
Test driving Portable Stimulus at AMD

1

Prabhat Gupta, AMD
Matan Vax, Cadence



Agenda

2

Why Portable Test and Stimulus Standard (PSS)

Walk through an example scenario

PSS guideline

Observations and conclusion



Why Portable Test and Stimulus Standard (PSS)
• Ease of test creation

– New test scenarios find bugs
– Declarative syntax with procedural support, C++ description

• Formal system description
– Constraints, input/outputs, resource and randomization

• UVM but for system-level and better

– Automation for test generation
• Close approximation of real world scenarios

– Deterministic runs
– Ease of issue reproduction on emulator and simulation

• We used PSS tool PerspecTM from Cadence Design 
Systems for this exercise

3



Existing stimulus

Post-
silicon

• Generally OS-based tests
• Longer debug time
• Failures are difficult to bring to emulation or simulation for debug

4

Pre-silicon 
SoC

• Simple directed feature tests
• Difficult to manually create complex scenarios
• Long run time for complex scenarios

Pre-silicon 
IP

• Excellent UVM-based constrained random testbench
• IP initialization sequences not easily portable to FW or post-silicon tests
• IP level tests lack system context



Stimulus with PSS

Post-silicon
• Smaller deterministic bare-metal tests
• Compose complex scenarios
• Easily bring debug to Emulation
• Generate large set of tests for regression

5

Pre-silicon SoC
• Describe test intent with PSS
• Automation helps with complex scenario composition
• Reuse tests post-silicon

Pre-silicon IP
• Reuse SoC scenarios
• Export initialization sequences to firmware and post-silicon
• Export IP specific scenarios to SoC



Test environment
• PSS generated tests run on UEFI BIOS
• Test are loaded and started by uDREX

– uDREX is a thin layer to abstract BIOS and 
provide services to PSS tests

• Emulator
– Test and uDREX are backdoor loaded into 

DRAM

• Post silicon
– Test are copied in a known location on disk
– uDREX finds and starts test on all enabled 

threads

6

AMD APU
(Emulation or post-silicon)

UEFI BIOS

uDREX runtime

Perspectm microkernel

thread

thread

thread

thread

thread

thread

thread

thread



Example test scenarios
• Processor C-states scenarios

– Transition all cores in all 
complexes to a C-state at same 
time

– Transition one specified core to a 
C-state

– Sequentially transition cores to a 
C-state on all complexes

– Transition cores in and out of a C-
state at specified duty cycle

7

∞ Infinity Fabric ∞ 

“Zen” core complex

L3
 c

ac
he

Zen 
core

Zen 
core

Zen 
core

Zen 
core

“Zen” core complex

L3
 c

ac
he

Zen 
core

Zen 
core

Zen 
core

Zen 
core

Multimedia
Engines

Display 
Engines

DDR4 
Memory 

controllers

I/O and 
System Hub



Core C-State transition

HLT

Core_Cn-1 timer

PONR

Core_Cn-1 Entry

Core_Cn timer

Point of No Return (PONR)

CPU_Cn
Entry

Interesting points

Transition 
complete

This timeline shows all interesting points an interrupt can 
arrive during C-state transitions. All these points matter 
for system-level power scenarios



Generic power down core activity
action power_down_core {

rand int in [0..NUM_CORES-1] core_num;
rand bool wakeup_core;
rand bit[32] usr_delay_ms;
rand cstate_e in [CoreC1, Core_C2] goal_cstate;

activity {
sequence {
do observe_system_state;
do enable_cstate with {

core_num == this.core_num;
goal_cstate == this.goal_cstate; };

parallel {
do power_down_thread with {
core_num == this.core_num;
thread_num == 0; };

do power_down_thread with {
core_num == this.core_num;
thread_num == 1; };

}}};

9



Compose a scenario

10

Four cores 
transition to a C-
state then wake-
up at same time.

Timer count was 
constrained by 
PSS tool based 

on current clocks



Generating Test Code

11

exec body C = """
asm("hlt");

""";

void core0_thread0_main() {
…
for (i=0; i<50; i++) {

…
enable(Core_C1);
program(18);
…
set_timer(32);
…
asm("hlt");
…

}
}

exec body C = """
enable({{goal_state});
program({{val}});

"""; Generate
code

exec body C = """
set_timer({{delay}});

""";

void core0_thread1_main() {
…
while (!end_of_loop_body) {
…
set_timer(32)
…
asm("hlt");
…

}
}



Sweep scenario 
action sweep_scenario {
rand int in [0..NUM_CORES-1] core_num;
rand int in [1..10000] range;
rand int in [1..1000] step;
rand int in [1..1000] base_delay;
activity {
parallel {
replicate (i: NUM_CORES) {
if (i != this.core_num) {
do power_down_core with {
core_num == i;

};
}

}
}
repeat (phase: range / step) {
repeat (2) {
do power_down_core with {
core_num == this.core_num;
goal_cstate == CPU_C1;
transition_case == SWEEP;
wu_delay == base_delay + 

phase * step;
};

12



Power-state transition measurement

13

Po
w

er

Time



PSS Modeling Guidelines
• Create actions to bring system to known state

– Encapsulate known state into state object
• Activities that depend on a system feature 

need to enable the feature using inputs or by 
explicitly using an action 

• All generic actions in library should come with 
control knobs that have sensible defaults

• Project configurations should come from static 
configuration files

• Separate generic PSS code from project 
specific PSS

14



PSS - Real world observations
• Generic action/activity can be complex to create

– May need procedural description
• Input/output for activities not available yet
• PSS tests prefer complete control of system

– Baremetal environment
– Statically allocated and scheduled tests

• Randomization should be carefully thought through
– Test generation time has potential to increase exponentially

• Constraint solver errors can be terse
• Multi-discipline team collaboration needed to create 

baremetal library

15

Generic 
Actions

Organize

Err… abc

Random



PSS - Conclusions
• Excellent capability for composing test scenarios

– Lab bring-up engineers or architects can easily craft scenarios and compose them quickly
• Ease of creating scenarios with PSS declarative syntax leads to many new scenarios

• Partial scenario description of activity
– A test creator doesn’t need to know all prerequisites

• Runtime and test generation time coverage reports
– Very helpful in closing coverage gaps

• Constraints in PSS
– Provide a concise and precise way to specify system and tests

• Augmented power management firmware tuning tests in lab with new scenarios 
from PSS
– Quickly generated new scenarios in lab
– Improved power management algorithms

• We can use PSS beyond power management verification and tuning

16



Disclaimer and Attribution
Disclaimer
The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions and 
typographical errors.
The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to 
product and roadmap changes, component and motherboard version changes, new model and/or product releases, product differences 
between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. AMD assumes no obligation to update 
or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes from time 
to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.
AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO 
RESPONSIBILITY FOR ANY INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION.
AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR 
PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY DIRECT, INDIRECT, SPECIAL OR OTHER 
CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS 
EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Attribution
© 2019 Advanced Micro Devices, Inc. All rights reserved.
AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this 
publication are for identification purposes only and may be trademarks of their respective companies.

17


	Test driving Portable Stimulus at AMD
	Agenda
	Why Portable Test and Stimulus Standard (PSS)
	Existing stimulus
	Stimulus with PSS
	Test environment	
	Example test scenarios
	Core C-State transition
	Generic power down core activity
	Compose a scenario
	Generating Test Code
	Sweep scenario 
	Power-state transition measurement
	PSS Modeling Guidelines
	PSS - Real world observations
	PSS - Conclusions
	Disclaimer and Attribution

