_object_utils_begin(my_module_ovc_config)
 `ovm_field_enum(mode_kind_t, mode, OVM_ALL_ON)
 `ovm_object_utils_end
….
endclass : my_module_ovc_config

These module level modes affect the MAC design configuration
fields ifg_min and pace_mode. The relationship between the modes
and MAC design configuration fields is listed in Table 2.

Sub Env Module OVC Mode MAC ifg_min MAC pace_mode
MODE_1 9 1
MODE_1_NO_MAC don't care don't care
MODE_2 9 0
MODE_3 9 0
Table 2 Mode relationship to MAC configuration

Depending on the mode selected, constraints need to be applied to
the MAC configuration fields to enforce the desired relationship. To
achieve this, a new MAC configuration class is created. It inherits
the mac_config class and adds a constraint based on the module's
mode field. The new MAC configuration class includes a reference
to the module_ovc_cfg. Show below is a snippet of the new MAC
configuration class.

5.4.2 Coordinating configurations with
configuration mechanism

Recall that there are four operational modes that have an affect on
the MAC configuration – see Table 2.

The coordination with the configuration mechanism is done through
the procedural code since we are using set_config* calls as shown
below. In the code, first, the mode field is declared as rand. Next, in
the build phase, the MAC configuration’s pace_mode field is setup
based on the mode setting. Finally, the MAC verification component
is built based on the mode setting.

5.5 Randomizing configuration

This section shows the methodologies for randomizing
configurations. Randomizing with both the configuration class
technique and the configuration mechanism technique are discussed.

5.5.1 Randomizing using configuration class

Configuration classes are instantiated at the testbench layer. This
makes it easy to push the configuration objects down to any level in
the testbench hierarchy. Also at the testbench level the handle for
the module OVC configuration object is passed into the MAC
verification component’s configuration class.

After instantiating and randomizing the configuration classes, a
set_config_object* call is invoked to push the configuration object’s
handle down to the verification components and subcomponents. A
code snippet for the example OVM testbench is shown below.

class my_module_ovc_env extends ovm_env;

 rand mode_kind_t mode;

virtual function void build();

 this.randomize();
 super.build();

 if (mode == MODE_1)
 set_config_int("mac_inst", "pace_mode", 1);
 else
 set_config_int("mac_inst", "pace_mode", 0);

 set_config_int("mac_inst", "min_ifg", 9);
 …
 if (module_ovc_cfg.mode != MODE_1_NO_MAC) begin
 mac_inst = mac_env::type_id::create("mac_inst",this);
 end
 endfunction : build

class my_testbench_tb extends ovm_env;
 …
 my_module_ovc_config module_ovc_cfg;
 my_module_ovc_mac_config mac_cfg;
 …
 // build
 virtual function void build();
 module_ovc_cfg = my_module_ovc_config::type_id::create("module_ovc_cfg", this);
 if (module_ovc_cfg.randomize() == 0)
 ovm_report_fatal("build", "module_ovc_cfg.randomzie() failed!");

 mac_cfg = my_module_ovc_mac_config::type_id::create("mac_cfg", this);
 mac_cfg.set_module_ovc_config_ref(module_ovc_cfg);

 if (mac_cfg.randomize() == 0)
 ovm_report_fatal("build", "mac_cfg.randomzie() failed!");

 super.build();
 …
 set_config_object("v_sequencer", "mac_cfg", mac_cfg, 0);
 …
 if (module_ovc_cfg.mode != MODE_1_NO_MAC)
 set_config_object("my_module_ovc_env_inst.mac_inst", "mac_cfg", mac_cfg, 0);
 …
 endfunction : build

class my_module_ovc_mac_config extends mac_config;

 // NOTE: This is a reference to the module OVC Configuration
 my_module_ovc_config module_ovc_cfg;

 // factory registration
 `ovm_object_utils_begin(my_module_ovc_mac_config)
 `ovm_object_utils_end

 constraint min_ifg_c {
 min_ifg == 9;
 }

 constraint pace_mode_c {
 if (module_ovc_cfg.mode == MODE_1)
 pace_mode == 1;
 else
 pace_mode == 0;
 }

 function void set_module_ovc_config_ref(my_module_ovc_config
 in_module_ovc_cfg);
 module_ovc_cfg = in_module_ovc_cfg;
 endfunction : set_module_ovc_config_ref

5.5.2 Randomizing using the configuration
mechanism

Unlike using the configuration class where the configuration class
needs to be randomized explicitly in the testbench layer, for the
embedded configuration fields, a SystemVerilog randomize () call
can be added to the enclosing verification component or
subcomponent. This ensures that the random behavior is self
contained inside the verification component. It also makes the
randomization call portable to help promote easy reuse.

