
 

 

Taming the beast: A smart generation of Design Attributes (Parameters) 

for Verification Closure Using Specman 
Meirav Nitzan, Xilinx Inc. 

meiravn@xilinx.com 

Yael Kinderman, Cadence Design Systems Inc. 

yaelk@cadence.com                                                        

Efrat Gavish, Cadence Design Systems Inc. 

efratg@cadence.com 

 

Abstract 
Design IPs are characterized by a set of design 

attributes, or parameters, which affect the way the 

design behaves.  Moreover, it often results in a 

parameterized Test Bench. In order to reach a 

verification closure, the design needs to be tested 

with all relevant combinations of parameter values, 

sometimes exhaustively. Since parameters values are 

provided to the simulation at design elaboration time, 

figuring out the proper permutation sets of 

parameters needs to be done prior to the simulation 

run.  

This paper will present an innovative solution to the 

parameters generation problem, which is based on 

two principals: 

1. Smart planning of the parameters sets required to 

accomplish thorough regression testing. 

2. A unique technology by Specman Elite which 

technically enables specifying the  characteristics 

of “interesting” parameters sets, and generates 

parameter sets accordingly in an efficient manner 

with no redundancies 

The paper will then describe a case study, showing 

the superiority of the proposed solution over simple 

SystemVerilog randomization, for achieving 

coverage closure on the parameter sets.  

The paper will conclude with a summary of the 

proposed solution and its advantages for 

parameterized design verification.  
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Introduction and Problem 

Definition 
Parameterized Design IPs are very common in the 

FPGA world, and may be used in ASIC designs as 

well. These attributes, or design parameters, affect 

the way the design behaves. For example: if the 

design IP is that of a RAM, then the WRITE_MODE 

could determine how data is stored in the RAM, and 

whether or not the data output of the RAM reflects 

the input data. In order to reach a verification closure, 

the design needs to be tested with all relevant 

combination of parameter values, sometimes 

exhaustively. For example – all major design modes 

need to be tested with all possible data-width values. 

When using OVM [1] or UVM [2] based verification 

environments, often times the environments 

themselves become parameterized as well [3]. For 

example – if the designs data bus width is varying, it 

will cause the design interface to become 

parameterized, and hence the monitor, driver and 

other such components to become parameterized as 

well. 

The simple solution to providing high quality IP to 

the verification challenge above would be to create 

an exhaustive permutations set of all parameters, and 

fully verify the design with each permutation. In 

other words – run a full regression with all possible 

combinations of all possible values of the design 

parameters. The challenges with this solution are: 

1. Not scalable.  

i. For example - for a design with 20-30 

parameters, each having 2 to 10 values, the 
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exhaustive permutation set could reach 

hundreds of thousands in size, or even more.  

ii. Extensive simulation time - poses a heavy 

burden on resources.  

iii. Covering all permutations for more complex 

designs may not be feasible 

  

2. Efficiency - turnaround time for running a 

regression is too long. If a bug fix takes a week 

to fully verify, designer productivity is severely 

impacted.  

3. Functionally - there is no functional 

justification to cross all values of all 

parameters with each other.  

It is clear, therefore, that simply calculating all 

permutations and applying the parameters sets to the 

regression test suite is not a good, efficient solution 

for parameters generation. 

Solution Requirements  
The requirements for covering the design parameters 

space are, therefore, the following: 

1. A pre simulation step – the required solution 

needs to run before simulation, efficiently 

generating the parameters sets and providing 

them to the simulator test runs. 

2. Automated random generation of parameters 

sets, considering all parameters legal values and 

constraints, as well as the dependencies between 

parameters 

3. Control over the distribution of the generated 

parameters sets. For example:  Avoiding 

repetitions of parameters sets, since each 

parameter set implies a new design 

configuration, and hence require the whole test 

suite to be simulated with it. 

4. Flexibility to generate either full parameter sets 

generation, as well as smaller subsets of the 

parameters sets, based on the verification needs 

(complete design verification vs. nightly 

regression etc.) 

5. Proper coverage of the parameters space needs 

to be verified. 

Why isn’t a simple SystemVerilog 

randomization good enough 
Since all verification environments in Xilinx are 

OVM/UVM based, all the design parameters and 

their constraints can be defined in one configuration 

class. The parameters are defined as rand fields, with 

constraints and implied constraints, describing valid 

parameter values and how they affect each other. 

Potentially, it should have been enough to simply 

randomize this configuration class separately as a 

pre-simulation step, and thus create legal parameters 

sets. Coverage group defined in the class could tell us 

how much of the parameter space we have covered so 

far [4]. This solution would satisfy quite a few 

requirements: it is a pre-simulation step and an 

automated random generation of the parameters set. 

