DESIGN AND VERIFICATION™

CONFERENCE AND EXHIBITION

Tackling the Complexity Problem in Control and
Datapath Designs with Formal Verification

Ravindra Aneja Ashish Darbari Nitin Mhaske Per Bjesse
Synopsys Axiomise Synopsys Synopsys

axtomise’) V<°
oy O)ziomse synopsys

EEEEEEEEEEEEEE

DESIGN AND VERIFICATION™

DVEON Agenda

Introduction

Formal verification for SoC designs

Formal verification for control paths

« Formal verification for data paths

Summary

SYSTEMS INITIATIVE

DESIGN AND VERIFICATION™

DVCON Current Formal Landscape

« Large number of companies are deploying formal
« Formal has become critical aspect of verification strategy
« Formal Apps are acting as catalyst

EEEEEEEEEEEEEE

DESIGN AND VERIFICATION®™

DVCON Formal Adoption

* Number of formal papers at DVCon/DAC/SNUG has gone up
« Number of users with formal expertise are growing
* Introduction of “Formal Signoff” flow is accelerating the adoption

Experts

Believers
Avg. Engineers++

ANE R

Experts

Believers
Avg. Engineers
e & 0 o
J\E A
Experts I || I || I
Curious Believers
Researchers Experts AMMMVIVE
Researchers Curious . oo T""

L

aﬂﬂﬂ'f!ﬂf‘ d 80s 90s 2000s 2010s Now

SYSTEMS INITIATIVE

2019

DESIGN AND VERIFICATION®™

DVELRL Formal is Central to Verification Strategy

« Simulation cycles aren’t scaling

— Need to look at each problem differently
Emulation Simulation

* Let’s break down the verification problem N\)
— Verification plan consists of individual tasks (7 Formal
— Some well suited for simulation Static
— Some well suited for emulation ~ |

— Some well suited for static/formal verification
— Use the right task for the right problem

« Consider multiple tools in the verification flow
— Not all problems can be solved by the same approach

— Use the right tool for the right problem
 Find bugs, saves time and $$$

SYSTEMS INITIATIVE

2019

DESIGN AND VERIFICATION®™

DVCOIN

CONFERENCE AND EXHIBITION

Auto Checks
Functional Checks for RTL Structures

24,

Connectivity Checking
Verify IP/SoC Connections

VC Formal Apps

X-Propagation Verification
Detects Effects of “X”

Formal Coverage Analyzer
Achieve Faster Coverage Closure

100% |-

Coverage

—— With FCA
—— Without FCA

FCA

Property Verification
Verify User Defined Properties

Cycles
Start State
&

State Space

FPV

accellera

SYSTEMS INITIATIVE

Sequential Equivalence
Verify Clock gating and RTL optimizations

DATA — OUT
-
G
CLK
SEQ

Register Verification
Verify Registers against IP-XACT/RALF

AlP

(" Check Register | DuT

Read/Write

Register block
checker lll BUS-IIF

—

IP-XACT

RALF

FRV

FXP

Security Verification
Identify Data Leak/Integrity Issues

Secure
Destination

Source

Destination FSV

Formal Testbench Analyzer
Achieve Formal Signoff with Faults Analysis

Fault Injected

FPV Result
YIN?

Regression Mode Accelerator
Increases verification throughput
with faster convergence

.gﬂ Time/Resources
g8 Savings
o2
a o .
5 2 ——— With RMA
#* 3 ~———— Without RMA
Time RMA

Datapath Validation
Verify Datapath Designs
against the Specification

e -
X =

DPV

Functional Safety Verification
Detectable and Diagnosable Faults

<>

— _ g - =
-

s

6

¢ 2019
DESIGN AND VERIFICATION™

DVCON

CONFERENCE AND EXHIBITION
m P..—:s‘—* "“‘J_-.—
UNITED STATES

=

:@iceﬂéra

SYSTEMS INITIATIVE

Formal Signoff Criteria
VC Formal™

.
[Enough Properties? > Property Density

O
2019

DESIGN AND VERIFICATION™

Ry Design/Verification Team’s Challenges

* Applicabllity
— Class of verification problems?
— Control path

— Data path?
» Data Transport, Data Transformation? ThiS tutorial WI”
 Scalability
— Module, block, subsystem level or chip level? ElistyEr Som.e of
» Savings these questions

— Can we replace anything with Formal?
— Can Formal compress overall verification time?
— Can we do more with less resources?

SYSTEMS INITIATIVE

2019

DESIGN AND VERIFICATION®™

DVCOIN Presenters: Ashish Darbari

Dr Ashish Darbari is the founder and CEO of Axiomise - a formal
verification training, consulting, and services company.

Ashish obtained his DPhil from the University of Oxford in formal.
Before starting Axiomise, Ashish worked at Intel, ARM, GM,
Imagination Technologies, and OneSpin Solutions.

Ashish has been working in formal verification for over 20 years
and has 18 patents and over two dozen research papers. Ashish is
a Senior member of IEEE and ACM; and a Fellow of British
Computing Society, and Fellow of IETE.

SYSTEMS INITIATIVE

2019

DESIGN AND VERIFICATION™

DVCON Presenters: Nitin Mhaske

Nitin Mhaske is a Senior Staff AE in VC Formal team with
special interest in developing Apps that makes formal easy to
apply and solve hard problems.

He has 18 years of experience in semiconductor and EDA
companies. Prior to Synopsys, he was verification architect
at Altera and Senior AE Manager at Atrenta for assertion
based verification products. He holds 3 patents in assertion
synthesis technology domain.

E@ 10

SYSTEMS INITIATIVE

2019

DESIGN AND VERIFICATION®™

DV Presenters: Per Bjesse

Per Bjesse is a Synopsys Scientist with a PhD in Computer
Science from Chalmers Technical University in Sweden.

Per has worked on formal verification at Synopsys for 15+ years on
. tools and applications ranging from equivalence checking, symbolic
\ ' simulation, and software verification to standard model checking.

Per is the backend architect for all formal products in Synopsys
Verification Group.

accellera .

SYSTEMS INITIATIVE

DESIGN AND VERIFICATION™

CONFERENCE AND EXHIBITION

FORMAL VERIFICATION FOR SOC
DESIGNS

EEEEEEEEEEEEEE

O
2019

DESIGN AND VERIFICATION™

DVCOIN

CONFERENCE AND EXHIBITION

UNITED STATES

SMART TRACKER

SCALABILITY

MODELING

FORMAL
VERIFICATION FLOW

CASE STUDIES

SoC VERIFICATION

13

SYSTEMS INITIATIVE

2019

DESIGN AND VERIFICATION®™

DVCON SoC Architecture
Load Store Memory Tile Memory Routers DMA Data
Unit Subsystem Architecture Transfer

| | |

Bus Bridges

NoC

Bus Bridges

Sequential designs are the root cause for verification complexity

accellera .

SYSTEMS INITIATIVE

2019

DESIGN AND VERIFICATION™

DVI:CIN

CONFERENCE AND EXHIBI'DON

Verification

Design F
Requirements

SYSTEMS INITIATIVE

SoC Verification

SoC verification

Functional bugs
Imply

IP verification +
Interfaces

security and safety
bugs

15

DESIGN AND VERIFICATION™

RYEL SoC Verification Challenges

E A 8 AW

Functional Safety Security Power Performance

16

SYSTEMS INITIATIVE

SoC Verification Challenges

0 S O g ot

Clocks Resets Timing Synthesis Layout

17

DESIGN AND VERIFICATION™

DVCCI N

CONFERENCE AND EXHIBITION

!?;‘_:" ¥ ‘ .