Care needs to be given when some fields need proper constraints.
The constraints are added directly to the enclosing component. The
code snippet below shows default constraints to control the upper
and lower limits of the min_ifg and max_ifg fields.

Last thing to mention is the "+OVM_DEC" addition. When used
with the OVM field automation, this flag causes the max_ifg and
min_ifg fields to print out in decimal format rather than the default
hexadecimal format.

5.6 Stimulus and configuration

This section describes how configuration helps control testbench
stimulus and how to implement an initialization sequence. Both
configuration class technique and the configuration mechanism
technique are discussed.

5.6.1 Stimulus and configuration classes
In the sequence library for our example testbenches, a boiler plate
sequence was developed as shown in Figure 11. It has the ability to
be reused for a majority of the tests. This boiler plate sequence has a
number of test configuration knobs. The boiler plate sequence starts
the init_dut_seq. When init_dut_seq finishes, the PCIE traffic, MAC
traffic, and background sequences are invoked. When both the MAC
and PCIE sequences finish, the test ends.

The virtual sequencer has a configuration class that includes the
following test configuration fields to control the boiler plate
sequence.

Sequence Test Configure Field Value
num_pcie_packets 0..0xffffffff
pcie_seq_kind PCIE_SMALL_SEQ,

PCIE_LARGE_SEQ,
PCIE_RAND_SEQ

num_mac_packets 0..0xffffffff
mac_seq_kind MAC_SMALL_SEQ,

MAC_LARGE_SEQ,
MAC_RAND_SEQ

use_background_traffic 0..1
Table 3 Sequencer Configuration Field

class my_module_ovc_env extends ovm_env;

 rand mode_kind_t mode;

virtual function void build();

 // randomize this env
 this.randomize();

 super.build();
 endfunction : build

class mac_env extends ovm_env;
…
 rand int unsigned max_ifg;
 rand int unsigned min_ifg;

 constraint min_ifg_c {
 min_ifg >= 5;
 min_ifg <= 15;
 }

 constraint max_ifg_c {
 max_ifg >= 100;
 max_ifg <= 200;
 }

 `ovm_component_utils_begin(mac_env)
 …
 `ovm_field_int(min_ifg, OVM_ALL_ON+OVM_DEC)
 `ovm_field_int(max_ifg, OVM_ALL_ON+OVM_DEC)
 `ovm_component_utils_end

init_dut_seq
(cpu sequencer)

traffic_seq
(pcie

sequencer)

background_seq
(cpu sequencer)

Time=0 Simulation time

End
of

 Test traffic_seq
(mac

sequencer)

 Figure 11 Boiler Plate Sequence

A snippet of our sequencer configuration class is shown below.

The init_dut_seq is responsible for programming the DUT via the
CPU interface. Recall that the MAC configuration object handle is
passed into the virtual sequencer in the testbench's build phase. All
sequences in the virtual sequence library have access to the MAC
configuration via the built-in p_sequencer pointer. This allows the
initialization sequence to properly program the pace_mode MAC
register. A snippet of the initialization sequence is shown below.

A snippet of the MAC traffic sequence is shown below. The
virtual_sequencer_config data is visible to the sequencer via the
built-in p_sequencer pointer. The sequence sends out a specified
number of packets. The number is controlled by the test
configuration field num_mac_packets. The kind of MAC packets
sent is controlled by the test configuration field mac_seq_kind.

5.6.2 Stimulus and configuration mechanism

The test configuration class fields can be converted to configuration
fields in the virtual sequencer component. The code snippet below
shows the virtual sequencer with embedded test configuration fields
and design configuration fields.

