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ABSTRACT  
All testbenches, even the simplest testbenches, need some kind of 
configuration knobs (sometimes called configuration fields or 
configuration parameters) that are used to control setting up some 
feature in the verification environment.  Ideally, the environment 
also includes some kind of mechanism that allows test writers a way 
to override a configuration knob’s default value. Configuration 
knobs are typically setup in the testbench during the building phase 
and directly used for DUT (Design Under Test) initialization. There 
are various categories of configuration knobs including (but not 
limited to) testbench topology knobs, simulation specific knobs, 
verification component knobs, and testbench specific knobs.  
 
More sophisticated random testbenches generally contain more 
configuration knobs. Properly placing all these configuration knobs 
in a testbench may get out of hand quickly. A testbench with a poorly 
set up configuration structure will most likely inhibit test 
controllability, perhaps degrades the overall testbench randomness, 
and may prohibit easy future reuse.     
 
There are no practical guidelines available in VMM and OVM 
methodologies for structuring configuration knobs in a testbench. 
However, both these methodologies provide two sophisticated 
configuration techniques: (1) field automation/structural control 
configuration mechanism (i.e. registering configuration knobs and 
using set_config_*/get_config_* calls) and (2) configuration classes 
that are used in conjunction with the factory.  Both these techniques 
have their own mechanisms that allow test writers means for 
overriding default configuration field values.  
 
Testbench developers are now plagued with the question of what 
style configuration technique should they use. Should both these 
techniques coexist? In addition, the OVM and VMM methodologies 
do not include suggestions for classifying and compartmentalizing 
configuration knobs in a testbench that helps promote reuse.   
 
Finally, we will show users templates for OVM and VMM code that 
contains the configuration techniques discuses above. The templates 
help enforces a consistent look and feel and enable rapid 
development and maintenance of the verification code across 
multiple-sites and cultural barriers. 
 
General Terms  
 
Verification component – In this paper this term is equivalent to both 
a VMM Transactor (see page 14 reference [2]) or VIP (Verification 
Intellectual Property) and an OVM OVC (see page 10 in reference 
[1]).  
 
 

Configuration mechanism – In this paper this term is equivalent to 
the OVM configuration mechanism that uses 
get_config*/set_config* and VMM structural control 
get*/set*configuration mechanism 
 
Configuration class – This is a class that encapsulates configuration 
fields 
 
Horizontal reuse - reuse from project to project  
 
Vertical reuse - unit level to system level reuse  
 
1. Introduction 
 
This paper takes a pragmatic view of the configuration techniques 
utilized by the VMM and OVM methodologies. With the release of 
VMM 1.2, it appears that the OVM and VMM configuration options 
are converging. Verification teams need to understand the 
advantages and limitations of the configuration options that are 
available in these methodologies so that they can make intelligent 
decisions.   
 
Today’s large verification efforts include tremendous amounts of 
configuration knobs. These verification efforts require using 
techniques that allow for reuse and extensibility. The methodology in 
which you use to declare configuration, layer configuration and the 
techniques used for your configuration can help or hinder your 
verification effort.  This paper focuses on the techniques we 
successfully used in the past and steps through the evaluation process 
we went through. 
 
This paper discusses configuration technique for: 

(1) Structuring and programming testbenches 
(2) Programming the DUT 
(3) Controlling scenarios and tests  

 
Both the field automation/structural control configuration mechanism 
utilized by OVM and VMM and configuration class configuration 
techniques is examined in this paper. 
 
RTL configuration described in the VMM User Guide [2] and 
verilog libmap techniques that connect a testbench to RTL are 
beyond the scope of this paper.  
 
The primary focus of the paper is on the testbench configuration that 
occurs once before a test (simulation) is executed. From our 
experience, this is generally the only time configuration is setup, 
randomized, and dispersed throughout the testbench. Occasionally, it 
may be a requirement to change the configuration dynamically 
during a simulation. This paper only touches on this subject by 



setting up a simple example of a single configuration field in the 
middle of a simulation.        
 
We find that testbench configuration may be broken up into several 
categories that are described in the next section. As mentioned 
above, there are two configuration techniques – the configuration 
class technique and configuration mechanism technique. This paper 
will examine how each of the configuration categories size up 
against each configuration techniques.  
 
2. Configuration Categories  
 
There are four categories of configuration fields that we find in a 
testbench: 

(1) Design configuration knobs 
(2) Verification component configuration knobs 
(3) Topology configuration knobs 
(4) Test configuration knobs  

 
(1) Design Configuration Knobs 
All DUTs with any level of complexity have large number amounts 
of features. Often these features are controlled by registers that are 
accessible to software, verilog parameters, preprocessor defines, 
configuration pins, or core generators.  For example, a PCIE core 
may include link-width field that contains the value of the size that is 
created by a core generator tool. Another example is a pace_mode 
option for a MAC interface that is set or cleared by software writing 
to a register via a CPU interface. 
 
Typically features are controlled by registers in a design that can be 
accessed via software. The verification environment normally 
includes an initialization sequence that is responsible for taking the 
design configuration fields (these fields are typically randomized) 
and driving its data into the register via a CPU interface.  
 
Occasionally, the testbench will need to verify variations of DUT 
features that are controlled via compile time parameters or core 
generator switches. This requires advanced testbench DUT 
connection schemes that are beyond the scope of this paper.     
 
Design configuration knobs are typically randomized in a random 
testbench. Occasionally, design configuration fields need to be 
constrained in order to close coverage holes or reproduce scenarios 
that may have occurred in the lab.  
 
(2) Verification Component Configuration Knobs 
Verification components typically include various knobs for setting 
up modes, controlling stimulus and responses sent into the DUT. For 
example, most verification components have knobs for controlling 
the size of the intra gap delay between packets. Another example for 
a PCIE Express verification component, the component may have a 
field that controls different acceptable link widths for link 
initialization.      
  
Verification component configuration fields, similar to design 
configuration fields, are typically heavily randomized in order to 
stress the DUT but may also need to be constrained in order to hit 
specific corner cases. 
 
(3) Topology Configuration Knobs 
Both VMM and OVM describe testbench topology configuration 
knobs. These knobs control how the testbench structure is built. 
Robust VIP includes topology knobs for disabling/enabling 

monitors, drives, and agents.  These knobs are significant for 
promoting vertical and horizontal verification component reuse.  
 
For example, the OVM User Guide [1] describes knobs (or fields) for 
controlling whether an agent is passive or active, how many 
slave/master agents, and whether to build a “bus” monitor.  
 
Similarly, the VMM User Guide [2] describes topology 
configuration knobs for controlling monitors and xactors are 
proactive, reactive, and passive (see section 8). 
 
Topology configuration knobs are typically fixed (not dynamically 
randomized). For example, it does not make sense to randomly 
enable/disable a driver component on a per simulation basis. Its 
value is fixed based on the topology of the testbench. 
 
Test Configuration Knobs 
Testbench configuration knobs are also described in both VMM and 
OVM. These configuration knobs describe what kind and how much 
stimulus to drive into the design. Additional, other examples of test 
control fields are switches for enabling checkers, coverage, and 
assertions.  
  
For example, the OVM User Guide [1] figure 5.3 describes standard 
configuration fields for enabling checker and coverage on page 69. 
Test/sequence configuration is described on pages 80-82.    
 
Similarly, throughout the VMM User Guide [2] it describes 
test/scenario configuration fields for controlling and ending 
simulations. 
 
