

Taming the beast: A smart generation of Design Attributes (Parameters)

for Verification Closure Using Specman
Meirav Nitzan, Xilinx Inc.

meiravn@xilinx.com

Yael Kinderman, Cadence Design Systems Inc.

yaelk@cadence.com

Efrat Gavish, Cadence Design Systems Inc.

efratg@cadence.com

Abstract
Design IPs are characterized by a set of design

attributes, or parameters, which affect the way the

design behaves. Moreover, it often results in a

parameterized Test Bench. In order to reach a

verification closure, the design needs to be tested

with all relevant combinations of parameter values,

sometimes exhaustively. Since parameters values are

provided to the simulation at design elaboration time,

figuring out the proper permutation sets of

parameters needs to be done prior to the simulation

run.

This paper will present an innovative solution to the

parameters generation problem, which is based on

two principals:

1. Smart planning of the parameters sets required to

accomplish thorough regression testing.

2. A unique technology by Specman Elite which

technically enables specifying the characteristics

of “interesting” parameters sets, and generates

parameter sets accordingly in an efficient manner

with no redundancies

The paper will then describe a case study, showing

the superiority of the proposed solution over simple

SystemVerilog randomization, for achieving

coverage closure on the parameter sets.

The paper will conclude with a summary of the

proposed solution and its advantages for

parameterized design verification.

Keywords
 OVM, UVM, SystemVerilog, parameters, coverage,

closure, verification methodology, testbench,

Specman Elite

Introduction and Problem

Definition
Parameterized Design IPs are very common in the

FPGA world, and may be used in ASIC designs as

well. These attributes, or design parameters, affect

the way the design behaves. For example: if the

design IP is that of a RAM, then the WRITE_MODE

could determine how data is stored in the RAM, and

whether or not the data output of the RAM reflects

the input data. In order to reach a verification closure,

the design needs to be tested with all relevant

combination of parameter values, sometimes

exhaustively. For example – all major design modes

need to be tested with all possible data-width values.

When using OVM [1] or UVM [2] based verification

environments, often times the environments

themselves become parameterized as well [3]. For

example – if the designs data bus width is varying, it

will cause the design interface to become

parameterized, and hence the monitor, driver and

other such components to become parameterized as

well.

The simple solution to providing high quality IP to

the verification challenge above would be to create

an exhaustive permutations set of all parameters, and

fully verify the design with each permutation. In

other words – run a full regression with all possible

combinations of all possible values of the design

parameters. The challenges with this solution are:

1. Not scalable.

i. For example - for a design with 20-30

parameters, each having 2 to 10 values, the

mailto:meiravn@xilinx.com
mailto:yaelk@cadence.com
mailto:efratg@cadence.com

exhaustive permutation set could reach

hundreds of thousands in size, or even more.

ii. Extensive simulation time - poses a heavy

burden on resources.

iii. Covering all permutations for more complex

designs may not be feasible

2. Efficiency - turnaround time for running a

regression is too long. If a bug fix takes a week

to fully verify, designer productivity is severely

impacted.

3. Functionally - there is no functional

justification to cross all values of all

parameters with each other.

It is clear, therefore, that simply calculating all

permutations and applying the parameters sets to the

regression test suite is not a good, efficient solution

for parameters generation.

Solution Requirements
The requirements for covering the design parameters

space are, therefore, the following:

1. A pre simulation step – the required solution

needs to run before simulation, efficiently

generating the parameters sets and providing

them to the simulator test runs.

2. Automated random generation of parameters

sets, considering all parameters legal values and

constraints, as well as the dependencies between

parameters

3. Control over the distribution of the generated

parameters sets. For example: Avoiding

repetitions of parameters sets, since each

parameter set implies a new design

configuration, and hence require the whole test

suite to be simulated with it.

4. Flexibility to generate either full parameter sets

generation, as well as smaller subsets of the

parameters sets, based on the verification needs

(complete design verification vs. nightly

regression etc.)

5. Proper coverage of the parameters space needs

to be verified.

Why isn’t a simple SystemVerilog

randomization good enough
Since all verification environments in Xilinx are

OVM/UVM based, all the design parameters and

their constraints can be defined in one configuration

class. The parameters are defined as rand fields, with

constraints and implied constraints, describing valid

parameter values and how they affect each other.

Potentially, it should have been enough to simply

randomize this configuration class separately as a

pre-simulation step, and thus create legal parameters

sets. Coverage group defined in the class could tell us

how much of the parameter space we have covered so

far [4]. This solution would satisfy quite a few

requirements: it is a pre-simulation step and an

automated random generation of the parameters set.