When using the configuration mechanism approach, each design
configuration field needs to be pushed into the initialization sequence
and eventually into a verification component. With the configuration

class my_testbench_virtual_sequencer extends ovm_sequencer;

 int unsigned num_pcie_packets = 1;
 int unsigned num_mac_packets = 1;
 int unsigned use_background_traffic = 1;
 pcie_seq_kind_t pcie_seq_kind = PCIE_RAND_SEQ;

 mode_kind_t mode;
 bit pace_mode;
 max_payload_t max_payload_size;
 cpu_parity_t parity;

 function new(input string name="", input ovm_component parent=null);
 super.new(name, parent);
 `ovm_update_sequence_lib
 endfunction

 // OVM automation macros for sequencers
 `ovm_sequencer_utils_begin(my_testbench_virtual_sequencer)
 `ovm_field_int(num_pcie_packets, OVM_ALL_ON)
 `ovm_field_int(num_mac_packets, OVM_ALL_ON)
 `ovm_field_int(use_background_traffic, OVM_ALL_ON)
 `ovm_field_enum(pcie_seq_kind_t, pcie_seq_kind, OVM_ALL_ON)
 `ovm_field_enum(mode_kind_t, mode, OVM_ALL_ON)
 `ovm_sequencer_utils_end

endclass: my_testbench_virtual_sequencer

class mac_seq extends ovm_sequence #(ovm_sequence_item);

 large_mac_master_seq large_mac_master_seq_inst;
 small_mac_master_seq small_mac_master_seq_inst;
 mac_seq_kind_t mac_seq_kind;

 virtual task body();

 repeat (p_sequencer.virtual_sequence_cfg.num_mac_packets) begin
 if (p_sequencer.virtual_sequence_cfg.mac_seq_kind ==
MAC_RAND_SEQ)
 assert(std::randomize(mac_seq_kind) with { mac_seq_kind !=
 MAC_RAND_SEQ; });

 else
 mac_seq_kind = p_sequencer.virtual_sequence_cfg.mac_seq_kind;

 case (mac_seq_kind)
 MAC_SMALL_SEQ : `ovm_do_on(small_mac_master_seq_inst,
 p_sequencer.mac_0_m_sequencer)
 MAC_LARGE_SEQ : `ovm_do_on(large_mac_master_seq_inst,
 p_sequencer.mac_0_m_sequencer)
 endcase
 end
 endtask : body

class testbench_init_seq extends ovm_sequence #(ovm_sequence_item);
 …
 write_cpu_master_seq write_cpu_master_seq_inst;

 virtual task body();
 // Setup Design
 `ovm_do_on_with(write_cpu_master_seq_inst,
 p_sequencer.cpu_0_m_sequencer,
 { write_cpu_master_seq_inst.addr == 32'h000;
 write_cpu_master_seq_inst.data ==
 p_sequencer.module_ovc_cfg.mode;})

 // Program MAC
 if (p_sequencer.module_ovc_cfg.mode != MODE_1_NO_MAC) begin
 `ovm_do_on_with(write_cpu_master_seq_inst,
 p_sequencer.cpu_0_m_sequencer,
 { write_cpu_master_seq_inst.addr == 32'h100;
 write_cpu_master_seq_inst.data ==
 p_sequencer.mac_cfg.pace_mode;})
 end
…

class my_testbench_virtual_sequence_config extends ovm_env;

 rand int unsigned num_pcie_packets;
 rand int unsigned num_mac_packets;
 rand int unsigned use_background_traffic;
 rand pcie_seq_kind_t pcie_seq_kind ;
 rand mac_seq_kind_t mac_seq_kind ;

 constraint packets_c {
 num_pcie_packets == 1;
 num_mac_packets == 1;
 use_background_traffic == 1;
 pcie_seq_kind == PCIE_RAND_SEQ;
 mac_seq_kind == MAC_RAND_SEQ;
 }

 `ovm_component_utils_begin(my_testbench_virtual_sequence_config)
 `ovm_field_int(num_pcie_packets, OVM_ALL_ON)
 `ovm_field_int(num_mac_packets, OVM_ALL_ON)
 `ovm_field_int(use_background_traffic, OVM_ALL_ON)
 `ovm_field_enum(pcie_seq_kind_t, pcie_seq_kind, OVM_ALL_ON)
 `ovm_field_enum(mac_seq_kind_t, mac_seq_kind, OVM_ALL_ON)
 `ovm_component_utils_end

endclass : my_testbench_virtual_sequence_config

class, the entire set of configuration fields are obtained via a
configuration object. The following code snippet shows how to push
the module’s mode, MAC’s pace_mode, and PCIE’s
max_payload_size configuration fields into the sequencer. This
methodology is not very scalable once the design grows.

The following is a snippet of the initialization sequence.

5.7 Overriding configuration

Tests usually need to customize the configuration data in order to
control test configuration fields, manipulate design configuration
fields to hit corner cases or error conditions. This section describes
override configuration using configuration class technique and the
configuration mechanism technique.