What should NOT be included in Configuration?   
Often teams will add non-configuration field variables that have 
nothing to do with configuration. Since a configuration object is 
referenced in multiple components that do not have visibility to each 
other, sometimes teams will use the configuration object reference to 
pass information to/from multiple components. For example, a 
monitor may capture the state of the bus and stuff the value in a 
property in the configuration object. A sequence then may read the 
state value from the configuration object and do something with it. 
This practice pollutes the configuration class and causes maintenance 
headaches. Additionally, it may prohibit easy reuse of the 
components because they rely on each other via the configuration 
object. VMM Channels or TLM interfaces should be used to 
communicate to/from multiple components. 
 
 
3. What does OVM and VMM offer for 
configuration? 
 
Both OVM and VMM have similar configuration capabilities. 
 
(1) Configuration class technique 
  

• Configuration descriptions (knobs) are encapsulated in a 
configuration class 

• Configuration field descriptions may be random and have 
an associated default constraint 

• Configuration is randomized before the simulation occurs 
• Some steps need to be taken to pass down the 

configuration object to lower layer testbench components 
• Test cases may customize (or override) the default 

configuration constraints using the factory 
 



 
 
 
(2) OVM/VMM Configuration mechanism 
 
This approach goes by different names. In the OVM Manual [1] it is 
called the “OVM Configuration Mechanism” and in VMM it is 
called “Hierarchical/Structural Configuration"  
 

• Configuration field descriptions (knobs) are embedded in 
the verification components – i.e. inside the driver, 
sequencer, monitor 

• Configuration field descriptions have a default value  
• The configuration data is NOT randomized unless you do 

some extra work – this paper described a technique for 
accomplishing this task 

• There are library calls “set_*” that allow higher layers such 
as the “test case” layer override the default values in the 
lower component layers.  

o Wild * card searches via the testbench hierarchy 
can be made to distinguish which downstream 
component to override 

• VMM allows overriding configuration using command line 
options. OVM also has a contribution for command line 
option.     
 

OVM and VMM provide advanced capabilities for controlling the 
configuration fields through the configuration mechanism. The 
primary purpose of the configuration mechanism is to control the 
field value setup during the build phase. The build phase occurs 
before any simulation time is advanced. The fields may also be 
changed during simulation time (or the run phase) but requires 
additional work and is beyond the scope of this paper. 
 
The configuration mechanism gives test writers and higher layer 
testbench components (i.e. module/system OVCs or subenvs) the 
ability to override the default field settings of the components. A 
testbench hierarchy is established in top-down fashion where parent 
components are built before their child components. Higher-level 
testbench layers (test cases) and components (system/module OVCs 
or subenvs) can override default configuration settings. Increasing 
configuration override priority is from right to left in Figure 1. 
 
 
 

 
 
 
 
 

4. Configuration and testbench architecture 
 
Advanced testbench architectures are typically composed with an 
environment (or testbench layer) that encapsulates one or more 
verification components. The verification components model a 
specific protocol. The environment typically also includes 
scoreboards. Scoreboards and their associated transfer functions are 
connected to the verification components and verify the data 
integrity by comparing actual data against expected results. In 
addition, more advanced testbenches may include subenvs (or 
module OVCs as described in section 3.4 in Step-by-Step Functional 
Verification with SystemVerilog and OVM[3]). These components 
further enhance reuse by assisting in bringing unit level testbench 
components into the higher level testbenches (or perhaps a system 
level testbench).  
 
All these testbench components need some access to configuration 
data. This paper is going to examine various configuration 
approaches using both OVM and VMM testbenches.  The 
testbenches built for this paper include three verification components 
– a CPU interface, PCIE interface, and MAC interface. Additionally, 
the examples show how to connect configuration data to 
initialization sequences.   
 
Below is a drawing of an OVM testbench architecture used for this 
paper. 
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Figure 2 OVM Testbench 

  
This testbench includes a DUT, three interface OVCs – the CPU, 
PCIE, and MAC OVCs, a Module OVC, a scoreboard and virtual 
sequencer.  
 
Below is a drawing of a VMM testbench architecture used for this 
paper.   
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Figure 1 Testbench Configuration Mechanism Flow 
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Figure 3 Typical VMM Testbench 
This testbench includes a DUT, three VIPs – the CPU, PCIE, and 
MAC, RAL, consensus, and a scoreboard. 
 
The following table lists the configuration knobs that are examined 
in this paper. 
 
Location Configuration Category 

MAC pace_en design/verification component 

MAC min_ifg design/verification component 

MAC num_masters Topology 

MAC num_slaves Topology 

MAC intf_checks_enable Test 

MAC has_bus_monitor Test 

MAC intf_checks_enable Test 

MAC has_bus_monitor Test 

PCIE  lane_reversal_support design/verification component 

PCIE supported_link_width design/verification component 

PCIE max_payload_size design/verification component 

PCIE bar_0..7_start design/verification component 

PCIE bar_0..7_end design/verification component 

PCIE num_masters Topology 

PCIE num_slaves Topology 

CPU Parity design/verification component 

CPU num_masters Topology 

CPU num_slaves Topology 

CPU intf_checks_enable Test 

CPU has_bus_monitor Test 

MOD Mode design/verification component 

SEQ num_mac_packets Test 

SEQ num_pcie_packets Test 

SEQ mac_seq_kind Test 

SEQ pcie_seq_kind Test 

Table 1 Configuration Knobs 
 
 
 
 
 

5. Managing Configuration 
 
As described above there are two techniques for handling 
configuration in both VMM and OVM. In this section, methodology 
for configuration breakdown, configuration coordination, 
randomizing configuration, and overriding configuration is described 
showing both of these techniques. The examples in this section are 
all done with OVM.  
 
5.1 Configuration breakdown 
In this section we describe various ways for breaking down 
configuration fields using a configuration class and then using the 
configuration mechanism. 
 
5.1.1 Configuration class breakdown 
In this section the configuration class breakdown methodology is 
examined in detail. A testbench usually contains one or more 
verification components. Each of these verification components will 
likely need to access configuration.  Advanced testbenches that use 
subenvs (module OVCs) may also include configuration. The 
testbench environment may additionally include its own 
configuration. 
 
 

 
 
 
It is relatively straight forward to model the configuration for the 
module OVC and testbench – usually one configuration class for the 
testbench and one configuration class for the module OVC.   
 
The verification component is made up of multiple components. 
Verification teams need to make decisions on how to break up the 
configuration for the components. The remainder of this section 
show several options of how one may consider breaking down 
configuration classes inside a “verification component”.  
 
Option A – One Environment Configuration  
 
In this example the "testbench cfg" block maintains the configuration 
fields for the verification component(s). The verification component 
uses the testbench configuration. 

• Pros 
o Only one configuration file to find all 

configuration knobs 
• Cons 
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Figure 4  Configuration Class Example 



o Inhibits reuse because there is not a separation 
between the “Verification Components” and the 
Testbench Environment 

o Difficult to maneuver through the configuration 
file because too many configuration knobs in one 
class 

 
Option B – Each Component defines configuration 
 
With this option each components inside the verification component 
includes its own configuration class.  
 

 
 
 
The configuration classes for each of the components inside the 
verification component are instantiated and randomized inside the 
testbench. Each of the configuration class instances are referenced 
inside their associated component inside the verification component.  

 
 
 
 
Option B Pros/Cons 

• Pros 
o Each component has its own configuration object 

 All the configuration knobs belong to 
the component. This is certainly not 
the case for option A. 