The coverage group defined in the class satisfies the 

last requirement, for proper coverage of the 

parameters space. 

Experience shows, however, that this solution does 

not satisfy the remaining two requirements: control 

over distribution, and flexibility to define which 

parameter combinations to exhaustively generate. A 

case study shown later in this paper will demonstrate 

those problems. Hence, a different solution is called 

for. 

A basic capability in the e language the Specman 

Elite engine, which does not exist in SystemVerilog, 

was the basis for the solution presented in this paper. 

This basic capability was enhanced by Specman 

R&D, and is presented in the next section. 

The solution outline 
The Xilinx Global Verification Team along with 

Cadence Specman R&D came up with an innovative 

solution to the parameter generation as a pre-

simulation step. The full solution required a 

methodological approach to the design parameters 

analysis, done by the Xilinx team, and an 

enhancement to existing Generation Engine in 

Specman, done by Specman R&D. 

The methodological approach to solving the 

problem: 

1. Analyze your design and identify the groups of 

parameters which need to have all their 



 

 

permutations tested. For example: test all data 

width values with all write modes, test all date 

width values with all read modes. It is NOT 

necessary to test all read modes with all write 

modes, though. 

2. Identify sub-groups of the complete list of 

“interesting” parameters groups specified in (1) 

for various purposes: a sub-group that validates 

a certain feature; a sub-group for nightly 

regression, a sub-group for sanity testing or for 

code check-in gating etc. 

Once these parameters relationship have been 

established, a technical solution that generates 

random/exhaustive sets of values is needed. 

The technical Description of the Parameter 

Sets Generator 

The e language, as it turns out, does provide a good 

solution for the problem. Besides having the 

capability to generate random constrained values, it 

has the capability to exhaustively generate all valid 

values of certain fields in a class, while randomizing 

the others.  

So, for example, let’s look at the following e struct 

struct foo{ 

   width: uint [1, 2, 4, 8, 16]; 

   mode: uint (bits:2); 

   init_val: uint(bits:16); 

  keep (mode == 0|| width ==16) => (init_val ==0); 

} 

Using the e function all_iterations()[5], the user can 

ask for a set of foo objects that include all valid 

combinations of {width, mode} (set size would then 

be (4*5) =20 objects), and in each one of these 

objects, the init_val field will have a random value 

that applies to the constraint keep (mode == 0|| width 

==16) => (init_val ==0); 

The e features described above almost fully satisfy 

the solution requirements. However, in a real-life 

case of design parameters sets, there is more than one 

group of parameters (such as {width, mode}) that 

needs to be exhaustively generated. Creating different 

lists for different parameter groups can solve that 

requirement, but then it would result in lots of 

duplications in those parameters between the lists.  

Hence, Specman R&D came up with an enhancement 

to the generation engine, by providing a generation 

construct which allows the user to define 

distribution traits of an “interesting” parameters set. 

The new generation construct enables defining the 

following:  

 Exhaustive rules:  

The user can specify a set of attributes (x1,..xk) 

that needs to be exhaustively exercised. i.e. any 

generated parameters set must  include all 

possible permutations of (x1,..xk) 

 Non-Exhaustive rules:  

The user can specify a set of attributes (y1,..ym) 

that needs to be non exhaustively exercised. i.e. 

any generated parameters set should try to avoid 

generating 2 solutions that repeat same value of 

yi  (for each i in [1..m]). 

 Repetition rule:  

The user can specify a repetition counter that 

defines how many times each permutation of the 

exhaustive set of parameters should appear in the 

generated parameters set (by default , the 

repetition counter is 1). 

Alternatively, the user can use it to force the size 

of the generated parameters set.  

 

When the new generation construct (a macro) is 

used, Specman generation engine will generate 

exhaustive/random parameters sets, complying with 

the rules above in an efficient manner (In O(size of 

generated set)). 

  



 

 

The solution components 
 

 

Figure 1 – parameter generation solution outline 

 

The inputs to the parameters sets generation engine 

are, the following (as shown in figure 1): 

1. A class containing design parameters definition 

along with their constraints and relationship – 

needs to be done once for a design.  

2. An ini format file which defines more constraints 

and sub-groups of parameters which need to be 

exhaustively exercised with respect to each 

other. There may be several sub regressions 

defined in this input file (e.g. – nightly, full, 

feature X testing etc.). 

The input files described above are processed by the 

Parameter Sets Generator in the following way: The 

ini file input is translated to further constraints 

expanding the original e struct, relying on e’s Aspect 

Oriented Programming capability – extensions of 

structs with added constraints (similar to 

SystemVerilog class inheritance with added 

constraints); The specification of the parameters 

groups to be exhaustively generated is translated to a 

Specman macro call. 