5.7.1 Overriding configuration classes

The class factory allows test writers a means for overriding
configuration class data without touching any of the testbench code.
An example of overwriting a random field with a single value is
shown below.

Simple Single Value Override Example

At the module layer, the MAC ifg_min check is always set to 9. In
the code snippet below, a new class inherited from the MAC
configuration class forces the ifg_min to an illegal value of 4.

In the following code, a test called "test_mac_cfg_override" uses the
factory to override the default MAC configuration type with the
derived my_test_module_ovc_mac_config type, so min_ifg is set to 5
rather than 9.

Complex Override Example

Using configuration class, it is easy to add more complex constraints
such as ranges and distributions. In the code below, min_ifg is
constrained to be one of the 1, 2, 3, 4, 5 or 6 with a weighted ratio of
1/4-1/4-1/4-1/4-2-5.

// Setup Design
 `ovm_do_on_with(write_cpu_master_seq_inst,
 p_sequencer.cpu_0_m_sequencer,
 { write_cpu_master_seq_inst.addr == 32'h000;
 write_cpu_master_seq_inst.data ==
 p_sequencer.mode;})

 // Program MAC
if (p_sequencer.mode != MODE_1_NO_MAC) begin
 `ovm_do_on_with(write_cpu_master_seq_inst,
 p_sequencer.cpu_0_m_sequencer,
 { write_cpu_master_seq_inst.addr == 32'h100;
 write_cpu_master_seq_inst.data ==
 p_sequencer.pace_mode;})
 end

 // Program PCIE
 `ovm_do_on_with(write_cpu_master_seq_inst,
 p_sequencer.cpu_0_m_sequencer,
 { write_cpu_master_seq_inst.addr == 32'h200;
 write_cpu_master_seq_inst.data ==
 p_sequencer.max_payload_size;})

class testbench_tb extends ovm_env;

 function void connect();
 …
 v_sequencer.mode = mod_ovc_inst.mode;
 v_sequencer.max_payload_size =

mod_ovc_inst.pcie_inst.max_payload_size;
 if (my_module_ovc_env_inst.mode != MODE_1_NO_MAC)
 v_sequencer.pace_mode = mod_ovc_inst.mac_inst.pace_mode;
 v_sequencer.parity =mod_ovc_inst.cpu_inst.parity;

 endfunction : connect

endclass : testbench tb

class my_test_module_ovc_mac_config extends my_module_ovc_mac_config;

 // Provide implementations of virtual methods such as get_type_name and
create
 `ovm_object_utils_begin(my_test_module_ovc_mac_config)
 `ovm_object_utils_end

 constraint min_ifg_c {
 min_ifg dist { [1:4] :/ 5, 3 := 2, 6 := 5};
 }

endclass : my_test_module_ovc_mac_config

class test_mac_cfg_override extends my_testbench_base_test;

 `ovm_component_utils(test_mac_cfg_override)

 virtual function void build();

 factory.set_type_override_by_type(my_module_ovc_mac_config::get_type(),
 my_test_module_ovc_mac_config::get_type());

 factory.print();

 // Create the tb
 super.build();
 endfunction : build
endclass : test_mac_cfg_override

class my_test_module_ovc_mac_config extends my_module_ovc_mac_config;

 // Provide implementations of virtual methods such as get_type_name and
create
 `ovm_object_utils_begin(my_test_module_ovc_mac_config)
 `ovm_object_utils_end

 constraint min_ifg_c {
 min_ifg == 4;
 }

endclass : my_test_module_ovc_mac_config

5.7.2 Overriding with configuration mechanism

The configuration mechanism overrides configuration fields using a
top-down approach. This allows tests to have complete control of the
values driven into the configuration hierarchy.

Simple Single Value Override Example

At the subenv (module OVC) layer, the MAC ifg_min check is
always set to 9. In the code snippet below, the set_config_int* call
forces the ifg_min to be an illegal value of 3.

Distribution Override Example 1

The following code shows how to create a complex distribution
constraint. The first step is to create a new MAC env class
my_mac_env that inherits the mac_env class. In the my_mac_env
class, the min_ifg_c constraint is overridden with the new
distribution constraint.

Next, the factory is used to override the mac_env class with the
my_mac_env class.

Distribution Override Example 2

Alternatively, the min_ifg may be setup using procedural code rather
than a constraint as shown in the following code.