 Nice for reuse. Easy to take out 
individual components from the 
“verification component”. 

• Cons 
o Lots of configuration objects. 

 Extra work for the environment 
configuration to coordinate all the 
configurations. 

o Potentially many configuration knobs will be 
duplicated within the same verification 
component 

 How do you handle constraints for the 
duplicated configuration knobs? 

 Some extra coding and perhaps 
processing time (problem not an issue) 

 What happens if the configuration 
needs to change in mid simulation? 

• Need to re sync all the 
duplicate fields  

 
Option C - Each Layer has a single Configuration 
 
In this example, the gen/sequencer and checker/coverage are 
considered the top layer and the driver/monitor are considered the 
bottom layer. Each of these layers includes their own configuration 
class.  
 

 
 

 
Again, the configuration classes for this verification component are 
instantiated and randomized inside the testbench. This time there are 
two fewer configuration classes that need to be instantiated. The 
configuration class instances are referenced inside the verification 
component.  
 
 

 
 
 

testbench… 

Gen/Sequencer 

Driver 
n 

n 

Chk 

Monitor 

Cfg Cfg 

n 

n 

Verification component 

Cfg 

Cfg Gen/Sequencer 

Driver 
n 

Chk/Coveragev 

Monitor 

Cfg 

Cfg Cfg 

Cfg 
n 

Verification component 

n 

n 

Figure 5 Configuration class for each component 

Figure 8 Testbench - configuration class for each layer 
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Option C Pros/Cons 
 

• Pros 
o Each layer of components has its own 

configuration class 
 Most of the configuration knobs 

belong to the component. Although 
there is some potential for an unused 
field (i.e. the check_enable is only used 
in the monitor and not in the 
“gen/sequencer”) 

 Somewhat easy for reuse. Easy to take 
out individual components from the 
“verification components”  

o Less configuration classes compared to option B
    

• Cons 
o Still two configuration classes for a single 

verification component needs to maintain. 
o Potentially there may be configuration knobs 

duplicated within the same verification 
component – Same as Option B 

 
Option D - Verification Component has a single 
Configuration 
 
In this example, each layer of components inside the verification 
component shares the same configuration class.  
 

 
 
 
Again, the configuration class for this verification component is 
instantiated and randomized inside the testbench. This time the 
testbench only needs to instantiates a single configuration classes. 
The configuration class instances need to be referenced by all the 
components in the verification component.  
 

 
 
 
Option D – Pros/Cons 

• Pros 
o Each “verification component” has a single 

configuration class 
 This option provides us with single 

configuration class that may easily be 
ported for vertical and horizontal reuse 

o The testbench only needs to maintain a single 
configuration class for the verification 
component    

• Cons 
o The individual components (monitor, driver, and 

generator) that make up the “verification 
component” most likely configuration do not use 
all the knobs included in the configuration class. 
For example, if there may be configuration field 
such as “drive_n_packets” in the configuration 
class that only the used by the driver component.  

o It is not as easily to reuse individual components 
(monitor, driver, and generator) because the 
configuration class is at the “verification 
component” level of abstraction.  

 
Evaluating verification component options 

• Option A has no reuse potential so it is out of the question 
• Option B has the most reuse potential but has a large 

amount of testbench overhead and maintenance for 
keeping track of the configuration data. In our example, we 
have a cpu driver and monitor that include a CPU 
configuration field called "parity_kind". If we use this 
option then we always need to make sure the value of the 
"parity_kind" field need to stay in sync inside both the cpu 
driver and monitor. This is not a scalable methodology as 
the amount of configuration fields in a testbench grows. 

• Option C has some of the same maintenance issues as 
option B. It is a hybrid option between options B and D. It 
does not seem valuable to break up configuration between 
these layers. 

• Option D has the least amount of testbench maintenance 
overhead.  Looking at our example of the "parity_kind" 
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configuration field, now the driver and monitor reference 
the same configuration object – there is no sync issues. 
Verification component reuse is achievable with this 
option.  However, using this option make it more difficult 
to reuse individual components compared to option B.  But 
our main objective is usually not to break apart verification 
components and reuse only the monitor, driver, and 
sequencer. This option seems the most viable solution for 
breaking down configuration for a verification component. 

 
5.2.2 Configuration mechanism breakdown 
When using the configuration mechanism, the configuration fields 
are embedded directly inside the component in which the 
configuration is needed rather than a separate configuration class. 
For example, the parity_kind field for the CPU verification 
component is included in both the CPU driver and the CPU monitor. 
The driver needs to calculate the proper parity when driving data into 
the Host interface on the DUT and the monitor needs to check if the 
DUT is properly transmitting the data. 
 
5.3 Verification component configuration knobs 
This section describes how to populate configuration fields inside a 
verification component using the configuration class technique and 
the configuration mechanism technique.  
 
5.3.1 Configuration class knobs  
 
A configuration class is implemented as a standalone file and 
included in the verification components distribution. This 
configuration class needs to be self-contained for easy vertical and 
horizontal reuse. In other words, it should only contain generic fields 
and constraints. When adding a verification component to a 
testbench, the verification component's configuration may be 
extended to allow for testbench specific constraints.    
 
Below is the code snippet of the example MAC OVC configuration 
class using configuration breakdown option D.  
 
The mac_config class inherits the ovm_object base class. The light 
weight ovm_object base class allows us to declare configuration 
fields and register the configuration class with the OVM factory. 
Furthermore, the fields are registered the fields with the OVM 
automation macros. This automates our fields for copy, compare, and 
print operations.   
  

  
 
Alternatively, one could have inherited the configuration class from 
the ovm_component base class. This would have added the MAC 
configuration class into the testbench hierarchy and allow controls 
for the set_* configuration. However, when dynamically building the 
testbench components, we ran into race conditions between 
randomizing the configuration class and the dynamic build. This is 
due to the nature of the top-down builds methodology. The testbench 
level build (where the dynamic build occurs) took place before the 
child configuration build occurs. Therefore, it is safest to inherit the 
configuration class from the ovm_object class to ensure that test 
writers can only use the factory to override the configuration class.  
 
5.3.2 Configuration mechanism knobs 
 
This section describes embedding design/verification configuration 
fields inside a verification component. The following two code 
snippets show how the CPU parity design/verification configuration 
field is declared inside the driver and monitor. The monitor has 
additional test configuration fields to enable checking and coverage. 
The OVM macros are used to turn on field automation. Field 
automation not only automates our fields for copy, compare, and 
print operations but it additionally registers the field with the 
configuration mechanism.   
 

 
 
 

class cpu_master_driver extends ovm_driver #(cpu_transfer); 
 
  cpu_parity_t parity; 
   
  `ovm_component_utils_begin(cpu_master_driver) 
    `ovm_field_enum(cpu_parity_t, parity, OVM_ALL_ON) 
  `ovm_component_utils_end 
  

 
class mac_config extends ovm_object; 
  rand bit pace_mode; 
  rand int unsigned min_ifg; 
  rand int unsigned num_masters = 1;  
  … 
 
   `ovm_object_utils_begin(mac_config) 
    `ovm_field_int(pace_mode, OVM_ALL_ON) 
    `ovm_field_int(min_ifg, OVM_ALL_ON) 
    `ovm_field_int(num_masters, OVM_ALL_ON) 
     … 
   `ovm_object_utils_end 
 
   function new(string name ="") 
      super.new(name); 
   endfunction 
 
 
endclass 



 
 
Alternatively, the above code snippets may be implemented without 
the OVM macros by explicitly calling out the get_config* code. The 
following code snippet shows the extra code that is needed to avoid 
the OVM macro. It is recommended to avoid this extra code that will 
cost the verification team extra implementation, potential debugging, 
and extra code maintenance.   
 