The coverage group defined in the class satisfies the

last requirement, for proper coverage of the

parameters space.

Experience shows, however, that this solution does

not satisfy the remaining two requirements: control

over distribution, and flexibility to define which

parameter combinations to exhaustively generate. A

case study shown later in this paper will demonstrate

those problems. Hence, a different solution is called

for.

A basic capability in the e language the Specman

Elite engine, which does not exist in SystemVerilog,

was the basis for the solution presented in this paper.

This basic capability was enhanced by Specman

R&D, and is presented in the next section.

The solution outline
The Xilinx Global Verification Team along with

Cadence Specman R&D came up with an innovative

solution to the parameter generation as a pre-

simulation step. The full solution required a

methodological approach to the design parameters

analysis, done by the Xilinx team, and an

enhancement to existing Generation Engine in

Specman, done by Specman R&D.

The methodological approach to solving the

problem:

1. Analyze your design and identify the groups of

parameters which need to have all their

permutations tested. For example: test all data

width values with all write modes, test all date

width values with all read modes. It is NOT

necessary to test all read modes with all write

modes, though.

2. Identify sub-groups of the complete list of

“interesting” parameters groups specified in (1)

for various purposes: a sub-group that validates

a certain feature; a sub-group for nightly

regression, a sub-group for sanity testing or for

code check-in gating etc.

Once these parameters relationship have been

established, a technical solution that generates

random/exhaustive sets of values is needed.

The technical Description of the Parameter

Sets Generator

The e language, as it turns out, does provide a good

solution for the problem. Besides having the

capability to generate random constrained values, it

has the capability to exhaustively generate all valid

values of certain fields in a class, while randomizing

the others.

So, for example, let’s look at the following e struct

struct foo{

 width: uint [1, 2, 4, 8, 16];

 mode: uint (bits:2);

 init_val: uint(bits:16);

 keep (mode == 0|| width ==16) => (init_val ==0);

}

Using the e function all_iterations()[5], the user can

ask for a set of foo objects that include all valid

combinations of {width, mode} (set size would then

be (4*5) =20 objects), and in each one of these

objects, the init_val field will have a random value

that applies to the constraint keep (mode == 0|| width

==16) => (init_val ==0);

The e features described above almost fully satisfy

the solution requirements. However, in a real-life

case of design parameters sets, there is more than one

group of parameters (such as {width, mode}) that

needs to be exhaustively generated. Creating different

lists for different parameter groups can solve that

requirement, but then it would result in lots of

duplications in those parameters between the lists.

Hence, Specman R&D came up with an enhancement

to the generation engine, by providing a generation

construct which allows the user to define

distribution traits of an “interesting” parameters set.

The new generation construct enables defining the

following:

 Exhaustive rules:

The user can specify a set of attributes (x1,..xk)

that needs to be exhaustively exercised. i.e. any

generated parameters set must include all

possible permutations of (x1,..xk)

 Non-Exhaustive rules:

The user can specify a set of attributes (y1,..ym)

that needs to be non exhaustively exercised. i.e.

any generated parameters set should try to avoid

generating 2 solutions that repeat same value of

yi (for each i in [1..m]).

 Repetition rule:

The user can specify a repetition counter that

defines how many times each permutation of the

exhaustive set of parameters should appear in the

generated parameters set (by default , the

repetition counter is 1).

Alternatively, the user can use it to force the size

of the generated parameters set.

When the new generation construct (a macro) is

used, Specman generation engine will generate

exhaustive/random parameters sets, complying with

the rules above in an efficient manner (In O(size of

generated set)).

The solution components

Figure 1 – parameter generation solution outline

The inputs to the parameters sets generation engine

are, the following (as shown in figure 1):

1. A class containing design parameters definition

along with their constraints and relationship –

needs to be done once for a design.

2. An ini format file which defines more constraints

and sub-groups of parameters which need to be

exhaustively exercised with respect to each

other. There may be several sub regressions

defined in this input file (e.g. – nightly, full,

feature X testing etc.).

The input files described above are processed by the

Parameter Sets Generator in the following way: The

ini file input is translated to further constraints

expanding the original e struct, relying on e’s Aspect

Oriented Programming capability – extensions of

structs with added constraints (similar to

SystemVerilog class inheritance with added

constraints); The specification of the parameters

groups to be exhaustively generated is translated to a

Specman macro call.

The Specman based generation engine receives the

original parameters struct, along with the information

above. The result is sets of parameters which are

written to output files.