- i
*

SMART TRACKER
SCALABILITY

MODELING

FORMAL
VERIFICATION FLOW

SoC VERIFICATION

SYSTEMS INITIATIVE

2019

DESIGN AND VERIFICATION™

DVCON What i1s Formal Verification?

SPECIFICATION VERIFICATION

Mathematical logic in specifying requirements Verification is done by establishing a mathematical proof

E@ 19

SYSTEMS INITIATIVE

Injecting Formal in the Verification Flow

VERIFICATION PLAN APPS USER-DEFINED COVERAGE BACK
PROPERTIES ANNOTATION

Think IP think of interfaces

Think of requirements and specifications
Think of Properties (ABV)

20

2019

DESIGN AND VERIFICATION™

DVCOIN

DVCON Formal ABV In a Nutshell

RTL/DESIGN

module handshake async (
input wire req,

input wire clk,

input wire resetn,

SPECIFICATION

output wire ack,
);

assign ..

endmodule

o | 5 |
_ Assertions
Constraints Covers
| J

assume property
(@ (posegde clk) 'req |=> ##[0:$] req):;

FORMAL VERIFICATION TOOL

[e.g., VC Formal]

assert property
(@ (posegde clk) 'ack |=> ##[0:$] ack);

MATHEMATICAL MODEL

accellera

21
SYSTEMS INITIATIVE

DESIGN AND VERIFICATION™

DV What Happens on a Pass?

Property is true on all input There are no over-constraints
combinations on all reachable
states of the design

accellera .,

SYSTEMS INITIATIVE

(2019

DESIGN AND VERIFICATION™

DVE:OIN What Happens on a Fail?

M Bug in the design

™
M Bug in the formalisation of the design intent

(property formalisation bug)

Bug in the understanding of what the intent really is -
the formalisation is correct, the intent is wrong

T Missing constraint in specifying what are the legal
' values allowed on the inputs

ﬁ Remember with formal you get stimulus for free, so

you need to ban the illegal stimulus

accellera

SYSTEMS INITIATIVE

23

DESIGN AND VERIFICATION™

DVEDIN What Happens When You Get ?

« Constraints
« Assertions, covers
« Modelling code (glue logic)

EEEEEEEEEEEEEE

2019

DESIGN AND VERIFICATION™

DVCON Formal Verification Flow

VERIFICATION
ﬁ RTL/C++/SystemC
ey SPECIFICATION /C++/Sy

VERIFICATION
PLAN

NO STIMULUS
REQUIRED

FORMAL TOOL

[e.g., VC Formal]
EXHAUSTIVE

PROOFS

SHORTER
DEBUG TRACES

TAPEOUT ?

SYSTEMS INITIATIVE

2019

DESIGN AND VERIFICATION™

DVCOIN

CONFERENCE AND EXHIBITION

accellera)

SYSTEMS INITIATIVE

AVOID
BUGS

T

FORMAL
TOOL

T

DESIGN

DETECT
BUGS

T

FORMAL
TOOL

T

DESIGN
+

CONSTRAINTS

BUGs

COVERAG®

ERASE
BUGS

T

FORMAL
TOOL

T

DESIGN
+
CONSTRAINTS
=+

USER
PROPERTIES

The ADEPT FV® Agile Flow

PROOFs

COVERAG®

PROVE
BUG
ABSENCE

T

FORMAL
TOOL

T

DESIGN
+
CONSTRAINTS
+

USER
PROPERTIES

TAPE OUT
WITHOUT
BUGS

v 1 A

FORMAL
TOOL

T

DESIGN

+

CONSTRAINTS

+

USER
PROPERTIES

26

O
2019

DESIGN AND VERIFICATION™

DYCO Erase Bugs and Prove Absence

[Formal Verification Testbench]

* Abstractions
» Constraints

[Erase bugs in both design and testbench]

« Catch design bugs

» Catch testbench bugs

« Manual injection of bugs
* Run coverage analysis

[Prove absence of bugs]

* Invariants and assume guarantee
» Scalable results on bigger configs
* Run coverage analysis

SYSTEMS INITIATIVE

2019

DESIGN AND VERIFICATION™

DVECI Correctness Graph

\ J | J

!

Local Liveness

)

I

Functional correctness Liveness
|

|
\
|
In-order delivery

J

In-order delivery is a stronger notion of correctness than productivity

accellera
Source: Formal Verification of On-Chip Communication Fabrics, Freek Verbeek, 2013, Radboud Univ@sity

SYSTEMS INITIATIVE

2019

DESIGN AND VERIFICATION™

DYCON Verification Matters

Where possible proving in-order properties is sufficient to prove absence of

Liveness, Deadlock, Livelock and Starvation

SYSTEMS INITIATIVE

2019

DESIGN AND VERIFICATION™

DVCON Sources of Complexity

Control
1

| 1

Datapath/Arithmetic

|
Addition Multiplication

A

Division

]

Multiplication/Accumulate

SYSTEMS INITIATIVE

DESIGN AND VERIFICATION™

DVCCI N

CONFERENCE AND EXHIBITION

!?;‘_:" ¥ ‘ .

-

SMART TRACKER

SCALABILITY

MODELING
FORMAL

VERIFICATION FLOW

SoC VERIFICATION

SYSTEMS INITIATIVE

FORMAL MODELS

Building Blocks of Formal Testbenches

DESIGN AND VERIFICATION®™

LV LN Events

« Formal models are constructed by capturing events
« Events are the right level at which we should think of verification

* An event is usually defined as some kind of asynchronous activity

accellera .

IIIIIIIIIIIIIIIII

DESIGN AND VERIFICATION®™

LV LN Events

* Events have a start and a complete state

« We identify events by tagging them with a START and a STOP state

« Events come In two flavours
— WITHOUT abstraction
— WITH abstraction

« Events with abstraction provide reduction in proof complexity

IIIIIIIIIIIIIIIII

34

DESIGN AND VERIFICATION®™

DVCON Modeling Events

 The trick is to think transactional for our verification

 Leave the exact definition of a transaction somewhat abstract to
begin with

* Refine it on a case-by-case basis

* The key here is to use symbolic transactions by exploiting
abstractions

IIIIIIIIIIIIIIIII

35

2019

DE:! DGNANDV RIFICATION™

DVCCIN

ABSTRACTIONS

The key to success with formal

DESIGN AND VERIFICATION®™

DVCOIN Data Abstraction

« Abstract away 0 and 1 by a new Boolean symbol

— The result is a logarithmic reduction in state-space search

* You already use symbols without knowing
— use of high level languages is already a symbolic step forward as

— we don't use truth tables for design

« Sometimes we also use an X value to get data abstraction

IIIIIIIIIIIIIIIIII

37

DESIGN AND VERIFICATION®™

DVEON Temporal Abstraction

* Don’t sample the state of signals on every clock edge
« Sampling only occurring when certain key events are observed

« Use events to define “observation windows”
— Each observation window has a start and a stop state
— We can define multiple observation windows
— Verification
 Establish legal stimulus by providing constraints

« Make claims [assert/cover] on these observation windows

SYSTEMS INITIATIVE

38

2019

DESIGN AND VERIFICATION™

DVC:CI N

CONFERENCE AND EXHIBITION

h'ﬂ 0“" -~

o R 3
":1 .t'""—"
’ |]

T

2N

L]

SMART TRACKER

SCALABILITY

MODELING
FORMAL

VERIFICATION FLOW

SoC VERIFICATION

39

SYSTEMS INITIATIVE

L
(2019

DESIGN AND VERIFICATION™

DVCOIN

CONFERENCE AND EXHIBITION

UNITED STATES

FIFO

Everything can be reduced to a FIFO!

accellera

SYSTEMS INITIATIVE

DESIGN AND VERIFICATION®™

DVCON Wwhy FIFO?