 
At this point the parity field inside the cpu_master_driver and 
cpu_master_monitor can be set to ODD or EVEN by higher layer 
components using the set_config_int* function. However, it is 
requirement for the CPU verification component that both the 
cpu_master_driver and cpu_master_monitor contain the same parity 
value. So care must be taken when setting up the parity field value. 
 
By default we want the configuration fields inside a verification 
component to operate with random values – i.e. random parity ODD 
or EVEN. To accomplish this, a parity configuration field is added at 
the top-level cpu_env. 
   
The snippet of the cpu_env is shown below. The parity field in the 
cpu_env is declared using SystemVerilog ‘rand’ keyword.  
Additionally, in the build phase, SystemVerilog randomize () call is 

added. Without these two additions the parity configuration field 
would not randomize.  Finally, the set_config_int* call synchronizes 
the parity field in the cpu_master_driver and cpu_master_monitor 
with the value set in the cpu_env. 
 

  
 
5.4 Coordinating multiple configurations 
 
This section describes how to coordinate configuration data between 
a verification component and a subenv (module OVC). Coordinating 
using the configuration class technique is discussed first and 
followed by the configuration mechanism technique.  
 
5.4.1 Coordinating multiple configurations with 
configuration class 
 
A design may operate in multiple modes which affects the 
setup/randomization of the verification component’s configuration. 
The design modes are DUT specific and modeled in the module 
configuration. 
 
For the example testbenches shown in Figure 2 and 3, there are four 
operational modes at the module level - MODE_1, 
MODE_1_NO_MAC, MODE_2, and MODE_3. A module 
configuration class is added to model this behavior using a design 
configuration field called mode.  
 

 
 
 
 
 
 
 
 

class cpu_env extends ovm_env; 
 
  rand cpu_parity_t parity; 
 
`ovm_component_utils_begin(cpu_env) 
     `ovm_field_enum(cpu_parity_t, parity, OVM_ALL_ON) 
  `ovm_component_utils_end 
 
function void cpu_env::build(); 
  
    if (this.randomize() == 0) 
      ovm_report_fatal("build", "randomize failed"); 
    super.build(); 
 
   set_config_int("*", "parity", parity); 
    … 
endfunction : build 
… 
 

class cpu_master_driver extends ovm_driver #(cpu_transfer); 
 
  cpu_parity_t parity; 
   
  `ovm_component_utils_begin(cpu_master_driver) 
  `ovm_component_utils_end 
  
function void build(); 
   int unsigned loc_parity; 
   super.build(); 
 
   if (!get_config_int("parity", loc_parity)) begin 
      string msg; 
      $sformat(msg, "\"parity\" is NOT in the configuration database, using 
default value"); 
      ovm_report_warning("build", msg); 
   end 
   else begin 
     string msg; 
     $cast(parity, loc_parity); 
      
      $sformat(msg, "\"parity\" is in the configuration database with value 
%0d: enum value %s", loc_parity, parity.name() ); 
      ovm_report_info("build", msg); 
   end 
 
endfunction : build 

 class cpu_master_monitor extends ovm_monitor; 
  
  // This field controls if this monitor has its checkers enabled 
  // (by default checkers are on) 
  bit checks_enable = 1; 
 
  // This field controls if this monitor has its coverage enabled 
  // (by default coverage is on) 
  bit coverage_enable = 1; 
 
  cpu_parity_t parity; 
   
  `ovm_component_utils_begin(cpu_master_monitor) 
     `ovm_field_int(checks_enable, OVM_ALL_ON) 
     `ovm_field_int(coverage_enable, OVM_ALL_ON) 
     `ovm_field_enum(cpu_parity_t, parity, OVM_ALL_ON) 
  `ovm_component_utils_end 

class my_module_ovc_config extends ovm_object; 
 
   rand mode_kind_t mode; 
       
   // factory registration 
   `ovm_object_utils_begin(my_module_ovc_config) 
      `ovm_field_enum(mode_kind_t, mode, OVM_ALL_ON) 
   `ovm_object_utils_end 
….  
endclass : my_module_ovc_config 



These module level modes affect the MAC design configuration 
fields ifg_min and pace_mode.  The relationship between the modes 
and MAC design configuration fields is listed in Table 2.  
 
Sub Env Module OVC Mode MAC ifg_min MAC pace_mode 
MODE_1 9 1 
MODE_1_NO_MAC don't care don't care 
MODE_2 9 0 
MODE_3 9 0 
Table 2 Mode relationship to MAC configuration 
 
Depending on the mode selected, constraints need to be applied to 
the MAC configuration fields to enforce the desired relationship. To 
achieve this, a new MAC configuration class is created. It inherits 
the mac_config class and adds a constraint based on the module's 
mode field.  The new MAC configuration class includes a reference 
to the module_ovc_cfg. Show below is a snippet of the new MAC 
configuration class. 
 

 
 
5.4.2 Coordinating configurations with 
configuration mechanism 
 
Recall that there are four operational modes that have an affect on 
the MAC configuration – see Table 2.  
 
The coordination with the configuration mechanism is done through 
the procedural code since we are using set_config* calls as shown 
below.  In the code, first, the mode field is declared as rand. Next, in 
the build phase, the MAC configuration’s pace_mode field is setup 
based on the mode setting. Finally, the MAC verification component 
is built based on the mode setting.      

 
 
5.5 Randomizing configuration 
 
This section shows the methodologies for randomizing 
configurations. Randomizing with both the configuration class 
technique and the configuration mechanism technique are discussed.    
 
5.5.1 Randomizing using configuration class 
 
Configuration classes are instantiated at the testbench layer. This 
makes it easy to push the configuration objects down to any level in 
the testbench hierarchy.  Also at the testbench level the handle for 
the module OVC configuration object is passed into the MAC 
verification component’s configuration class. 
  
After instantiating and randomizing the configuration classes, a 
set_config_object* call is invoked to push the configuration object’s 
handle down to the verification components and subcomponents.  A 
code snippet for the example OVM testbench is shown below.    
 

 
 
 

class my_module_ovc_env extends ovm_env; 
 
 rand mode_kind_t mode; 
 
virtual function void build(); 
 
     this.randomize(); 
     super.build(); 
 
      if (mode == MODE_1) 
       set_config_int("mac_inst", "pace_mode",  1); 
     else 
       set_config_int("mac_inst", "pace_mode",  0); 
      
     set_config_int("mac_inst", "min_ifg",  9); 
      … 
     if (module_ovc_cfg.mode != MODE_1_NO_MAC) begin 
          mac_inst = mac_env::type_id::create("mac_inst",this); 
     end 
   endfunction : build 
 
 
 

class my_testbench_tb extends ovm_env; 
  … 
  my_module_ovc_config module_ovc_cfg; 
  my_module_ovc_mac_config mac_cfg; 
  … 
   // build 
   virtual function void build(); 
       module_ovc_cfg =   my_module_ovc_config::type_id::create("module_ovc_cfg", this); 
       if (module_ovc_cfg.randomize() == 0)  
            ovm_report_fatal("build", "module_ovc_cfg.randomzie() failed!"); 
 
      mac_cfg = my_module_ovc_mac_config::type_id::create("mac_cfg", this); 
      mac_cfg.set_module_ovc_config_ref(module_ovc_cfg); 
      
      if (mac_cfg.randomize() == 0)  
         ovm_report_fatal("build", "mac_cfg.randomzie() failed!"); 
 
     super.build(); 
     … 
     set_config_object("v_sequencer", "mac_cfg", mac_cfg, 0); 
     …      
     if (module_ovc_cfg.mode != MODE_1_NO_MAC)  
       set_config_object("my_module_ovc_env_inst.mac_inst", "mac_cfg", mac_cfg, 0);  
    … 
   endfunction : build 

class my_module_ovc_mac_config extends mac_config; 
 