Range Override Example

Alternatively, in the MAC environment a range start and range end
could have been introduced. The code snippet below shows two new
range fields min_ifg_start with a value of 3 and min_ifg_end with a
value of 5 added to the min_ifg_c constraint.

Now tests can easily change the range using simple set_config* calls
as shown below. However, this technique is limited to ranges.

class test_mac_cfg_simple_override extends my_testbench_base_test;

 virtual function void build();

 set_config_int("*", "min_ifg_start", 2);
 set_config_int("*", "min_ifg_end", 6);

 // Create the tb
 super.build();
 endfunction : build
endclass : test_mac_cfg_simple_override

class mac_env extends ovm_env;
…
 rand int unsigned min_ifg;
 int unsigned min_ifg_start= 3;
 int unsigned min_ifg_end =5;

 constraint min_ifg_c {
 min_ifg >= min_ifg_start;
 min_ifg <= min_ifg_end;
 }

 `ovm_component_utils_begin(mac_env)
 …
 `ovm_field_int(min_ifg, OVM_ALL_ON+OVM_DEC)
 `ovm_field_int(min_ifg_start, OVM_ALL_ON+OVM_DEC)
 `ovm_field_int(min_ifg_end, OVM_ALL_ON+OVM_DEC)
 `ovm component utils end

class test_mac_cfg_simple_override extends my_testbench_base_test;

 `ovm_component_utils(test_mac_cfg_simple_override)

 virtual function void build();

 randcase
 1 : min_ifg = 7;
 2 : min_ifg = 8;
 endcase

 set_config_int("*", "min_ifg", 5);

 // Create the tb
 super.build();
 endfunction : build
endclass : test_mac_cfg_simple_override

class test_mac_cfg_simple_override extends my_testbench_base_test;

 `ovm_component_utils(test_mac_cfg_simple_override)

 virtual function void build();

 factory.set_type_override_by_type(mac_env::get_type(),
 my_mac_env::get_type());

 // Create the tb
 super.build();
 endfunction : build

class my_mac_env extends mac_env;

 `ovm_component_utils_begin(my_mac_env)
 `ovm_component_utils_end

 constraint min_ifg_c {
 min_ifg dist {7 := 1, 8 := 2};
 }

endclass // my_mac_env

class test_mac_cfg_simple_override extends my_testbench_base_test;

 `ovm_component_utils(test_mac_cfg_simple_override)

 virtual function void build();

 set_config_int("*", "min_ifg", 3);

 // Create the tb
 super.build();
 endfunction : build
endclass : test_mac_cfg_simple_override

5.8 Dynamically changing configuration

This section describes dynamically changing configuration using the
configuration class technique and the configuration mechanism
technique.

5.8.1 Dynamically changing configuration
classes

The following code shows a test that dynamically changes the value
of the parity field in the CPU configuration. Since all the components
reference the configuration object, a single assignment to the parity
filed is all that is needed because the change is automatically visible
to all the components.

5.8.2 Dynamically changing with configuration
mechanism

The configuration mechanism only updates get_config* fields in the
build phase. If the configuration mechanism could easily be used in
the run phase, then dynamic updates for configuration fields would
be an elegant technique. There are ways to make the configuration
mechanism work dynamically but they require a bit of work and are
not part of the mainstream OVM methodology.

 5.9 Evaluating configuration mechanism and
configuration classes

The configuration mechanism is awkward to use with
design/verification configuration knobs that are located inside
verification components. Configuration fields that are located inside
a verification component typically require randomization and may
additionally require a default constraint. Standard verification
components developed by the instructions in the OVM User Manual
do not include these randomization capabilities. This requires
verification teams to implement randomization enhancements for
verification components. After these enhancements are made then it
is possible for test writers to extend verification components (envs,
agents, monitors, and drivers) and use the factory in order to override
default random behavior. In addition, test writers may use a single
set_config* calls to override a configuration field with a fixed value.
Although randomization of configuration fields inside verification
components is possible as shown in this paper, it may not seem like a
natural fit for some users.

Additionally, there are extra complications with using the
configuration mechanism with a verification component that includes
duplicate design/verification configuration fields. In this paper we
included an example of a parity field that is incorporated in both the
driver and monitor of a CPU verification component. It is a
requirement for this parity configuration field to maintain the same

value, by default the parity needs to come up with a random value,
and test writers may override the parity with a fixed value. In order
to implement these requirements it cost additional code as shown in
the paper.