* FIFOs everywhere:
— Arbiters, UART, USB, CPUs, GPUs, Routers

 Introduces massive challenge for proof convergence
— FIFOs introduce long latencies in other designs
— Conceptually not very hard to understand
— But easy to get it wrong
— Can be extremely challenging to verify especially find corner case bugs
— Async FIFOs

IIIIIIIIIIIIIIIII

41

DESIGN AND VERIFICATION®™

DVCON Verification Requirements

* Ordering is correct
* No duplication, No data loss, No data corruption

« Empty and Full checks
— Empty at the right time
— Full at the right time
— If empty then eventually full

— If full then eventually empty

IIIIIIIIIIIIIIIII

42

DESIGN AND VERIFICATION®™

DV Verification Strategy

 Build mechanisms to track data

Provide any constraints or assumptions

Write checks/assertions to establish “correctness always holds”

Write cover properties to prove that behaviours can hold sometimes

Ensure that you have not missed any bug in your test bench

IIIIIIIIIIIIIIIII

43

Formal Verification Strategy

« Let the formal tool exercise “for free” all input sequences

We will not send any input sequences

« Constrain out the illegal ones explicitly

« We track inputs going into the DUT and check if the expected ones come out

* In formal we use “symbols”

« Symbols encodes two values at once — one ‘0’ and another ‘1’

« Checking by formal tool is symbolic — covering all combinations of Os and 1s

SYSTEMS INITIATIVE

44

2019

DESIGN AND VERIFICATION®™

DVCON Formalizing Ordering

« For any two data values sent into a DUT In a pre-determined order, if they exit the
DUT in the same order as they were sent in, then the DUT maintains ordering on the

elements

« For any two “symbolic” values sent into a DUT in a pre-determined order, if they
exit the DUT in the same order as they were sent in, then the DUT maintains
ordering on the elements

vd, d,. (d; sampled in before d,) ==> (d, sampled out before d,)

accellera
45

SYSTEMS INITIATIVE

2019

DESIGN AND VERIFICATION™

DVCOIN Symbolic Transactions

logic [DATA WIDTH-1:0] wdl;
logic [DATA WIDTH-1:0] wd2;

am fifo core dl stable:
assume property (@ (posedge clk) ##1 $stable(wdl));

am fifo core d2 stable:
assume property (Q(posedge clk) ##1 S$stable(wd2));

SYSTEMS INITIATIVE

DESIGN AND VERIFICATION™

DVEDQ! Sampling Registers

SAMPLING IN

reg sampled i 1; wire ready to sampled i 1;

reg sampled i 2; wire ready to sampled i 2;
SAMPLING OUT

reg sampled o 1; wire ready to sampled o 1;

reg sampled o 2; wire ready to sampled o 2;

accellera

SYSTEMS INITIATIVE

47

2019

DESIGN AND VERIFICATION™

DYCOIN Watching In and Out

WATCHING WHEN TO SAMPLE IN

assign ready to sample i 1

assign ready to sample i 2

data i==wdl && push i && !sampled i 1 &&
arbit window;

data i==wd2 && push i && !sampled i 2 &&
arbit window;

WATCHING WHEN TO SAMPLE OUT

assign ready to sample o 1

assign ready to sample o 2

SYSTEMS INITIATIVE

sampled i 1 && data o==wdl && pop i &&

Isample 3 1;

sampled in d2 && data o==wd2 && pop i &é&
'sampled o 2;

48

2019

DESIGN AND VERIFICATION™

isiEls Events

SAMPLING REGISTERS

always @Q(posedge clk or negedge resetn)

if ('resetn) begin
sampled i 1 <= 1'bO;
sampled o 1 <= 1'b0;
sampled i 2 <= 1'bO;
sampled o 2 <= 1'bO;

end

else begin
sampled i 1 <= sampled i 1
sampled i 2 <= sampled i 2

ready to sample i 1;
ready to sample i 2;
sampled o 1 <= sampled o 1
sampled o 2 <= sampled o 2

ready to sample o 1;
ready to sample o 2;
end

SYSTEMS INITIATIVE

72019

DESIGN AND VERIFICATION™

LY e Putting it altogether

LINITED BTATER
HINHTED STATES

INTERFACE CONSTRAINTS

assume property (@ (posedge clk) empty o |-> !'pop i);

assume property (Q(posedge clk) full o |-> (!'push i || pop i));

TESTBENCH CONSTRAINT

assume property (Q(posedge clk) !sampled i 1 |[-> !sampled i 2);

MASTER CHECK

assert property (Q(posedge clk) sampled i 1 && sampled i 2 && !sampled o 1
| =>
'sampled o 2);

accellera

SYSTEMS INITIATIVE

72019

DESIGN AND VERIFICATION™

DVCON Liveness

"\I"--" \“:.:':jh: =T T2 AT ‘;f J
i ~ =3 TA I
Rert e 2 AN SRS A Hand By

LIVENESS

assume property (@ (posedge clk)!pop i |-> s eventually (pop 1))

assert property (Q(posedge clk) sampled i 1 |-> s eventually (sampled o 1));

PROOF OF MASTER ASSUME MASTER CHECK

CHECK PROVE LIVENESS

|
ASSUME GUARANTEE REASONING

accellera

SYSTEMS INITIATIVE

51

2019

DESIGN AND VERIFICATION®™

DVCON Analysis
« Only four registers used to model an end-to-end master check that verifies
— Ordering
— Data loss

— Data duplication

— Data corruption
* Proving then assuming the master check establishes liveness

« But there is a challenge

— As depth increases the results degrade

« Scalability is limited

SYSTEMS INITIATIVE

52

DESIGN AND VERIFICATION™

DVCCI N

CONFERENCE AND EXHIBITION

'..‘ . " . \ ‘..

1) | "h.'.

!?;‘_'." ‘ "‘.'
- e

SMART TRACKER

SCALABILITY

MODELING

FORMAL
VERIFICATION FLOW

SoC VERIFICATION

SYSTEMS INITIATIVE

DESIGN AND VERIFICATION™

DVCON Proof Engineering

Scalable formal verification

“Proof Engineering”

Assume Guarantee

Case Splitting
Scenario Splitting

54

10120 MILLION states; 1 billion gates and beyond

SYSTEMS INITIATIVE

ASSUME GUARANTEE

You assume | guarantee! | assume you guarantee!!

DESIGN AND VE

CONFERENCE AN

IIIIIIIIIII

DVCON Assume Guarantee

sl v

SSSSSSSSSSS

Break the whole puzzle into smaller jigsaws
ldentify helper lemmas as individual components of jigsaw
ldentify how they fit together to complete the full puzzle

PROVE helper lemmas then ASSUME them to prove other lemmas

CAUSE>
NEFFECT

-
.

IIIIII

56

2019

DESIGN AND VERIFICATION®™

DVCON Too Few States

 Current solution has too few states

« Exploit “data independence”
— It does not matter what the specific data values are
— It only matters how many are ahead of the watched data value
— We will exploit this “how many are ahead” by introducing more states

— Yes, we bring in counters to improve performance for proof convergence!

accellera .

SYSTEMS INITIATIVE

o
72019

DESIGN AND VERIFICATION™

DYCOIN Increment/Decrement

INCREMENT

assign incr 1 = push i && !sampled i 1;

assign incr 2 = push i && !'sampled i 2;

DECREMENT

assign decr 1

pop i && !sampled o 1;

assign decr 2 pop i && !sampled o 2;

accellera

SYSTEMS INITIATIVE

58

2019

DESIGN AND VERIFICATION™

DYCOIN How Many are Ahead?