  // NOTE: This is a reference to the module OVC Configuration 
  my_module_ovc_config module_ovc_cfg; 
    
   // factory registration 
   `ovm_object_utils_begin(my_module_ovc_mac_config) 
   `ovm_object_utils_end 
 
   constraint min_ifg_c { 
      min_ifg == 9; 
   } 
 
   constraint pace_mode_c { 
 if (module_ovc_cfg.mode == MODE_1) 
             pace_mode == 1; 
 else 
             pace_mode == 0;       
   } 
 
  function void set_module_ovc_config_ref(my_module_ovc_config 
                                                                     in_module_ovc_cfg); 
           module_ovc_cfg = in_module_ovc_cfg; 
   endfunction : set_module_ovc_config_ref 



5.5.2 Randomizing using the configuration 
mechanism 
 
Unlike using the configuration class where the configuration class 
needs to be randomized explicitly in the testbench layer, for the 
embedded configuration fields, a SystemVerilog randomize () call 
can be added to the enclosing verification component or 
subcomponent. This ensures that the random behavior is self 
contained inside the verification component. It also makes the 
randomization call portable to help promote easy reuse. 
 

 
 
Care needs to be given when some fields need proper constraints. 
The constraints are added directly to the enclosing component. The 
code snippet below shows default constraints to control the upper 
and lower limits of the min_ifg and max_ifg fields.  
 
Last thing to mention is the "+OVM_DEC" addition. When used 
with the OVM field automation, this flag causes the max_ifg and 
min_ifg fields to print out in decimal format rather than the default 
hexadecimal format.       
 

 
 
 
5.6 Stimulus and configuration 
 
This section describes how configuration helps control testbench 
stimulus and how to implement an initialization sequence. Both 
configuration class technique and the configuration mechanism 
technique are discussed.    
 
 

5.6.1 Stimulus and configuration classes 
In the sequence library for our example testbenches, a boiler plate 
sequence was developed as shown in Figure 11. It has the ability to 
be reused for a majority of the tests. This boiler plate sequence has a 
number of test configuration knobs. The boiler plate sequence starts 
the init_dut_seq. When init_dut_seq finishes, the PCIE traffic, MAC 
traffic, and background sequences are invoked. When both the MAC 
and PCIE sequences finish, the test ends. 
 

 
 

 
The virtual sequencer has a configuration class that includes the 
following test configuration fields to control the boiler plate 
sequence.   
 
Sequence Test Configure Field Value 
num_pcie_packets 0..0xffffffff 
pcie_seq_kind PCIE_SMALL_SEQ, 

PCIE_LARGE_SEQ, 
PCIE_RAND_SEQ 

num_mac_packets 0..0xffffffff 
mac_seq_kind MAC_SMALL_SEQ, 

MAC_LARGE_SEQ, 
MAC_RAND_SEQ 

use_background_traffic 0..1 
Table 3 Sequencer Configuration Field 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

class my_module_ovc_env extends ovm_env; 
 
  rand mode_kind_t mode; 
 
virtual function void build(); 
 
     // randomize this env 
     this.randomize(); 
     
     super.build(); 
   endfunction : build 
 
 
 

class mac_env extends ovm_env; 
… 
  rand int unsigned max_ifg; 
  rand int unsigned min_ifg; 
   
  constraint min_ifg_c { 
     min_ifg >= 5; 
     min_ifg <= 15;       
  } 
 
  constraint max_ifg_c { 
      max_ifg >= 100; 
      max_ifg <= 200;       
  } 
 
   `ovm_component_utils_begin(mac_env) 
    … 
    `ovm_field_int(min_ifg, OVM_ALL_ON+OVM_DEC) 
    `ovm_field_int(max_ifg, OVM_ALL_ON+OVM_DEC)       
  `ovm_component_utils_end 
 

init_dut_seq 
(cpu sequencer) 

traffic_seq 
(pcie 

sequencer) 

background_seq 
(cpu sequencer) 

Time=0 Simulation time 

End  
of 

 Test traffic_seq 
(mac 
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                      Figure 11 Boiler Plate Sequence 



 
A snippet of our sequencer configuration class is shown below.   
 

 
 
The init_dut_seq is responsible for programming the DUT via the 
CPU interface. Recall that the MAC configuration object handle is 
passed into the virtual sequencer in the testbench's build phase. All 
sequences in the virtual sequence library have access to the MAC 
configuration via the built-in p_sequencer pointer. This allows the 
initialization sequence to properly program the pace_mode MAC 
register. A snippet of the initialization sequence is shown below. 
 

    
A snippet of the MAC traffic sequence is shown below. The 
virtual_sequencer_config data is visible to the sequencer via the 
built-in p_sequencer pointer. The sequence sends out a specified 
number of packets. The number is controlled by the test 
configuration field num_mac_packets. The kind of MAC packets 
sent is controlled by the test configuration field mac_seq_kind.  
 

 
 
 
 
5.6.2 Stimulus and configuration mechanism 
 
The test configuration class fields can be converted to configuration 
fields in the virtual sequencer component. The code snippet below 
shows the virtual sequencer with embedded test configuration fields 
and design configuration fields.  
 

 
 
When using the configuration mechanism approach, each design 
configuration field needs to be pushed into the initialization sequence 
and eventually into a verification component. With the configuration 

class my_testbench_virtual_sequencer extends ovm_sequencer; 
        
   int unsigned num_pcie_packets = 1; 
   int unsigned num_mac_packets = 1; 
   int unsigned use_background_traffic = 1; 
   pcie_seq_kind_t pcie_seq_kind = PCIE_RAND_SEQ; 
 
  mode_kind_t mode; 
  bit  pace_mode; 
  max_payload_t max_payload_size; 
  cpu_parity_t parity; 
 
   function new(input string name="", input ovm_component parent=null); 
      super.new(name, parent); 
      `ovm_update_sequence_lib 
   endfunction  
   