Case study – verifying a Dual Port

RAM

Verification Challenge Presentation

The Dual Port RAM is a two port RAM device. Each

one of its ports can independently serve read or write

requests. Hence, its OVM test bench is comprised of

two independent agents, and a virtual sequencer

coordinating their stimulus generation, as shown in

figure 2:

Figure 2 – BRAM: DUT and Test Bench

The design IP has 12 major parameters which define

its logical behavior, and a few other parameters such

as initial memory value or reset value. The total

number of possible permutations of the major

parameters reaches 180,000, which means running a

full test suite on each set, or a week worth of

regression time.

Applying the Smart Parameter Generation

Solution

The first principal of the parameter solution calls for

careful analysis of the parameter space, and defining

the necessary exhaustive combinations of parameters

sets. After applying this principal we ended up with a

revised verification plan which specified a much

smaller sets of exhaustive permutations of parameters

sets, and thus reduced the total number of resulting

parameters sets.

Figure 3 – a partial verification plan view for design

parameters

Since the BRAM test bench needs to be aware of those

parameters and their values, a special configuration class is

defined. The parameters are represented as random fields

and their legal values, as well as the dependencies between

parameters values, are represented by constraints. The

resulting SystemVerilog configuration class is shown in

figure 4.

In order to enable the Specman based solution, a one-time

effort of translating this SystemVerilog class to an e struct

was required.

Figure 4 – config parameters SystemVerilog class

Defining a simple sub-regression

We defined a simple sub-regression, with further

constraints on some parameters, and specified which

parameters combinations need to be exhaustively

exercised:

Port A: READ_WIDTH is 18 or 36, WRITE_WIDTH is 18 or 36

Port B: READ_WIDTH is 18 or 36, WRITE_WIDTH is 18 or 36

Exercise ALL combinations of:

READ_WIDTH_A x READ_WIDTH_B (2*2=4),

WRITE_WIDTH_A x WRITE_WIDTH_B (2*2=4)

The above requirements are presented in the

following way in the parameter generation ini file:

[lite]

CROSS param.WRITE_WIDTH_A = Ta[18, 36]

CROSS param.WRITE_WIDTH_B = Ta[18, 36]

CROSS param.READ_WIDTH_A = Tb[18, 36]

CROSS param.READ_WIDTH_B = Tb[18, 36]

TB_OVM_TESTNAME = simple_test

The Parameter Sets Generator takes the sub

regressions definition above and effectively adds it as

added constraints to the relevant parameter fields. It

then generates a set of values in which the following

is satisfied:

- All combinations of

READ_WIDTH_AxREAD_WIDTH_B and all

combinations of

WRITE_WIDTH_AxWRITE_WIDTH_B exist,

with minimal repetition of each cross (x) value

set.

- The rest of the parameters have random values

Comparing the Specman Based solution with

SystemVerilog random generation

In order to run a comparison between the solution

proposed in this paper, and a simple SystemVerilog

randomization of a constrained Configuration class.

We built a dummy top module, which only

instantiates the configuration class, and prints out the

fields values.

`include "BRAM_config.sv"

class lite_BRAM_cfg_class extends BRAM_cfg_class;

 constraint c3 { READ_WIDTH_B inside {18,36};}

 constraint c4 { READ_WIDTH_A inside {18,36};}

 constraint c5 { WRITE_WIDTH_B inside {18,36};}

 constraint c6 { WRITE_WIDTH_A inside {18,36};}

endclass: lite_BRAM_cfg_class

class cfg_cov;

 lite_BRAM_cfg_class bram_cfg;

 covergroup cg;

 READ_WIDTH_A: coverpoint bram_cfg.READ_WIDTH_A{

 bins ra[] = {18, 36};

 illegal_bins others = default; }

 READ_WIDTH_B: coverpoint bram_cfg.READ_WIDTH_B{

 bins rb[] = {18, 36};

 illegal_bins others = default; }

 WRITE_WIDTH_A: coverpoint bram_cfg.WRITE_WIDTH_A{

 bins wa[] = {18, 36};

 illegal_bins others = default; }

 WRITE_WIDTH_B: coverpoint bram_cfg.WRITE_WIDTH_B{

 bins wb[] = {18, 36};

 illegal_bins others = default; }

 Ta: cross WRITE_WIDTH_A, WRITE_WIDTH_B;