TRACKING COUNTERS

always (@ (posedge clk or negedge resetn)
if ('resetn) begin

tracking counter 1 <= ‘h0;
tracking counter 2 <= ‘h0;
end
else begin
tracking counter 1 <= tracking counter 1 + incr 1 - decr 1;
tracking counter 2 <= tracking counter 2 + incr 2 - decr 2;
end

SYSTEMS INITIATIVE

59

72019

DESIGN AND VERIFICATION™

LY e Putting it altogether

LINITED BTATER
HINHTED STATES

INTERFACE CONSTRAINTS

assume property (@ (posedge clk) empty o |-> !'pop i);

assume property (Q(posedge clk) full o |-> (!'push i || pop i));

TESTBENCH CONSTRAINT

assume property (Q(posedge clk) !sampled i 1 |[-> !sampled i 2);

MASTER CHECK

assert property (Q(posedge clk) sampled i 1 && sampled i 2 && !sampled o 1
| =>
'sampled o 2);

accellera

SYSTEMS INITIATIVE

72019

DESIGN AND VERIFICATION™

DVCON Liveness

"\I"--" \":.'.':jh: 9 = T4 AT ‘;f J
d ™ | s A ¥
et ettt ettt D Do

LIVENESS

assume property (@ (posedge clk)'!pop i |-> s _eventually(pop 1i)):

assert property (@ (posedge clk) sampled i 1 |-> s _eventually (sampled o 1));

PROOF OF MASTER ASSUME MASTER CHECK

CHECK PROVE LIVENESS

|
ASSUME GUARANTEE REASONING

accellera

SYSTEMS INITIATIVE

61

2019

DESIGN AND VERIFICATION™

LV LN Invariants and Assume Guarantee

Positional Invariant tells the tool where exactly in the DUT the tracked value is

If watched value is in the DUT then the tracking counter is in between the read and the write pointers

~ .5

If the watched value not in the DUT then the counts between the DUT and the abstract model agree

If the watched value has not entered in the DUT then it couldn’t have left it

Once the tracking value has entered and exited the DUT then counters agree

E@ 62

SYSTEMS INITIATIVE

O
2019

DESIGN AND VERIFICATION™

DYCOIN Performance Results

4500

4000 3989

3500

3000

2500 e (ORDERING

2000

RUN TIME

1500 470

1000
766
500

0 500 1000 1500 2000 2500
FIFO DEPTH

SYSTEMS INITIATIVE

DESIGN AND VERIFICATION™

DVCCI N

CONFERENCE AND EXHIBITION

',.‘ L3 . \ N
!?;‘_:" N ‘ '

-‘0 ~
SMART TRACKER

SCALABILITY

MODELING

FORMAL
VERIFICATION FLOW

SoC VERIFICATION

SYSTEMS INITIATIVE

DESIGN AND VERIFICATION®™

DV Basic Concept

« Use one symbolic watched data value to track

« A ssingle counter to count how many values are “ahead” of this watched data
« On every push, this counter increments, and every pop it decrements

* Once the watched data is seen on the inputs, the counter is not incremented

 When the counter is 1, expect to see the watched value appear on the output

accellera .

SYSTEMS INITIATIVE

o
72019

DESIGN AND VERIFICATION™

Sl Symbolic Transaction

"\I"--" \":.'.':jh: - STAT ‘;f)
4 N =] TA ¥
‘-"‘4".' Sra=ape it brotar AR Salie T eyt

logic [DATA WIDTH-1:0] wd;

am fifo core dl stable:
assume property (@ (posedge clk) ##1 S$Sstable(wd));

SAMPLING IN

reg sampled i; wire ready to sample i;

SAMPLING OUT

reg sampled o; wire ready to sample o;

accellera

SYSTEMS INITIATIVE

66

‘2019

DESIGN AND VERIFICATION™

szl Events

WATCHING WHEN TO SAMPLE IN

assign ready to sample i = data i==wd && incr && arbit window;

WATCHING WHEN TO SAMPLE OUT

assign ready to sample o = (tracking counter == 1) && sampled i && decr;

SAMPLING REGISTERS

always @ (posedge clk or negedge resetn)
if ('resetn) begin
sampled i <= 1'bO;
sampled o <= 1'b0; end
else begin

sampled i <= sampled i

sampled o <= sampled o
accellera

SYSTEMS INITIATIVE

ready to sample i;
ready to sample o; end

o
72019

DESIGN AND VERIFICATION™

DVCON Increment/Decrement

PR TR ¢
<l~,‘(‘::-":;)‘4'< ;;,’ \;:‘:< _J
e o P N L N e T]

INCREMENT

assign incr = push i && !sampled i;

DECREMENT

assign decr = pop i && !sampled o;

accellera

68

SYSTEMS INITIATIVE

72019

DESIGN AND VERIFICATION™

Sl How Many are Ahead?

"\I -"\": '.:j’: - =" ;‘ \;v_‘;< J
. ™ | =3 ar. I
ettt Sttt dath D O e Y

TRACKING COUNTER

always @ (posedge clk or negedge resetn)

if ('resetn) begin
tracking counter <= ‘h0;
end
else begin
tracking counter <= tracking counter + incr - decr;

end

accellera

SYSTEMS INITIATIVE

69

o
72019

DESIGN AND VERIFICATION™

Sl Putting it Altogether

"\I"--" \“:.:':jh: =T T2 AT ‘;f J
i ~ =3 TA I
Rert e 2 AN SRS A Hand By

INTERFACE CONSTRAINTS

assume property (Q(posedge clk) empty o |-> !'pop i)

assume property (Q(posedge clk) full o |-> (!'push i || pop 1))

MASTER CHECK

assert property (@ (posedge clk) ready to sample o |-> data o==wd);

accellera

SYSTEMS INITIATIVE

2019

DESIGN AND VERIFICATION™

LV LN Invariants and Assume Guarantee

Positional Invariant tells the tool where exactly in the DUT the tracked value is

If watched value is in the DUT then the tracking counter is in between the read and the write pointers

~ .5

If the watched value not in the DUT then the counts between the DUT and the abstract model agree

If the watched value has not entered in the DUT then it couldn’t have left it

Once the tracking value has entered and exited the DUT then counters agree

E@ 71

SYSTEMS INITIATIVE

2019

DESIGN AND VERIFICATION™

DVCON Smart Tracker Performance

90000 -+ 90000

J1% 80000 - Without Flows — Invariant
80000; | : . .
i1 70000 | Without Flows — Ordering
70006: 1 ¢ 60000 - Our Flow - Invariant
:;50000 | Our Flow - Ordering
— 800D 40000 -
: :30000 -
© 50000 | :
= i | 20000
- 40060 | :10000 -
- : :
o
&

0.... : T 1 T T T 1 T %
o 1000 2000 3000 4000 5000 6000 7000 8000 9000
Datapath Depth
Eﬂﬂﬂ’!ﬂfﬂ Source: More is Less: Exhaustive Formal Verification of Sequentially Deep Data-Transport Components, Darbari et al. DAC 2014

SYSTEMS INITIATIVE

2019

DESIGN AND VERIFICATION™

DVCON Two Transaction vs Smaurt Tracker

12000 - 90000
vari 80000 |
10000 - — Invariant
—— Ordering 70000 -
¢ 8000 60000 -
©
c 50000
O 6000 -
o 40000 -
Q
D 4000 30000
-
o 20000
() 2000
10000 -
0 ; T T T 10 " " ; ' ' ' 1
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Datapath Depth Datapath Depth

aﬂﬂefferﬂ Source: Industrial Strength Formal Using Abstractions, A. Darbari & I. Singleton, Tech Report, 2016, Available from arxiv.org