In contrast, when design/verification configuration fields are placed
inside a configuration class then we do not have the issues listed
above. Therefore, it is less esoteric to use the configuration class
technique for design/verification configuration knobs. The only
limitation is the test writers can not override using a single
set_config* call. Instead, test writers can override configuration
fields in the configuration class by using inheritance and the factory
as shown in this paper.

When it comes to test and topology configuration knobs where
synchronizing and randomization may not be less of an issue it is
advantageous to utilize the configuration mechanism technique. This
way overrides for these fields is accomplished using a simple
set_config_* call. The set_config* call using the configuration
technique is simpler than extending configuration classes and using
the factory.

6. VMM Configuration

The same basic principles for configuration methodology mentioned
above apply to VMM 1.2[2]. This section shows several VMM
examples using the VMM configuration mechanism (vmm_opt)
technique and the VMM configuration class technique.

Topology Configuration Knobs
A topology configuration field (VMM calls these fields structural
fields) can be implemented using the VMM configuration
mechanism. The vmm methodology includes macros
`vmm_unit_config_*. The vmm_unit_config_* includes get_*
coding that is similar to the OVM macros. Topology fields are
retrieved by the configuration mechanism in the VMM build_ph
phase. In the code snippet below the has_driver configuration field is
declared in the MAC env with a default value of TRUE.

A subenv may overwrite the default topology configuration values in
the VMM build_ph phase. The following is a snippet of a subenv
that overrides the has_driver default value of TRUE to a value of
FALSE.

class mac_env extends vmm_timeline;
 `vmm_typename(mac_env)

 bit has_driver;

 function void build_ph();

 `vmm_unit_config_int(has_driver, `TRUE,
 "VIP drives interface", _verbosity, mac_env)
…

task run();
 my_testbench_tb0.cpu_cfg.parity = EVEN_PARITY;
 #1000;
 my_testbench_tb0.cpu_cfg.parity = ODD_PARITY;
 #1000;
 global_stop_request();
 endtask // run

The top-level testbench layer may further override the subenv. The
following is a snippet of a subenv that overrides the has_driver from
the subenv FALSE value to a TRUE value.

Design/Verification Configuration Knobs
The example below shows the configuration class technique using
design/verification configuration fields. We choose to perform our
randomization for the configuration classes in the VMM
start_of_sim_ph phase at the testbench layer. This allowed our tests
to easily overwrite the configuration class in the VMM test's
configure_test_ph.

In order to override the default configuration class, an extension of
the configuration class needs to be created and then the factory can
override the new class type or an instance of the new class. Below is
a snippet of the test_host_cfg class that is extended from host_cfg.

Finally, in the test's configure_test_ph the host_cfg is replaced by the
host_cfg using the vmm factory with an instance override as shown
below.

Test Configuration Knobs
The following is an example of a test configuration field in the
testbench layer (sys _env) called num_scenarios that controls the
number of packets sent by the MSSG (multiple-stream scenario
generator). The num_scenarios is a random test configuration field
with a default value from 10 to 100. In the VMM start_of_sim_ph
phase the configuration data for num_scenarios is retrieved from
the configuration mechanism.

The following is a snippet of a test overwriting the num_scenarios
with a fixed value of 1000.

class test_test extends vmm_test;
 `vmm_typename(test_test)

 virtual function void configure_test_ph();
 vmm_opts::set_int("%*:num_scenarios", 1000);
 …
 endfunction: configure_test_ph

class sys_env extends vmm_timeline;
 `vmm_typename(sys_env)

 rand int unsigned num_scenarios;
 constraint c_num_scenarios {
 num_scenarios > =10;
 num_scenarios < =100;
 }

function void sys_env::start_of_sim_ph();

 bit is_set;
 int _verbosity = 1;

 num_scenarios = vmm_opts::get_object_int(is_set, this,
 `"num_scenarios`",10,
 "num_scenarios for mssg",
 _verbosity, `__FILE__, `__LINE__);
 if (is_set) num_scenarios.rand_mode(0);
 if (is_set) c_num_scenarios.constraint_mode(0);

 if (this.randomize() == 0)
 `vmm_error(log, "randomize failed");
 …

class sys_env extends vmm_unit;
 `vmm_typename(pwr_env)

 function void build_ph();

 vmm_opts::set_int("%*PWR_PWR_MAC:has_driver",
 `TRUE);

virtual function void configure_test_ph();
 test_host_cfg = new;

 host_cfg::override_with_copy("@%*", test_host_cfg,
 log, `__FILE__, `__LINE__);
…

class test_host_cfg extends host_cfg;
 `vmm_typename(test_host_cfg)

 constraint c_parity {
 parity == ODD;
 }
…

function void sys_env::start_of_sim_ph();