  // OVM automation macros for sequencers 
  `ovm_sequencer_utils_begin(my_testbench_virtual_sequencer) 
     `ovm_field_int(num_pcie_packets, OVM_ALL_ON) 
     `ovm_field_int(num_mac_packets, OVM_ALL_ON) 
     `ovm_field_int(use_background_traffic, OVM_ALL_ON) 
     `ovm_field_enum(pcie_seq_kind_t, pcie_seq_kind, OVM_ALL_ON) 
      `ovm_field_enum(mode_kind_t, mode, OVM_ALL_ON) 
  `ovm_sequencer_utils_end 
   
   
endclass: my_testbench_virtual_sequencer 
 
 

class mac_seq extends ovm_sequence #(ovm_sequence_item); 
 
  large_mac_master_seq large_mac_master_seq_inst; 
  small_mac_master_seq small_mac_master_seq_inst; 
  mac_seq_kind_t mac_seq_kind; 
 
  virtual task body(); 
 
   repeat (p_sequencer.virtual_sequence_cfg.num_mac_packets) begin 
      if (p_sequencer.virtual_sequence_cfg.mac_seq_kind == 
MAC_RAND_SEQ) 
          assert(std::randomize(mac_seq_kind) with { mac_seq_kind != 
                                                                                   MAC_RAND_SEQ; } ); 
       
      else 
 mac_seq_kind = p_sequencer.virtual_sequence_cfg.mac_seq_kind; 
       
      case (mac_seq_kind)    
        MAC_SMALL_SEQ : `ovm_do_on(small_mac_master_seq_inst, 
                                                                    p_sequencer.mac_0_m_sequencer) 
        MAC_LARGE_SEQ : `ovm_do_on(large_mac_master_seq_inst, 
                                                                    p_sequencer.mac_0_m_sequencer) 
      endcase 
    end 
  endtask : body  

class testbench_init_seq extends ovm_sequence #(ovm_sequence_item); 
 … 
  write_cpu_master_seq write_cpu_master_seq_inst; 
 
  virtual task body(); 
      // Setup Design 
       `ovm_do_on_with(write_cpu_master_seq_inst, 
                                       p_sequencer.cpu_0_m_sequencer,  
     { write_cpu_master_seq_inst.addr == 32'h000;  
       write_cpu_master_seq_inst.data == 
                                         p_sequencer.module_ovc_cfg.mode;} ) 
 
      // Program MAC 
      if (p_sequencer.module_ovc_cfg.mode != MODE_1_NO_MAC) begin 
          `ovm_do_on_with(write_cpu_master_seq_inst, 
                                         p_sequencer.cpu_0_m_sequencer,  
       { write_cpu_master_seq_inst.addr == 32'h100;   
         write_cpu_master_seq_inst.data == 
                                           p_sequencer.mac_cfg.pace_mode;} ) 
       end  
…    

class my_testbench_virtual_sequence_config extends ovm_env; 
   
   rand int unsigned num_pcie_packets; 
   rand int unsigned num_mac_packets; 
   rand int unsigned use_background_traffic; 
   rand pcie_seq_kind_t pcie_seq_kind ; 
   rand mac_seq_kind_t mac_seq_kind ; 
 
  constraint packets_c { 
  num_pcie_packets == 1; 
  num_mac_packets == 1; 
  use_background_traffic == 1; 
  pcie_seq_kind == PCIE_RAND_SEQ; 
                                          mac_seq_kind == MAC_RAND_SEQ; 
  } 
   
  `ovm_component_utils_begin(my_testbench_virtual_sequence_config) 
    `ovm_field_int(num_pcie_packets, OVM_ALL_ON) 
    `ovm_field_int(num_mac_packets, OVM_ALL_ON) 
    `ovm_field_int(use_background_traffic, OVM_ALL_ON) 
    `ovm_field_enum(pcie_seq_kind_t, pcie_seq_kind, OVM_ALL_ON) 
    `ovm_field_enum(mac_seq_kind_t, mac_seq_kind, OVM_ALL_ON) 
  `ovm_component_utils_end 
 
endclass : my_testbench_virtual_sequence_config 



class, the entire set of configuration fields are obtained via a 
configuration object. The following code snippet shows how to push 
the module’s mode, MAC’s pace_mode, and PCIE’s 
max_payload_size configuration fields into the sequencer. This 
methodology is not very scalable once the design grows. 
 

 
 
The following is a snippet of the initialization sequence.  
 

 
 
5.7 Overriding configuration 
 
Tests usually need to customize the configuration data in order to 
control test configuration fields, manipulate design configuration 
fields to hit corner cases or error conditions. This section describes 
override configuration using configuration class technique and the 
configuration mechanism technique. 
  
5.7.1 Overriding configuration classes 
 
The class factory allows test writers a means for overriding 
configuration class data without touching any of the testbench code. 
An example of overwriting a random field with a single value is 
shown below.  
 
Simple Single Value Override Example 
 

At the module layer, the MAC ifg_min check is always set to 9.  In 
the code snippet below, a new class inherited from the MAC 
configuration class forces the ifg_min to an illegal value of 4. 
 

 
 
 
In the following code, a test called "test_mac_cfg_override" uses the 
factory to override the default MAC configuration type with the 
derived my_test_module_ovc_mac_config type, so min_ifg is set to 5 
rather than 9. 
 

 
 
Complex Override Example  
 
Using configuration class, it is easy to add more complex constraints 
such as ranges and distributions. In the code below, min_ifg is 
constrained to be one of the 1, 2, 3, 4, 5 or 6 with a weighted ratio of 
1/4-1/4-1/4-1/4-2-5. 
  

 
 
 
 

// Setup Design 
    `ovm_do_on_with(write_cpu_master_seq_inst, 
                                    p_sequencer.cpu_0_m_sequencer,  
     { write_cpu_master_seq_inst.addr == 32'h000;  
       write_cpu_master_seq_inst.data == 
                                                                                 p_sequencer.mode;} ) 
 
    // Program MAC 
if (p_sequencer.mode != MODE_1_NO_MAC) begin 
     `ovm_do_on_with(write_cpu_master_seq_inst, 
                                        p_sequencer.cpu_0_m_sequencer,  
        { write_cpu_master_seq_inst.addr == 32'h100; 
                                         write_cpu_master_seq_inst.data == 
                                                                       p_sequencer.pace_mode;} ) 
  end 
 
    // Program PCIE  
    `ovm_do_on_with(write_cpu_master_seq_inst, 
                                    p_sequencer.cpu_0_m_sequencer,  
      { write_cpu_master_seq_inst.addr == 32'h200;  
       write_cpu_master_seq_inst.data == 
                                                                 p_sequencer.max_payload_size;} ) 
 

class testbench_tb extends ovm_env; 
 
  function void connect(); 
      … 
    v_sequencer.mode = mod_ovc_inst.mode; 
    v_sequencer.max_payload_size =  

mod_ovc_inst.pcie_inst.max_payload_size; 
    if (my_module_ovc_env_inst.mode != MODE_1_NO_MAC)  
      v_sequencer.pace_mode  = mod_ovc_inst.mac_inst.pace_mode; 
    v_sequencer.parity =mod_ovc_inst.cpu_inst.parity;      
 
  endfunction : connect 
 
endclass : testbench tb 
 

class my_test_module_ovc_mac_config extends my_module_ovc_mac_config; 
 
   // Provide implementations of virtual methods such as get_type_name and 
create 
   `ovm_object_utils_begin(my_test_module_ovc_mac_config) 
   `ovm_object_utils_end 
 
 
   constraint min_ifg_c { 
      min_ifg dist { [1:4] :/ 5, 3 := 2, 6 := 5};   
   } 
 
endclass : my_test_module_ovc_mac_config  

class test_mac_cfg_override extends my_testbench_base_test; 
 
  `ovm_component_utils(test_mac_cfg_override) 
 
  virtual function void build(); 
     
     factory.set_type_override_by_type(my_module_ovc_mac_config::get_type(), 
                                                     my_test_module_ovc_mac_config::get_type()); 
         
     factory.print(); 
      
    // Create the tb 
    super.build(); 
  endfunction : build 
endclass : test_mac_cfg_override  

class my_test_module_ovc_mac_config extends my_module_ovc_mac_config; 
 
   // Provide implementations of virtual methods such as get_type_name and 
create 
   `ovm_object_utils_begin(my_test_module_ovc_mac_config) 
   `ovm_object_utils_end 
 
   constraint min_ifg_c { 
      min_ifg == 4; 
   } 
 
endclass : my_test_module_ovc_mac_config  



5.7.2 Overriding with configuration mechanism  
 
The configuration mechanism overrides configuration fields using a 
top-down approach. This allows tests to have complete control of the 
values driven into the configuration hierarchy. 
 