SYSTEMS INITIATIVE

72019

DESIGN AND VERIFICATION™

szl Liveness

LIVENESS

assume property (Q(posedge clk)!pop i |-> s eventually (pop_1i));

assert property (Q(posedge clk) sampled i |-> s eventually (sampled o))

PROOF OF MASTER

ASSUME MASTER CHECK PROVE LIVENESS

CHECK

|
ASSUME GUARANTEE REASONING

accellera

SYSTEMS INITIATIVE

74

S
(2019

DESIGN AND VERIFICATION™

DVCOIN

CONFERENCE AND EXHIBITION

UNITED STATES

SMART TRACKER

SCALABILITY

MODELING

FORMAL
VERIFICATION FLOW

CROSS BAR

SoC VERIFICATION

75

SYSTEMS INITIATIVE

DESIGN AND VERIFICATION™

DVCOIN Memory Subsystem Arbiter

9 REQUESTORS

A

{ INSTANCE 1 INSTANCE O \
Requestors

R8 ' R7 R6 RS R4 R3 R2 R1 RO !

T T

Verification Challenge
Register files C
Random stallers oncurrency
FIFOS o
FSMs Serialisation
2k LINES OF RTL
Priority

__

a@ 4 GROUPS with 2 BANKS in each group 76

EEEEEEEEEEEEEE

2019

DESIGN AND VERIFICATION™

DVCON

CONFERENCE AND EXHIBITION

Arbitration Policy

Requestors Requestors
R&8 ' R7T R6 R5 R4 R3I R2Z RI RO R8 | R7 . 35 R& R3I R2 R1 RO !
RE‘:R“ e Gm“p u '.‘ii‘I-pi‘.‘ RE:RH - Grﬂup n E E - annm l:'iill
R7:R4 - Group 1 - R7:R4 — Group 1 H i s
R8 — Group 2 s g‘ R8 — Group 2 . ws
. - - o b
Requests from the same 5 E? Concurrent requests from CR Rt Ll §'
requestor within a group with : = requestors from the same Toaes N
trggﬁc directed to a given bank : g_? group with traffic directed to L P
: § the same bank w £
Rule is first-come-first-serve : & o
: Iy Rule is priority
v
l B7 B6 B5 B3 B2

B4 B1 i’n P Vv v Vo
accellera)

SYSTEMS INITIATIVE

77

2019 _ _
Rules of Arbitration

DESIGN AND VERIFICATION™

DVCON

CONFERENCE AND EXHIBITION

Requestors
.......................... o

R& i R7 FiEi Fiﬁ Fi:- Fiﬂr I12 i1

R3:R0 — Group 0 :
R7:R4 — Group 1 s s o
R8 — Group 2 &
l. : E
Concurrent requests from A 0 s
requestors from different ", H &
groups traffic directed to any R o
bank . &
. =]
Rule is any request can arrive E ;:E
y <

Banks
78

SYSTEMS INITIATIVE

DESIGN AND VERIFICATION™

DVCCIN Proof Engineering

Scalable formal verification

“Proof Engineering”

Assume Guarantee

Scenario Splitting
Case Splitting

79

10120 MILLION states; 1 billion gates and beyond

SYSTEMS INITIATIVE

DESIGN AND VERIFICATION®™

DV Scenario Splitting

* First scenario
— Focus only first-come-first-serve behaviour

« Second scenario

— Focus on multi-instance activity but narrow down the observation to only
those requests that are directed to the same bank

 Last scenario

— Observe traffic originating from any requestor going to any bank and
ensuring that these requests are received and not |ost

accellera .

SYSTEMS INITIATIVE

DESIGN AND VERIFICATION®™

VLR Multiple Active Requests: Case Splitting
« Two transaction abstraction + Case Splitting CASES
« Overall 176 assertions for RO, R1

— REQ=2 [2 requestor groups] RO R
— GRP=4 [4 groups of mem banks] R:?R”E?I;Z
— BNK=2 [2 banks in each group] RO R1, R3
— CASES=11 RO, R2, R3
R1, R2, R3

R1, R2

R1, R3

R2, R3

a@ RO, R1. R2. R3

SYSTEMS INITIATIVE

2019

DESIGN AND VERIFICATION™

DVCON

CONFERENCE AND EXHIBITION

Solution Mechanics

« Smart tracker abstraction for checking first-come-first-serve
« Two-transactions abstraction for establishing priority

DATA STRUCTURES

wire [BNK-1:0]
wire [3:0]
wire [1-1:0]
wire [BNK-1:0]

reg [MAX:0]

reg [BNK-1:0]
reg [BNK-1:0]

SYSTEMS INITIATIVE

ready to sample out [REQ-2

decr [REQ-2
hsk in [REQ-2
hsk out [GRP-1
tracking cnt [REQ-2

seen_in watched id [REQ-2
seen out watched id [REQ-2

:0][1-1:0][GRP-1:0];
:0][1i-1:0][GRP-1:0][BNK-1:0];
:0];

:0];

:0][1i-1:0][GRP-1:0] [BNK-1:0];
:0]1[1-1:0][GRP-1:0];
:0]1[1-1:0][GRP-1:0];

64 TRACKING COUNTERS NEEDED

82

2019

DESIGN AND VERIFICATION™

DY Master Checks: First-come-first-serve

generate
for (g=0; g<GRP; g=g+1l)
for (b=0; b<BNK; b=b+1l)
assert property (ready to sample out[0] [0] [g] [b] &&
'other req active[O0]
| =>
(OUT_ID[g] [b] == watched id)) ;
endgenerate

RUNTIME IS 1 HOUR PER PROPERTY

OVERALL 64 ASSERTIONS

SYSTEMS INITIATIVE

2019

DESIGN AND VERIFICATION™

DYCCIN Master Checks: Priority Checks

reg [CASES-1:0] seen multi inst[REQ-1:0] [GRP-1:0] [BNK-1:0];
generate
for (r=0;r<REQ-1;r=r+l)
for (g=0;g<GRP;grp i=g+l)
for (b=0;b<BNK;b=b+1l)
check arbitration i0 and il:
assert property (seen multi inst [r] [g] [b][0] &&
'req_out [r][0] [g] [b]
| =>
'req_out [r][1][g][b]);
endgenerate

RUNTIME: 5-7 MIN PER ASSERTION

OVERALL 176 ASSERTIONS

EQEE@§§) 84

SYSTEMS INITIATIVE

Correctness Requirements

Starvation
— If any requestor was starved access it would never be seen coming out
Fairness

— If any requestor was serviced unfairly with respect to the arbitration
scheme then the priority/ordering assertions would fail

Liveness
— All incoming requests granted eventually proved using assume guarantee

Deadlock
— No deadlock as all incoming requests are granted at correct destination

accellera .

SYSTEMS INITIATIVE

2019

DESIGN AND VERIFICATION™

SEEELS Revisiting Correctness Graph

\ J | J

!

Local Liveness

J

I
|

\
|
In-order delivery

Functional correctness Liveness Livelock
|

J

In-order delivery is a stronger notion of correctness than productivity

accellera
Source: Formal Verification of On-Chip Communication Fabrics, Freek Verbeek, 2013, Radboud University 86

SYSTEMS INITIATIVE

2019

DESIGN AND VERIFICATION®™

DVCON SoC Verification
Load Store Memory Tile Memory Routers DMA Data
Unit Subsystem Architecture Transfer

GPU

|

Radio DMA

Bus Bridges

| |

NoC

Bus Bridges

Sequential complexity

accellera .

