
TEMPLATE DESIGN © 2008

www.PosterPresentations.com

Taming a Complex UVM Environment
Manjunath Shetty, Ramamurthy Gorti

Broadcom Corporation

Introduction

Setting up an effective UVM-based verification environment can
be challenging due to various reasons. This paper discusses an
approach that can be used to improve controllability and
scalability of tests while maximizing the effect of constrained
randomness and reusability in any complex UVM-based
verification environment. This paper also discusses the
advantages and challenges of using this approach in the
verification of an xHCI-based USB 3.0 host controller

The proposed approach is to have multiple runtime switches,
termed as “verif_modes”, corresponding to every design feature.
Each verif_mode enables a sequence or a set of sequences to
create the scenarios required to verify the design feature and
also optionally enables checks related to the feature. The
verification environment uses verif_modes to hierarchichally
manage the real work sequences.The verif_modes can be
enabled to test directed scenarios or concurrently with other
verif_modes to create interleaved constrained random scenarios

General VERIF_MODE Flow Diagram

Verification Environment Block Diagram using
VERIF_MODES

A singleton class called “bench_config” is used to control
verif_modes. The bench_config class provides a centralized way
to control all of the simulation options and their usage throughout
the environment. Each verif_mode in bench_config class can be
configured using command line options or using
“sim_opts_solver” class. The uvm_cmdline_processor class can
be used to set each verif_mode to desired values from simulation
options provided by the user. For an automated way of
controlling the verif_modes, the “sim_opts_solver” class is used.
The sim_opts_solver class consists of constraints to configure all
the verif_modes in different combinations to create interesting
legal corner cases and to take care of any spatial and/or temporal
dependencies. One can have a library of such sim_opts_solvers
targeting single/multiple features in the design while enabling or
disabling other background verif_modes. The sim_opts_solver
also provides a way to deal with mutually exclusive and
dependent verif_modes

Any specific verif_mode could also be set from simulation options
using uvm_cmdline_processor. The verif_mode configured using
command line option takes precedence over randomized value
from sim_opts_solver class. This also provides the option of
disabling scenarios when needed, either due to a known design
issue or when a verif_mode sequence itself has issues

Above figure also shows the usage of the “bench_status” class.
This is a data structure maintained in monitor and is used by all
verif_mode sequences to check and update the status of the
bench and DUT at any point in time during the run_phase of the
test. Each verif_mode uses this during check_for_legal_status
and also updates it according the verif_mode during the running
of core_sequence

Monitor can optionally maintain a data structure for each
verif_mode indicating the number of times the expected scenario
was hit. This can be used during the check_phase() of the test to
make sure all the intended scenarios were hit during the test, at
least once. It can also be used during the report_phase() to print
statistics of various verif_modes enabled in the test and the
number of times each scenario was hit during the test

xHCI-based USB 3.0 host controller

Template use cases of VERIF_MODES:

General verif_modes: These are the verif_modes that are
needed for all tests. Most of these are used to pass a particular
runtime argument to the bench.

Controlling the speed: BENCH_PORT_SPEED and
RANDOM_SPEED_SELECT_INCLUDE

Controlling the device model configuration:
DEVICE_ATTRIBUTE_LIBRARY_SELECT

Controlling the quantity of traffic:
DMVC_STOP_AFTER_N_TDS_PER_EP.

Controlling the type of traffic: TD_FACTORY,
TD_FACTORY_LIBRARY_SELECT,
ENQUEUE_TD_DELAY_FACTORY and
TR_RING_FACTORY_RANDOM_SELECT

Controlling external latencies:
INT_LATENCY_RANDOM_SELECT and
AXI_SLAVE_CFG_RANDOM_SELECT

Special features verif_modes: These are the verif_modes
identified from the specification targeting a specific scenario and
needs a sequence implemented as per Figure 1.

Device disconnect: NUM_DISCONNECT_CONNECT.
Port Reset: NUM_PORT_RESET and PORT_RESET_TYPE
Stopping the endpoints: ISSUE_RAND_STOP_EP_CMD.
Flow control on the endpoints:

FLOW_CONTROL_BUFFER.
Low power modes: ENABLE_FAST_U1_ENTRY and

ENABLE_FAST_U2_ENTRY.
.

Contact information

Background activity verif_modes: These verif_modes are
identified from the specification to create random activities in
the test to help create legal corner-case scenarios. These are
mostly light on sequence implementation and exercise
simple design features, but when enabled together, are
powerful in creating corner cases.

Device issuing ERDYs: ENABLE_RAND_ERDY and
ISSUE_MULTI_DUMMY_ERDY

Device issuing LGO_Ux:. RAND_DEVICE_TX_LGOU1
and RAND_DEVICE_TX_LGOU2.

Delayed device connection:
RAND_DELAYED_DEVICE_CONNECT .

Ports with no device connected:
DEVICE_ENABLE_MASK.

Vendor Endpoint0 transfers:
ENABLE_BACKGROUND_EP0_TRAFFIC

Control transfers with address=0:.
GET_DESC_BEFORE_ADDR_DEV.

Error injection:
ENABLE_RANDOM_ERROR_INJECTION.

LMP packets:. RAND_PORTPM_WRITE_BACK
Device notification packets:.

ISSUE_RAND_DEV_NOTIFY
Evaluate context command:.

ISSUE_RAND_EVALUATE_CONTEXT
Lane Inversion: INVERT_LANE_POLARITY
Deferred packets: ENABLE_DEFERRED_MODE

Manjunath Shetty
Sr Staff Engineer
shetty@broadcom.com

Ramamurthy Gorti
Sr Manager
rgorti@broadcom.com

The core_sequence, which exercises the minimal iteration of the
identified scenario, needs to be implemented. The verif_mode
sequence following the above generic flow diagram needs to be
implemented. Using bench_status from the mointor, every
verif_mode sequence waits for some legal state during which it
can exercise the scenario. The sequence waits for a random time
that helps in creating corner cases. The sequence then again
checks for a legal condition for exercising the verif_mode. The
verif_mode sequence then launches the core_sequence. The
verif_mode sequence could, optionally, raise/drop an objection
before/after running the core_sequence. After running the
core_sequence, the verif_mode sequence could either repeat the
iteration depending on the intended number of times the
verif_mode needs to be exercised in the test.

Conclusion

The proposed approach has been very effective in verifying an
xHCI-based Host Controller. It facilitated modular verification of
incremental design/test-bench enhancements such as Streams
protocol, Broadcom PHY, and USB2.0 support. This approach
has proven to be of very high quality and has managed to catch
over 300 RTL and corner cases, many of which were obscure
and would not easily have been hit with a simpler test bench

mailto:shetty@broadcom.com
mailto:rgorti@broadcom.com

	Slide Number 1