Simple Single Value Override Example 
 
At the subenv (module OVC) layer, the MAC ifg_min check is 
always set to 9.  In the code snippet below, the set_config_int* call 
forces the ifg_min to be an illegal value of 3. 
 

 
 
Distribution Override Example 1 
 
The following code shows how to create a complex distribution 
constraint. The first step is to create a new MAC env class  
my_mac_env that inherits the mac_env class. In the my_mac_env 
class, the min_ifg_c constraint is overridden with the new 
distribution constraint.    
   

 
 
Next, the factory is used to override the mac_env class with the 
my_mac_env class.  
 

 
 
 
 
 
 

Distribution Override Example 2 
 
Alternatively, the min_ifg may be setup using procedural code rather 
than a constraint as shown in the following code. 
 

 
 
Range Override Example 
 
Alternatively, in the MAC environment a range start and range end 
could have been introduced. The code snippet below shows two new 
range fields min_ifg_start with a value of 3 and min_ifg_end with a 
value of 5 added to the min_ifg_c constraint. 
 

 
 
Now tests can easily change the range using simple set_config* calls 
as shown below. However, this technique is limited to ranges. 

 
 
 

class test_mac_cfg_simple_override extends my_testbench_base_test; 
 
  virtual function void build(); 
 
    set_config_int("*", "min_ifg_start", 2); 
    set_config_int("*", "min_ifg_end", 6);          
 
    // Create the tb 
    super.build(); 
  endfunction : build 
endclass : test_mac_cfg_simple_override 
 
 

class mac_env extends ovm_env; 
… 
  rand int unsigned min_ifg; 
  int unsigned min_ifg_start= 3; 
  int unsigned  min_ifg_end =5; 
   
  constraint min_ifg_c { 
     min_ifg >= min_ifg_start; 
     min_ifg <= min_ifg_end;      
  } 
 
 
   `ovm_component_utils_begin(mac_env) 
    … 
    `ovm_field_int(min_ifg, OVM_ALL_ON+OVM_DEC) 
    `ovm_field_int(min_ifg_start, OVM_ALL_ON+OVM_DEC)       
    `ovm_field_int(min_ifg_end, OVM_ALL_ON+OVM_DEC)       
  `ovm component utils end 
 

class test_mac_cfg_simple_override extends my_testbench_base_test; 
 
  `ovm_component_utils(test_mac_cfg_simple_override) 
 
  virtual function void build(); 
 
   randcase 
      1 : min_ifg = 7; 
      2 : min_ifg = 8; 
    endcase  
 
    set_config_int("*", "min_ifg", 5); 
          
    // Create the tb 
    super.build(); 
  endfunction : build 
endclass : test_mac_cfg_simple_override 
 

class test_mac_cfg_simple_override extends my_testbench_base_test; 
 
  `ovm_component_utils(test_mac_cfg_simple_override) 
 
  virtual function void build(); 
 
    factory.set_type_override_by_type(mac_env::get_type(), 
                                                              my_mac_env::get_type()); 
          
    // Create the tb 
    super.build(); 
  endfunction : build 

   
 

class my_mac_env extends mac_env; 
   
  `ovm_component_utils_begin(my_mac_env) 
  `ovm_component_utils_end 
 
  constraint min_ifg_c { 
     min_ifg dist {7 := 1, 8 := 2}; 
  } 
     
endclass // my_mac_env 

class test_mac_cfg_simple_override extends my_testbench_base_test; 
 
  `ovm_component_utils(test_mac_cfg_simple_override) 
 
  virtual function void build(); 
 
    set_config_int("*", "min_ifg", 3); 
          
    // Create the tb 
    super.build(); 
  endfunction : build 
endclass : test_mac_cfg_simple_override 
 



5.8 Dynamically changing configuration 
 
This section describes dynamically changing configuration using the 
configuration class technique and the configuration mechanism 
technique. 
  
5.8.1 Dynamically changing configuration 
classes 
 
The following code shows a test that dynamically changes the value 
of the parity field in the CPU configuration. Since all the components 
reference the configuration object, a single assignment to the parity 
filed is all that is needed because the change is automatically visible 
to all the components. 
 

 
 
5.8.2 Dynamically changing with configuration 
mechanism  
 
The configuration mechanism only updates get_config* fields in the 
build phase. If the configuration mechanism could easily be used in 
the run phase, then dynamic updates for configuration fields would 
be an elegant technique. There are ways to make the configuration 
mechanism work dynamically but they require a bit of work and are 
not part of the mainstream OVM methodology.  
 
 
 5.9 Evaluating configuration mechanism and 
configuration classes 
 
The configuration mechanism is awkward to use with 
design/verification configuration knobs that are located inside 
verification components. Configuration fields that are located inside 
a verification component typically require randomization and may 
additionally require a default constraint. Standard verification 
components developed by the instructions in the OVM User Manual 
do not include these randomization capabilities. This requires 
verification teams to implement randomization enhancements for 
verification components. After these enhancements are made then it 
is possible for test writers to extend verification components (envs, 
agents, monitors, and drivers) and use the factory in order to override 
default random behavior. In addition, test writers may use a single 
set_config* calls to override a configuration field with a fixed value. 
Although randomization of configuration fields inside verification 
components is possible as shown in this paper, it may not seem like a 
natural fit for some users. 
 
Additionally, there are extra complications with using the 
configuration mechanism with a verification component that includes 
duplicate design/verification configuration fields. In this paper we 
included an example of a parity field that is incorporated in both the 
driver and monitor of a CPU verification component. It is a 
requirement for this parity configuration field to maintain the same 

value, by default the parity needs to come up with a random value, 
and test writers may override the parity with a fixed value. In order 
to implement these requirements it cost additional code as shown in 
the paper.  
 
In contrast, when design/verification configuration fields are placed 
inside a configuration class then we do not have the issues listed 
above. Therefore, it is less esoteric to use the configuration class 
technique for design/verification configuration knobs. The only 
limitation is the test writers can not override using a single 
set_config* call. Instead, test writers can override configuration 
fields in the configuration class by using inheritance and the factory 
as shown in this paper.    
 
When it comes to test and topology configuration knobs where 
synchronizing and randomization may not be less of an issue it is 
advantageous to utilize the configuration mechanism technique. This 
way overrides for these fields is accomplished using a simple 
set_config_* call. The set_config* call using the configuration 
technique is simpler than extending configuration classes and using 
the factory. 
 
6. VMM Configuration 
 
The same basic principles for configuration methodology mentioned 
above apply to VMM 1.2[2]. This section shows several VMM 
examples using the VMM configuration mechanism (vmm_opt) 
technique and the VMM configuration class technique.      
 
Topology Configuration Knobs 
A topology configuration field (VMM calls these fields structural 
fields) can be implemented using the VMM configuration 
mechanism. The vmm methodology includes macros 
`vmm_unit_config_*. The vmm_unit_config_* includes get_* 
coding that is similar to the OVM macros.  Topology fields are 
retrieved by the configuration mechanism in the VMM build_ph 
phase. In the code snippet below the has_driver configuration field is 
declared in the MAC env with a default value of TRUE.  