SYSTEMS INITIATIVE

Summary

We described challenges with SoC Verification

Showed how an agile formal verification flow can be used
— Focus was on Erase and Prove phases

Tutorial on how to build efficient and scalable formal models

Addressed scalablility aspects through case studies
— Abstraction

— Assume Guarantee

— Scenario Splitting

— Case splitting

IIIIIIIIIIIII

AAAAA

88

DESIGN AND VERIFICATION™

CONFERENCE AND EXHIBITION

FORMAL VERIFICATION FOR CONTROL
PATHS

EEEEEEEEEEEEEE

DESIGN AND VE

CONFERENCE AN

IIIIIIIIIII

zrizizle Agenda

Control Path Complexity

Formal Apps for Control Path Verification
Formal Environment Architecture
Abstraction/Bug Hunting Technigues

Example Bugs

IIIIIIIIIII

IIIII

90

CONFERENCE AND EXHIBITION

CONTROL PATH COMPLEXITY

HHHHHHHHHHHHH

2019

DESIGN AND VERIFICATION®™

DVCON High Level Design Architecture
. e ;
Co('ggi:? Datapath Memory

T T T 7

inputs output inputs output

Controller Datapath Memory

Accepts external and control Responsible for data Optional block used for long

input, generates control and
external output and
sequences the movement of

manipulation. Usually
includes a limited amount of
storage.

term storage of data
structures.

data in the Datapath.

SYSTEMS INITIATIVE

2019
DVCON FSMs For Control Paths

reset+ r_test_mode +
hi_ber + !block_lock

o Control paths commonly
rx_raw = LBLOCK_R Implemented US|ng

R_TYPE(rx_coded) = 1} [R TYPE(x_coded) = (E+D +T)

R_TYPE(rx_coded) = C F S M S :

14 9
o - Many states w/ sub-

rx_raw = DECODE (rx_coded)

| R TYPE(x coded) =C | [F_TYPE(x_coded) = €+D +T) states M/C

e - Multiple paths to reach to
: ;;DC? the same state
e o | T PN - Convoluted state
e uE S " N transitions
- Priority among
simultaneously occurring

transition conditions

rx_raw «=EBLOCK_R

R_TYPE(rx_coded) = T» (R_TYPE(rx_coded) =T »
R_TYPE_NEXT = (S + C) R_TYPE NEXT=(E+D +T
R

+ R_TYPE(rx_coded) = (E + §)

> | DG ¢
Detect lot Rese
N\ Detect Lo N TR AX T
= rx_raw <= DECODE(rx_coded)
Figuze 4-27: Recovery Substate Machine b4

R_TYPE(rx_coded) = C£ gHTYP‘E(rJ(CDdedh s

TYPE(rx_coded) = C

R_TYPE(rx_coded) = D

5
PCIE/USB LTSSM 10G/40G Ethernet

SYSTEMS INITIATIVE

2019

DESIGN AND VERIFICATION®™

DV Control Path Verification Challenges

Traditional coverage metrics
insufficient

Limited visibility at the interface boundary

State space explosion due to temporal input behavior

No good models to check control path accuracy

Not every control path bug manifest into scoreboard bug efficiently

SYSTEMS INITIATIVE

94

2019
DVCON Example Bug Escapes

CONFERENCE AND EXHIBITION

Bug: What happens when ack and req are asserted in the same cycle?

RTL Implementation of State Machine

wakeup

A packet processing engine responsible for packet transfers
to/from memory and is sharing DMA

Timeout&
IReq

« DMA acknowledge the request (Req) within 0-10 cycles

« Acknowledge (Ack) is asserted for one cycle Config..

« Ack s asserted in the same cycle as Req when no other
high priority request is pending or for a parking master

/

Will starve permanently
waiting for ack

accellera .

SYSTEMS INITIATIVE

DESIGN AND VERIFICATION™

CONFERENCE AND EXHIBITION

FORMAL APPS FOR CONTROL PATH
VERIFICATION

EEEEEEEEEEEEEE

2019 .
BVETIN Introduction to Formal Apps

CONFERENCE AND EXHIBITION

Auto Checks (AEP)
Functional Checks for RTL Structures

Regression Mode Accelerator
Increases verification throughput
with faster convergence

Property Verification
Verify User Defined Properties

% Time/Resources
g3 Savings
S8
st w 52 —— With RMA
& #* O ———— Without RMA
Formal Coverage Analyzer
State Space Time

Achieve Faster Coverage Closure

=]
3
X

Coverage

—— With FCA
—— Without FCA

Build & Verify user properties

Periodic regressions w/ faster closure
FCA
Auto generated properties
accellera .

SYSTEMS INITIATIVE

DESIGN AND VERIFICATION™

CONFERENCE AND EXHIBITION

FORMAL ENVIRONMENT
ARCHITECTURE

accellera)

EEEEEEEEEEEEEE

2019

DESIGN AND VERIFICATION®™

CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Properties for FSM

. State Transition (In) checks
E’i‘“’ Entry to Recovery Speed is possible only when current states are
) . g#%‘i) Recovery_lock, Recovery Config, Recovery, eq* states
Recovery Equalization7 1 Hi_l -
¢ State Transition (Out) checks
e When current state Recovery Speed changes, next state possible are
\ | recoveryrewcg |—— Recovery_lock and Detect_Quiet states
“\\ LiExilm\
\ . Loopback J
I"\I\I\Il Recovery.ldle - \H_?E;):;‘_tj%>
/\ Bt l B N Extto
COAREG DD

—

Figure 4-27: Recovery Substate Machine

State (Output) checks
Directed_speed_change if asserted, has to be go low when entered in
Recovery.speed state

End-To-End checks

When targeted link speed is different than current port speed, LINK
DATA RATE has to change in # time

99

2019

DESIGN AND VERIFICATION®™

DVCON Coding Assertion Properties

Transition (IN) checks Assertions using RTL internal signals

+ Good for bug hunting
Transition (Out) checks + Typically 1/2 cycle assertions; Easier to converge

_ + Lesser COl; Pinpoints to the root cause
Output Signal checks - Needs design knowledge

Assertions using RTL boundary signals

+ Map to spec level features; hence gives higher confidence
End-to-end checks .
- Tend to be long temporal; relatively Harder to converge
- Harder to code and debug

Methodology Recommendation: Begin with white-box/internal assertions and then move to end to end checks

(Assume-Guarantee in upcoming slides)

accellera .

SYSTEMS INITIATIVE

2019

DESIGN AND VERIFICATION®™

DVEON Orthogonal Properties

Orthogonal properties capturing specification intent (than duplicating RTL) finds bugs

RTL Implementation of State Machine

- 2 P

Bug: What happens when Ack and Req are
asserted in the same cycle?