 Tb: cross READ_WIDTH_A, READ_WIDTH_B;

 endgroup: cg

 function new();

 cg = new;

 endfunction // new

 function void sample(lite_BRAM_cfg_class cfg);

 bram_cfg = cfg;

 cg.sample();

 endfunction // sample

 function bit is_coverage_done();

 return cg.get_coverage() ==100.0;

 endfunction

endclass: cfg_cov

The top module instantiates an object of type

lite_BRAM_cfg_class, randomizes it and stop

randomization when a 100% coverage is achieved.

module top;

 lite_BRAM_cfg_class bram_cfg;
 cfg_cov cov;

 int unsigned count;

 initial begin

 bram_cfg =new;

 cov =new;
 count = 0;

 while (count < 1000) begin
 assert(bram_cfg.randomize());

 $display("WRITE_WIDTH_A = %d, WRITE_WIDTH_B =

%d\n", bram_cfg.WRITE_WIDTH_A,
bram_cfg.WRITE_WIDTH_B);

 $display("READ_WIDTH_A = %d, READ_WIDTH_B =
%d\n", bram_cfg.WRITE_WIDTH_A,

bram_cfg.WRITE_WIDTH_B);

 cov.sample(bram_cfg); count ++;

 if(cov.is_coverage_done()== 1) begin
 $display("***needed %0d cycles to complete coverage",

count);

 $finish;
 end

endmodule // top

Several runs on the code shown above shown that the

number of runs required between 7 and 26 runs:

 ***needed 7 cycles to complete coverage

Simulation complete via $finish(1) at time 0 FS + 0
./sv/BRAM_top_test.sv:78 $finish;

Vs.

***needed 26 cycles to complete coverage

Simulation complete via $finish(1) at time 0 FS + 0

./sv/BRAM_top_test.sv:78 $finish;

In contrast, running the proposed Specman-based

solution proposed in this paper yielded between 4

and 6 permutations of the parameters sets. The code

generated by the Parameter Sets Generator script for

Specman was:

<’

extend CONFIG_NAME_T : [lite];

extend lite config_s {

 keep RAM_DEPTH in [36];
 keep RAM_MODE in [TDP];

 keep READ_WIDTH_B in [18,36];

 keep READ_WIDTH_A in [18,36];
 keep WRITE_WIDTH_B in [18,36];

 keep WRITE_WIDTH_A in [18,36];

};

ADVANCED_ALL_ITERATIONS
sys.config_gen.config_list_lite_full type=lite config_s
exhaustives=((READ_WIDTH_B,READ_WIDTH_A),

(WRITE_WIDTH_B,WRITE_WIDTH_A),

(RAM_DEPTH,RAM_MODE)) repetition=1;

extend config_gen_unit {

 !config_list_lite_full: list of lite config_s;
 fill_config_list() is first {

 for each (conf) in config_list_lite_full {

 config_list.add(conf);
 };

 };

};

'>

The reasons for the differences in results

The Specman-based solution is first exhaustively

generating the first specified group,

READ_WIDTH_A x READ_WIDTH_B, while

simply randomizing the other parameters, and hence

creates 4 parameter sets for the entire parameters set.

Then, it looks at the other specified exhaustive group,

WRITE_WIDTH_A x WRITE_WIDTH_B. Now,

since some combinations of the second exhaustive

group were already exercised when handling the first

group, the engine only had to add the non-exercised

permutations of that group.

The SystemVerilog solution, on the other hand,

randomizes all parameters in the

BRAM_config_class with no special attention to the

combinations we would like to see exhaustively

exercised, since randomization does not consider

coverage description. Hence, reaching the desired

combinations could take a greatly varying number of

times.

Summary and Conclusions
In this paper we presented a new and efficient

solution to the problem of generating parameters for

parameterized design and test bench regression runs.

We have shown through a case study that this

solution generated a minimal number of parameter

sets, compared to a simple SystemVerilog

randomization, which results in a number of

parameter sets that greatly varies, and in the worst

case is 4 times larger than the worst case of our

solution. Since each set of parameter values needs to

have a regression test suite run with it, each such

redundant parameter set is a significant waste of

simulation time and company resources.

References
[1] Open Verification Methodology (OVM), http://ovmworld.org

[2] Universal Verification Methodology, http://uvmworld.org

[3] B. Ramirez, M. Horn, OVM & Parameters: Why Can’t They

Just Get Along?, http://go.mentor.com/parameters_and_ovm

[4] IEEE Standard for SystemVerilog: Unified Hardware Design,

Specification and Verification Language, IEEE Std. 1800-2009

[5] Incisive® Enterprise Specman Elite® Testbench Specman e

Language Reference

http://go.mentor.com/parameters_and_ovm