   
A subenv may overwrite the default topology configuration values in 
the VMM build_ph phase. The following is a snippet of a subenv 
that overrides the has_driver default value of TRUE to a value of 
FALSE.   

class mac_env extends vmm_timeline; 
   `vmm_typename(mac_env) 
 
   bit has_driver; 
 
    function void build_ph(); 
 
       `vmm_unit_config_int(has_driver, `TRUE,  
                  "VIP drives interface", _verbosity, mac_env)      
… 

task run(); 
   my_testbench_tb0.cpu_cfg.parity = EVEN_PARITY; 
    #1000; 
    my_testbench_tb0.cpu_cfg.parity = ODD_PARITY;            
     #1000;    
    global_stop_request(); 
  endtask // run 



 

  
The top-level testbench layer may further override the subenv. The 
following is a snippet of a subenv that overrides the has_driver from 
the subenv FALSE value to a TRUE value.   
 

 
 
Design/Verification Configuration Knobs 
The example below shows the configuration class technique using 
design/verification configuration fields. We choose to perform our 
randomization for the configuration classes in the VMM 
start_of_sim_ph phase at the testbench layer. This allowed our tests 
to easily overwrite the configuration class in the VMM test's 
configure_test_ph.  
 

 
 
In order to override the default configuration class, an extension of 
the configuration class needs to be created and then the factory can 
override the new class type or an instance of the new class. Below is 
a snippet of the test_host_cfg class that is extended from host_cfg. 
 

 
   

Finally, in the test's configure_test_ph the host_cfg is replaced by the 
host_cfg using the vmm factory with an instance override as shown 
below.  
 

 
 
Test Configuration Knobs 
The following is an example of a test configuration field in the 
testbench layer (sys _env) called num_scenarios that controls the 
number of packets sent by the MSSG (multiple-stream scenario 
generator). The num_scenarios is a random test configuration field 
with a default value from 10 to 100. In the VMM start_of_sim_ph 
phase the configuration data for  num_scenarios is retrieved from 
the configuration mechanism. 
 

 
 
The following is a snippet of a test overwriting the num_scenarios 
with a fixed value of 1000. 
 

 
 
 
 
 
 

class test_test extends vmm_test; 
   `vmm_typename(test_test) 
 
   virtual function void configure_test_ph(); 
     vmm_opts::set_int("%*:num_scenarios", 1000); 
     … 
   endfunction: configure_test_ph 

class sys_env extends vmm_timeline; 
  `vmm_typename(sys_env) 
 
  rand int unsigned num_scenarios; 
  constraint c_num_scenarios { 
         num_scenarios > =10; 
         num_scenarios < =100; 
         } 
 
function void sys_env::start_of_sim_ph(); 
 
   bit is_set; 
   int _verbosity = 1; 
 
   num_scenarios = vmm_opts::get_object_int(is_set, this, 
                                `"num_scenarios`",10, 
                                  "num_scenarios for mssg",  
                                  _verbosity, `__FILE__, `__LINE__);  
   if (is_set) num_scenarios.rand_mode(0); 
   if (is_set) c_num_scenarios.constraint_mode(0); 
   
   if (this.randomize() == 0) 
      `vmm_error(log, "randomize failed"); 
  … 

class sys_env extends vmm_unit; 
    `vmm_typename(pwr_env) 
 
    function void build_ph(); 
    
          vmm_opts::set_int("%*PWR_PWR_MAC:has_driver", 
                                                 `TRUE); 
 
 
    
 

virtual function void configure_test_ph(); 
      test_host_cfg = new; 
      
     host_cfg::override_with_copy("@%*", test_host_cfg,  
                                                               log, `__FILE__, `__LINE__);           
… 

class test_host_cfg extends host_cfg; 
     `vmm_typename(test_host_cfg) 
         
  constraint c_parity { 
         parity == ODD; 
    }  
… 

function void sys_env::start_of_sim_ph(); 
    
   // Setup CFG descriptor 
   this.host_cfg = host_cfg::create_instance(this, 
                  {this.get_object_name(), "_CFG"}, `__FILE__, 
                                                                           `__LINE__); 
 
   if (!is_subenv) begin 
      host_cfg.set_log(); 
       
      if (host_cfg.randomize() == 0)  
        `vmm_fatal(log, "Failed to randomize configuration"); 
   end      

class pwr_env extends vmm_unit; 
    `vmm_typename(pwr_env) 
 
    function void build_ph(); 
    
         vmm_opts::set_int("%PWR_MAC_ENV:has_driver", 
                                         `FALSE); 
 
    
 



7. Automating testbench configuration 
 
OVM and VMM are quite open ended when it comes to 
configuration. OVM and VMM also lack with recommendations for 
directory structure, file-naming conventions and coding styles. As 
shown in this paper, well-structured OVM and VMM configuration 
helps with reusability. It is a time-consuming task for an organization 
to decide on which approach is most suitable for their verification 
teams to utilize based on their verification charter. We found that just 
implementing what we believe is a “best-practice” OVM testbench 
framework is a time consuming task. 
 
It is important that organizations uniformly deploy their “best 
practice” methodologies in order to reap the awards of reuse. 
However, it is normally difficult to achieve so. For example, an 
organization may decide to develop testbenches using an OVM or 
VMM approach as described in this paper. If one of the verification 
teams in the organization mistakenly not utilize agents in their 
verification components, then this may diminish the ability to reuse 
this particular component in future testbenches.  Another example 
could be that one of the verification teams does not use analysis ports 
in their scoreboard and once again diminishes easy reuse in other 
testbenches.  
 
To overcome these deployment obstacles, we developed a Template 
Generator (TG) tool that could automatically generate a testbench 
based on templates. Figure 12 shows the flow of the TG Tool. We 
created a complete set of generic OVM and VMM templates to feed 
into the TG. These templates were implemented using our “best-
practice” techniques for configuration, monitors, sequencers, 
sequences, drivers, agents, virtual sequences. The template generator 
builds up an entire OVM framework or testbench (i.e. 
OVM_testbench 1_*) that includes a makefile and a dummy test that 
allows teams to compile all the code out of the box using Synopsys, 
Cadence or Mentor simulators. The TG allows teams to control the 
name and number of verification components they want to generate.  
 

 
 
 
Moreover, organizations may easily customize the templates for any 
number of changes such as coding styles, naming conventions and 
copyright format in file headers. Using the TG truly deploys 
testbench code that has the same “look-and-feel” throughout the 
company. This significantly speeds up testbench development. This 
is especially true if the teams are attempting to learn a new 
methodology such as OVM or VMM. It helps bring the entire team 
up to speed using the new methodology. Last but not least, the TG is 
also capable of merging changes into previously generated code in 
the case where the teams decide to modify their “best practice” 
approaches.  
 

6. CONCLUSION 
 
There are two techniques for configuring a testbench: using the 
configuration mechanism and using the configuration class. Both 
choices are powerful and are supported by both OVM and VMM 
methodologies. However, as shown earlier, the configuration 
mechanism is more suited for configuring test and topology related 
parameters. The configuration mechanism allows for simple 
overwrites using set_* calls. In contrast, the configuration class is 
more suited for configuring design and verification related 
parameters. These configuration fields are typically more 
complicated and require inheritance and the class factory for 
overriding. It is also recommended that a verification component 
should include only a single configuration class in order to ease 
maintenance and reuse. 
 
The author also recommends that verification teams use the 
configuration choices in a consistent manner. As shown earlier, the 
use of templates to set up a testbench can help organizations quickly 
deploy "best-practice" code methodologies and reliably gets an entire 
team on the same page.   
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