- J

Req & 'Ack

Cs == Wait_for_req && Req |=> Cs == Wait_for_ack Ack |=> Cs == Process

Cs == Wait_for_ack && Ack |=> Cs == Process

Won't find bug Will find bug

accellera o

SYSTEMS INITIATIVE

2019

DESIGN AND VERIFICATION®™

DVLRlt RTL Helper Model for Assertions — 1/2

RTL Helper code to model assertions are easier to code, debug and better for tools to converge

— Master drives REQ as pulse signal, Slave responds with ACK as pulse
signal

— The relation between REQ and ACK is 1 on 1, Slave must not assert ACK
more than asserted REQ

SIS EREREREREREREE S

REQ

ACK _I

assert property (@(posedge CLK) REQ |=> IREQ); _
assert property (@(posedge CLK) ACK |=> IACK); Easier to
assert property (@(posedge CLK) REQ |-> ##[1:$] ACK); model in
assert property (@(posedge CLK) not (REQ && ACK)); Verilog

102

SYSTEMS INITIATIVE

2019

DESIGN AND VERIFICATION®™

DVCOIN

CONFERENCE AND EXHIBITION

Create a new CLK J_L—L—L—L—I_

RTL Helper Model for Assertions — 2/2

|

signal, tr_inp, REQ
using RTL and
write assertions AcK
using it
tr_inp

logic tr_inp;

always B(posedge CLK or negedze RSTHI
if (IRSTN) begin
tr_inp <= 1'b0;
end else hegin
it (REQ)
tr_inp <= 1'bl;
elzse 1 (ACK)
tr_inp <= 1'b0;
end

SYSTEMS INITIATIVE

property p_regq_allowed;
B{posedge CLK) disable if¥ (!RSTN)
REQ |-> !'tr_inp;
endproperty
property p_ack_allowed;
B{posedge CLK) disable if+ (!RSTN)
ACK |-> tr_inp;
endproperty

ast_ack allowed : assect propecty(p_ack allowed);
ast_ackid walid : assert property(p ackid walid);

103

2019

DESIGN AND VERIFICATION®™

DYCON Constraints Strategy
» Over-constrained environment » Under-constrained environment
— Pros: — Pros:
* Properties will pass easily « Will be covering a lot of RTL
 Easier to understand RTL behavior « Highly effective for bug hunting
— Cons — Cons:
 Constraints will need to be reviewed and - Harder to get a good proof early on
removed

« Chance of missing important bugs

Recommendations:

« Start with fewer constraint for effective bug hunting
« Add constraints one by one; constraint layering — methodical approach

accellera
104

SYSTEMS INITIATIVE

2019

DESIGN AND VERIFICATION®™

DV Effective Use of Cover Properties

Early RTL Exploration Constraint Analysis Deep Bug Hunting

_E_arly stages of To ensure design is not To guide hybrid engines
ver|f|cat|on. to do hQW getting over-constrained to cover interesting state
and what if analysis or scenario many cycles

deep from reset

Bounded Proof Depth Analysis Integration wit Verification Plan

Useful to decide the cycle depth Important cover properties can be
when bounded proofs can be integrated back to verification plan
signed-off with confidence for coverage signoff

SYSTEMS INITIATIVE

105

DESIGN AND VERIFICATION™

CONFERENCE AND EXHIBITION

ABSTRACTION/BUG HUNTING
TECHNIQUES

EEEEEEEEEEEEEE

2019

DESIGN AND VERIFICATION®™

DVCOIN

CONFERENCE AND EXHIBITION

Cut-points to drive interesting scenarios on deep

sequential signals with constraints

E.g. Deep state machine w/
- TS1 64 _Symbol Rcvd signal need to be asserted to go from
RcvrLock to RcvrCgf State.
- Would need 64 consecutive TS1 symbols for signal to go high

Cut the driver for TS1_64 _Symb_Rcvd
assume next_state == RcvrLock |-> ##[2:64]
TS1 64 Symb_Rcvd

SYSTEMS INITIATIVE

Driving Deep Sequential Inputs/States

Recovery

Entry

|

Recovery.RevrLock

\

/ A
Recovery.Equalization /
' "
/.
Recovery Speed <=
=

_ /7 Eitto
- '\Cnnﬁguratinn

Exit to
- Loopbaflf/

\
\
II|
4
) "_LJ
Exit to

h \\ Detect

> J

Figure 4-27: Recovery Substate Machine

107

2019

DESIGN AND VERIFICATION®™

DVCON Counter/Timer Abstractions

* Reducing the length of counters/timers

— Using parameterized or "define RTL settings
#(.CREDIT_THRESHOLD (8)) // instead of 64

— Using automatic or guided abstraction commands in the tool setup

set_abstraction -construct count=8

« Cut the driver and apply additional constraints for interesting cases based on the spec

CEN==1 &&
< CNTS==16'hffff Snip driver to CNTS
assume —expr {abscnt==st_ini |-> CNTS==0}
assume —expr {abscnt==st_low [|-> CNTS>0 && CNTS<16’hfe10}
assume —expr {abscnt==st_trg |[-> CNTS==16’hfe10}
I(CEN==1 && - assume —expr {abscnt==st_high |-> CNTS>16’hfe10 &&
CNTS==16’hfe09) ‘ CEN==0 CNTS<=16’hffff}

CEN==1 &&

CNTS==16’hfe09
accellera .

SYSTEMS INITIATIVE

2019

DVCON Assume Guarantee
Run #N (On-The-Fly) OR
Run #N+1
{5} ;5: 1
»’« ! ! <A>

Block A
assert |(A&B) assume !(A&B)

Proven assertions are treated as assumptions for subsequent properties

» Very useful for harder to prove properties in common cone of influence
« Internal (intermediate) properties act as effective invariants and assumptions for end to end properties

« Can be applied on the fly for same run or subsequent runs

accellera .

SYSTEMS INITIATIVE

2019

DESIGN AND VERIFICATION™

DVCOIN

CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

reset+ r_test_mode +
hi_ber + 'block_lock

RXINIT

rx_raw <= LBLOCK_R

R_TYPE(rx_coded) = 1}

143

RX_C

rx_raw < DECODE(rx_coded)

R_TYPE(rx

_eodedl =T
R_TYPE_NEXT = (S + C)

R_TYPE(rx_coded) = C£ gHTYPEtrxcndedh S @

R_TYPE(rx_coded) =C

R_TYPE(rx_coded)=S

l‘!’c?

[R_TYPE(x _coded) = (E+D +T)

Case Splitting

R _TYPE(rx_coded) = (E+D +T)

R_TYPE(rx_coded) =C

RX_D

rx_raw <= DECODE(rx_coded)

R_TYPE(rx_coded) = D

(R_TYPE(rx_coded) =T»
R TYPE NEXT = (E+D +T)) +
R_TYPE(rx_coded) = (E + C+ S)

»

Independent modes/values/bit indexes to be
verified can be separated into diff formal
tasks; reduces complexity

WARNING: Make sure no modes are left out
during case enumeration

v

RX_E

rx_raw <= EBLOCK_R

R_TYPE(rx_coded)=T»
R_TYPE NEXT =(S +C)

RX_T |

rx_taw < DECODE(rx coued)|

+ R_TYPE(rx_coded) = (E +

)

(R_TYPE(rx_coded)=T »
R TYPE NEXT=(E+D+T
R_TYPE(rx_coded) = C

R_TYPE(rx_coded) = D

b3

10G/40G RX S/M

assume mode == 10G
Check assertions

10G Mode

assume mode == 40G 40G Mode

Check assertions

Enumerate different modes/scenarios for case

split

110

EXAMPLE BUGS

R/ Example Bugs — 1/3

CONFERENCE AND EXHIBITION

States and transitions covered, but not all paths.

During transmission (TX State), a received error count is maintained.
If error count reaches certain threshold, S/M goes to retry state.

BUG: Error count is expected to reset to zero before starting new data
transmission; however it is reset only in IDLE state and not Ack state
(after entry from Retry)

Paths covered:

IDLE -> TX -> ACK -> TX....

IDLE -> TX -> RETRY -> ACK -> IDLE...
Paths not covered

IDLE -> TX -> RETRY -> ACK -> TX...

assert property Srose(current_state == TX) |-> error_count ==

accellera -

SYSTEMS INITIATIVE

R/ Example Bugs — 2/3

CONFERENCE AND EXHIBITION

Missing state transition conditions harder to find

Whenever low power request is asserted, state machine should immediately

go to Power-Down state, turn off all clocks, and move to IDLE (non-active)
state.