 // Setup CFG descriptor
 this.host_cfg = host_cfg::create_instance(this,
 {this.get_object_name(), "_CFG"}, `__FILE__,
 `__LINE__);

 if (!is_subenv) begin
 host_cfg.set_log();

 if (host_cfg.randomize() == 0)
 `vmm_fatal(log, "Failed to randomize configuration");
 end

class pwr_env extends vmm_unit;
 `vmm_typename(pwr_env)

 function void build_ph();

 vmm_opts::set_int("%PWR_MAC_ENV:has_driver",
 `FALSE);

7. Automating testbench configuration

OVM and VMM are quite open ended when it comes to
configuration. OVM and VMM also lack with recommendations for
directory structure, file-naming conventions and coding styles. As
shown in this paper, well-structured OVM and VMM configuration
helps with reusability. It is a time-consuming task for an organization
to decide on which approach is most suitable for their verification
teams to utilize based on their verification charter. We found that just
implementing what we believe is a “best-practice” OVM testbench
framework is a time consuming task.

It is important that organizations uniformly deploy their “best
practice” methodologies in order to reap the awards of reuse.
However, it is normally difficult to achieve so. For example, an
organization may decide to develop testbenches using an OVM or
VMM approach as described in this paper. If one of the verification
teams in the organization mistakenly not utilize agents in their
verification components, then this may diminish the ability to reuse
this particular component in future testbenches. Another example
could be that one of the verification teams does not use analysis ports
in their scoreboard and once again diminishes easy reuse in other
testbenches.

To overcome these deployment obstacles, we developed a Template
Generator (TG) tool that could automatically generate a testbench
based on templates. Figure 12 shows the flow of the TG Tool. We
created a complete set of generic OVM and VMM templates to feed
into the TG. These templates were implemented using our “best-
practice” techniques for configuration, monitors, sequencers,
sequences, drivers, agents, virtual sequences. The template generator
builds up an entire OVM framework or testbench (i.e.
OVM_testbench 1_*) that includes a makefile and a dummy test that
allows teams to compile all the code out of the box using Synopsys,
Cadence or Mentor simulators. The TG allows teams to control the
name and number of verification components they want to generate.

Moreover, organizations may easily customize the templates for any
number of changes such as coding styles, naming conventions and
copyright format in file headers. Using the TG truly deploys
testbench code that has the same “look-and-feel” throughout the
company. This significantly speeds up testbench development. This
is especially true if the teams are attempting to learn a new
methodology such as OVM or VMM. It helps bring the entire team
up to speed using the new methodology. Last but not least, the TG is
also capable of merging changes into previously generated code in
the case where the teams decide to modify their “best practice”
approaches.

6. CONCLUSION

There are two techniques for configuring a testbench: using the
configuration mechanism and using the configuration class. Both
choices are powerful and are supported by both OVM and VMM
methodologies. However, as shown earlier, the configuration
mechanism is more suited for configuring test and topology related
parameters. The configuration mechanism allows for simple
overwrites using set_* calls. In contrast, the configuration class is
more suited for configuring design and verification related
parameters. These configuration fields are typically more
complicated and require inheritance and the class factory for
overriding. It is also recommended that a verification component
should include only a single configuration class in order to ease
maintenance and reuse.

The author also recommends that verification teams use the
configuration choices in a consistent manner. As shown earlier, the
use of templates to set up a testbench can help organizations quickly
deploy "best-practice" code methodologies and reliably gets an entire
team on the same page.

7. ACKNOWLEDGMENTS

A special thanks to my colleagues at Paradigm Works for their many
technical debates on the best way to handle configuration. The ideas
presented in this paper are based on numerous discussions, email
threads, and conference calls I had with the following people.
Ambar Sarkar
Jeff Wilcox
Richard Musacchio
Ning Guo
Jack Collins

8. REFERENCES

[1] OVM User Guide Version 2.0.3 November 2009 OVM World
http://ovmworld.org
[2] VMM Standard Library User Guide Version D-2009.12 December 2009
VMM Central http://www.vmmcentral.org
[3] Step-by-Step Functional Verification with SystemVerilog and OVM
Sasan Iman Hassen
[4] System Verilog Template Generator Paradigm Works http://svf-
tg.paradigm-works.com/svftg/

OVM or VMM
testbench 1_1

...