The Specman based generation engine receives the 

original parameters struct, along with the information 

above. The result is sets of parameters which are 

written to output files.  

Case study – verifying a Dual Port 

RAM 

Verification Challenge Presentation 

The Dual Port RAM is a two port RAM device. Each 

one of its ports can independently serve read or write 

requests. Hence, its OVM test bench is comprised of 

two independent agents, and a virtual sequencer 

coordinating their stimulus generation, as shown in 

figure 2: 

 

Figure 2 – BRAM: DUT and Test Bench 

The design IP has 12 major parameters which define 

its logical behavior, and a few other parameters such 

as initial memory value or reset value. The total 

number of possible permutations of the major 

parameters reaches 180,000, which means running a 

full test suite on each set, or a week worth of 

regression time.  

 

Applying the Smart Parameter Generation 

Solution 

The first principal of the parameter solution calls for 

careful analysis of the parameter space, and defining 

the necessary exhaustive combinations of parameters 

sets. After applying this principal we ended up with a 

revised verification plan which specified a much 

smaller sets of exhaustive permutations of parameters 

sets, and thus reduced the total number of resulting 

parameters sets. 



 

 

 

Figure 3 – a partial verification plan view for design 

parameters 

Since the BRAM test bench needs to be aware of those 

parameters and their values, a special configuration class is 

defined. The parameters are represented as random fields 

and their legal values, as well as the dependencies between 

parameters values, are represented by constraints. The 

resulting SystemVerilog configuration class is shown in 

figure 4.  

In order to enable the Specman based solution, a one-time 

effort of translating this SystemVerilog class to an e struct 

was required. 

 

 

Figure 4 – config parameters SystemVerilog class 

Defining a simple sub-regression 

We defined a simple sub-regression, with further 

constraints on some parameters, and specified which 

parameters combinations need to be exhaustively 

exercised: 

Port A: READ_WIDTH is 18 or 36, WRITE_WIDTH is 18 or 36 

Port B: READ_WIDTH is 18 or 36, WRITE_WIDTH is 18 or 36 

Exercise ALL combinations of: 

READ_WIDTH_A x READ_WIDTH_B (2*2=4), 

WRITE_WIDTH_A x WRITE_WIDTH_B  (2*2=4) 

The above requirements are presented in the 

following way in the parameter generation ini file: 

[lite] 

CROSS param.WRITE_WIDTH_A = Ta[18, 36] 

CROSS param.WRITE_WIDTH_B = Ta[18, 36] 

CROSS param.READ_WIDTH_A =  Tb[18, 36] 

CROSS param.READ_WIDTH_B =  Tb[18, 36] 

TB_OVM_TESTNAME = simple_test 

The Parameter Sets Generator takes the sub 

regressions definition above and effectively adds it as 

added constraints to the relevant parameter fields. It 

then generates a set of values in which the following 

is satisfied: 

- All combinations of 

READ_WIDTH_AxREAD_WIDTH_B and all 

combinations of 

WRITE_WIDTH_AxWRITE_WIDTH_B exist, 

with minimal repetition of each cross (x) value 

set. 

- The rest of the parameters have random values 

Comparing the Specman Based solution with 

SystemVerilog random generation 

In order to run a comparison between the solution 

proposed in this paper, and a simple SystemVerilog 

randomization of a constrained Configuration class. 

We built a dummy top module, which only 

instantiates the configuration class, and prints out the 

fields values. 

  



 

 

`include "BRAM_config.sv" 

class lite_BRAM_cfg_class extends BRAM_cfg_class; 

   constraint c3 { READ_WIDTH_B inside {18,36};} 

   constraint c4 { READ_WIDTH_A inside {18,36};} 

   constraint c5 { WRITE_WIDTH_B inside {18,36};} 

   constraint c6 { WRITE_WIDTH_A inside {18,36};} 

endclass: lite_BRAM_cfg_class 

 

class cfg_cov; 

    lite_BRAM_cfg_class bram_cfg; 

   covergroup cg; 

      READ_WIDTH_A: coverpoint bram_cfg.READ_WIDTH_A{ 

  bins ra[] = {18, 36}; 

  illegal_bins others = default; }   

      READ_WIDTH_B: coverpoint bram_cfg.READ_WIDTH_B{ 

 bins rb[] = {18, 36}; 

 illegal_bins others = default; }   

      WRITE_WIDTH_A: coverpoint bram_cfg.WRITE_WIDTH_A{ 

 bins wa[] = {18, 36}; 

 illegal_bins others = default; }   

      WRITE_WIDTH_B: coverpoint bram_cfg.WRITE_WIDTH_B{ 

 bins wb[] = {18, 36}; 

 illegal_bins others = default;  }   

      Ta: cross WRITE_WIDTH_A, WRITE_WIDTH_B; 

      Tb: cross READ_WIDTH_A, READ_WIDTH_B; 

   endgroup: cg 

      function new(); 

 cg = new; 

     endfunction // new 

    

   function void sample(lite_BRAM_cfg_class cfg); 

      bram_cfg = cfg; 

      cg.sample(); 

   endfunction // sample 

 

   function bit is_coverage_done(); 

      return cg.get_coverage() ==100.0; 

   endfunction 

endclass: cfg_cov 

The top module instantiates an object of type 

lite_BRAM_cfg_class, randomizes it and stop 

randomization when a 100% coverage is achieved. 

module top; 

  lite_BRAM_cfg_class bram_cfg; 
   cfg_cov cov; 

   int unsigned count; 

    
   initial begin 

      bram_cfg  =new; 

      cov  =new; 
      count = 0; 

       

      while (count < 1000) begin 
   assert(bram_cfg.randomize()); 

   $display("WRITE_WIDTH_A = %d, WRITE_WIDTH_B = 

%d\n",  bram_cfg.WRITE_WIDTH_A, 
bram_cfg.WRITE_WIDTH_B); 

   $display("READ_WIDTH_A = %d, READ_WIDTH_B = 
%d\n",  bram_cfg.WRITE_WIDTH_A, 

bram_cfg.WRITE_WIDTH_B); 

 
   cov.sample(bram_cfg);  count ++; 

   

   if(cov.is_coverage_done()== 1) begin 
      $display("***needed %0d cycles to complete coverage", 

count); 

      $finish; 
   end 

endmodule // top 

 

Several runs on the code shown above shown that the 

number of runs required between 7 and 26 runs: 

 ***needed 7 cycles to complete coverage 

Simulation complete via $finish(1) at time 0 FS + 0 
./sv/BRAM_top_test.sv:78            $finish; 

 

Vs. 

***needed 26 cycles to complete coverage 

Simulation complete via $finish(1) at time 0 FS + 0 

./sv/BRAM_top_test.sv:78            $finish; 
 

 

In contrast, running the proposed Specman-based 

solution proposed in this paper yielded between 4 

and 6 permutations of the parameters sets. The code 

generated by the Parameter Sets Generator script for 

Specman was: 

<’ 

extend CONFIG_NAME_T : [lite]; 
 

extend lite config_s { 

  keep RAM_DEPTH in [36]; 
  keep RAM_MODE in [TDP]; 

  keep READ_WIDTH_B in [18,36]; 

  keep READ_WIDTH_A in [18,36]; 
  keep WRITE_WIDTH_B in [18,36]; 

  keep WRITE_WIDTH_A in [18,36]; 

}; 
 



 

 

ADVANCED_ALL_ITERATIONS  
sys.config_gen.config_list_lite_full type=lite config_s 
exhaustives=((READ_WIDTH_B,READ_WIDTH_A), 

(WRITE_WIDTH_B,WRITE_WIDTH_A), 

(RAM_DEPTH,RAM_MODE)) repetition=1;  
 

extend config_gen_unit { 

  !config_list_lite_full: list of lite config_s; 
  fill_config_list() is first { 

    for each (conf) in config_list_lite_full { 

      config_list.add(conf); 
    }; 

  }; 

}; 
 

'> 

The reasons for the differences in results 

The Specman-based solution is first exhaustively 

generating the first specified group, 

READ_WIDTH_A x READ_WIDTH_B, while 

simply randomizing the other parameters, and hence 

creates 4 parameter sets for the entire parameters set. 

Then, it looks at the other specified exhaustive group, 

WRITE_WIDTH_A x WRITE_WIDTH_B. Now, 

since some combinations of the second exhaustive 

group were already exercised when handling the first 

group, the engine only had to add the non-exercised 

permutations of that group. 

The SystemVerilog solution, on the other hand, 

randomizes all parameters in the 

BRAM_config_class with no special attention to the 

combinations we would like to see exhaustively 

exercised, since randomization does not consider 

coverage description. Hence, reaching the desired 

combinations could take a greatly varying number of 

times. 

Summary and Conclusions 
In this paper we presented a new and efficient 

solution to the problem of generating parameters for 

parameterized design and test bench regression runs. 

We have shown through a case study that this 

solution generated a minimal number of parameter 

sets, compared to a simple SystemVerilog 

randomization, which results in a number of 

parameter sets that greatly varies, and in the worst 

case is 4 times larger than the worst case of our 

solution. Since each set of parameter values needs to 

have a regression test suite run with it, each such 

redundant parameter set is a significant waste of 

simulation time and company resources. 
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