OVM template 1

 TG Tool OVM or VMM

testbench 1_2

OVM template 2 OVM or VMM
testbench 2_1

OVM or VMM
testbench 2_2

…
VMM template 1

VMM template 2

Figure 12 Template Generator Flow

http://ovmworld.org/�
http://www.vmmcentral.org/�
http://svf-tg.paradigm-works.com/svftg/�
http://svf-tg.paradigm-works.com/svftg/�

	Testbench Configuration Mantra
	Stephen D’Onofrio
	ABSTRACT
	General Terms
	1. Introduction
	2. Configuration Categories
	(1) Design Configuration Knobs
	(2) Verification Component Configuration Knobs
	(3) Topology Configuration Knobs
	Test Configuration Knobs
	What should NOT be included in Configuration?
	3. What does OVM and VMM offer for configuration?
	Both OVM and VMM have similar configuration capabilities.
	(1) Configuration class technique
	(2) OVM/VMM Configuration mechanism
	4. Configuration and testbench architecture
	Figure 2 OVM Testbench
	Figure 3 Typical VMM Testbench
	5.1 Configuration breakdown
	5.1.1 Configuration class breakdown
	Option A – One Environment Configuration
	Option B – Each Component defines configuration
	Option B Pros/Cons
	Option C - Each Layer has a single Configuration
	Option C Pros/Cons
	Option D – Pros/Cons
	Evaluating verification component options
	5.2.2 Configuration mechanism breakdown
	5.3 Verification component configuration knobs
	5.3.2 Configuration mechanism knobs
	5.4 Coordinating multiple configurations
	5.4.1 Coordinating multiple configurations with configuration class
	5.4.2 Coordinating configurations with configuration mechanism
	5.5 Randomizing configuration
	5.5.1 Randomizing using configuration class
	5.5.2 Randomizing using the configuration mechanism
	5.6 Stimulus and configuration
	5.6.1 Stimulus and configuration classes
	A snippet of our sequencer configuration class is shown below.
	5.6.2 Stimulus and configuration mechanism
	5.7 Overriding configuration
	5.7.1 Overriding configuration classes
	Simple Single Value Override Example
	Complex Override Example
	5.7.2 Overriding with configuration mechanism
	Simple Single Value Override Example
	Distribution Override Example 1
	Distribution Override Example 2
	Range Override Example
	5.8 Dynamically changing configuration
	5.8.1 Dynamically changing configuration classes
	5.8.2 Dynamically changing with configuration mechanism
	6. VMM Configuration
	The same basic principles for configuration methodology mentioned above apply to VMM 1.2[2]. This section shows several VMM examples using the VMM configuration mechanism (vmm_opt) technique and the VMM configuration class technique.
	Topology Configuration Knobs
	A topology configuration field (VMM calls these fields structural fields) can be implemented using the VMM configuration mechanism. The vmm methodology includes macros `vmm_unit_config_*. The vmm_unit_config_* includes get_* coding that is similar to ...
	A subenv may overwrite the default topology configuration values in the VMM build_ph phase. The following is a snippet of a subenv that overrides the has_driver default value of TRUE to a value of FALSE.
	The top-level testbench layer may further override the subenv. The following is a snippet of a subenv that overrides the has_driver from the subenv FALSE value to a TRUE value.
	Design/Verification Configuration Knobs
	The example below shows the configuration class technique using design/verification configuration fields. We choose to perform our randomization for the configuration classes in the VMM start_of_sim_ph phase at the testbench layer. This allowed our te...
	In order to override the default configuration class, an extension of the configuration class needs to be created and then the factory can override the new class type or an instance of the new class. Below is a snippet of the test_host_cfg class that ...
	Finally, in the test's configure_test_ph the host_cfg is replaced by the host_cfg using the vmm factory with an instance override as shown below.
	Test Configuration Knobs
	The following is an example of a test configuration field in the testbench layer (sys _env) called num_scenarios that controls the number of packets sent by the MSSG (multiple-stream scenario generator). The num_scenarios is a random test configuratio...
	The following is a snippet of a test overwriting the num_scenarios with a fixed value of 1000.
	7. Automating testbench configuration
	6. CONCLUSION
	7. ACKNOWLEDGMENTS
	8. REFERENCES