BUG: Design misses the transition arc from Retry state causing
downstream logic to get into deadlock state

Hard to ensure from design boundary that power-down signal is asserted
from every possible state (less visibility)

If the design misses the transition arc, code coverage tools cannot find it

assert property Srose(powerdown_request) |-> next_state == PowerDown

113
SYSTEMS INITIATIVE

BESRT Example Bugs — 3/3

CONFERENCE AND EXHIBITION

Priority between simultaneously occurring state transition conditions often harder to cover

Recovery

ETW case (Current_state)
Recovery RevrLock —'@}%}Eﬁt@

Recovery.idle:
If(consecutive_8 symb data_rcvd) next state == LO

Recovery.Equalization

20

2

g

2 |-

<

51

8

AIL \\\
D, b

NS i - — else if(timeout_2ms_expired && no_activity) next_state = Detect \
\ e else if(lidle_to_rlock_transition_cnt_expired) next_state = Recovery.Lock _/
x‘- Recovery.ldie / Extto 7\

\ S o)

\\ l

A PN When multiple transition condition are true concurrently, priority of
C ARG DY P Y, priofty

transition needs to be checked thoroughly

ADS22A

Figure 4-27: Recovery Substate Machine

assert current_state == Recovery.ldle && next_state == Detect [-> lidle_to_rlock_transition_cnt_expired

accellera .

SYSTEMS INITIATIVE

DESIGN AND VERIFICATION®™

DVCOIN Summary

« Control path complexity introduces bugs that escapes in traditional verification

« Formal apps with user and auto generated properties target control path
exhaustively

 Architecting formal TB with orthogonal assertions and right set of constraints is
key to success

« Abstraction techniques enable effective bug hunting to find corner case bugs

accellera .

SYSTEMS INITIATIVE

DESIGN AND VERIFICATION™

CONFERENCE AND EXHIBITION

DATA PATH VERIFICATION

HHHHHHHHHHHHH

2019

DESIGN AND VERIFICATION®™

DVCOIN

CONFERENCE AND EXHIBITION

Pentium FDIV: The processor bug that shook
the world

By Desire Athow October 30, 2014 Processors

20 years already

0000

Source: https://www.techradar.com/news/computing-
components/processors/pentium-fdiv-the-processor-bug-
that-shook-the-world-1270773

accellera

SYSTEMS INITIATIVE

A Floating Point Error That Caused A Damage Worth Half A
Billion
Last updated January 12, 2018 By Abhishek Prakash — Leave a Comment

If you ever did a little bit of programming, you must be
aware of the term: floating point. One of the most
neglected and potentially

encounters is the

dangerous
error. | bet
a programmer must have seen the floating point error at
least once in his/her life. But how much damage a

error one
floating point

floating point error can do? Ask that to European Space Agency that lost an
effort of over a decade and $500 millions, all thanks to a floating point bug.

The story of Ariane 5:

On 4 June 1996, the maiden flight of the Ariane
5 launcher ended in a failure. Only about 40
seconds after initiation of the flight sequence,
at an altitude of about 3700 m, the launcher
veered off its flight path, broke up and
exploded.

Source: https://itsfoss.com/a-floating-point-error-that-
caused-a-damage-worth-half-a-billion/

Datapath Correctness is Important... and Difficult!

KILLED BY A MACHINE: THE
THERAC-25

by: Adam Fabio

® 138 Comments

f V3 October 26, 2015

Source: https://hackaday.com/2015/10/26/killed-by-a-
machine-the-therac-25/

117

DESIGN AND VERIFICATION®™

DVERL Exhaustive Simulation Takes Too Long

X) out

3 billion operand pairs per second

A=
=)

16-bit operands = 32-bit operands = 64-bit operands

1.5 seconds 195 years 3.5 * 104! years

accellera .

IIIIIIIIIIIIIIIIII

2019

DESIGN AND VERIFICATION®™

DVCOIN

CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

What About Functional Coverage?

0.99 (AcTUALLY
0.0000000372 FORBIDDEN GIRD-ACEFTED AS
LESS THAN 1:) REGION CANON BY ORTHOCOX

NUMBER IND\CATING IFYOU ENCOUNTER
AFACTOD 15 MADEUP ANUMBER HIGHER
(‘eVERY 7 vemRs.) “supce THAN THIS, YOURE

‘ e T MAHEMATICANS __ - —~, SAYSTHERE NOT DONG REALMATH
L i k -Hﬁ | Ll H rJ b :LN.E}: H;.HE!I?"-. EE} i | L

1_0 1]z [1N PORED ¢ "4 16
— stEor *

NEGATIVE ¢h-pARTHENON 2-9299372 = LARGEST

IMITATOR” SUNFLOWERS (€ AND T, SF“ Hﬁg EVEN PRIME.

NUMBERS GOLDEN RATQ ©OBSERVED)
(DONOTUSE) WJAIT COME BACK,
T HAVE FRCTS!

Source: xkcd.com

(Not a real data representation)

119

DESIGN AND VERIFICATION®™

DVCON What About Functional Coverage?

Find two 32-bit floating point multiplication operands that:

— Have a positive result?
— Have the largest representable pre-rounded exponent?
— Have all 1's in the pre-rounded mantissa?

— Round up?

accellera .

IIIIIIIIIIIIIIIII

2019

DESIGN AND VERIFICATION®™

CONFERENCE AND EXHIBITION

Commercial Formal Verification Options

Property Verification
(VC Formal FPV)

« Familiar methodology

« Correct properties mean
correct design

» Heavy use of bit-level
modeling

SYSTEMS INITIATIVE

Equivalence Checking
(HECTOR, VC Formal DPV)

Small learning curve

Correct properties mean
equivalent designs

Bit-level and word-level
modeling

121

2019

DESIGN AND VER FICAT ON™

DVEOR Industrially Used But Not Commercially Supported

Theorem Proving Symbolic Trajectory Evaluation

« Abstraction integrated

» Steep learning curve into specification
» Correct properties mean « Potentially robust but
correct design requires manual

abstraction in general.

« Bit-level and word-level
modeling * Proprietary and secret

tooling.

« Long development time

SYSTEMS INITIATIVE

2019

DESIGN AND VERIFICATION™

DVCOIN

DVCON Equivalence Checking Overview

Algorithmic Design

@

Original Register Transfer Level
Design (RTL)

3

Optimized Register Transfer Level
Design (RTL)

Gate-Level Design

SYSTEMS INITIATIVE

o Untimed C/C++
< 100 — 10K lines >

o Timed Verilog, VHDL
< 1K — 50K lines >

o Timed Verilog, VHDL
< 1K - 100K lines >

o Netlist

Performance

|

Automatic or manual
refinement steps

|

123

2019

DESIGN AND VERIFICATION™

DVl Different Types of Equivalence Checking

Design A
Boolean Al Matched Compare
. Compare Boolean Points
Equ |vale_nce Fan-in Logic Design B
(Formality)
PAN
RTL Model A
: _ Compare
Sec!uent'al Assume Outputs,Every
Equivalence RRIERLIS Cycle,
(SEQ) & Start State & Unbounded ...

RTL Model B

Untimed Transaction Model A

Transaction =
_ Assume ompare Outpl_Jts at
Eq uivalence o] T End of Transaction(s)
(VC Formal DPV)
accellera Cycle Accurate Model B

SYSTEMS INITIATIVE

124

DESIGN AND VERIFICATION®™

DV What Is Transactional Equivalence?

Defining a transaction

« A transaction consists of:
— Inputs
— Input State (optional)
— State Change
— Outputs
— Output State (optional)

« Atransaction can be:
— Combinational
— Sequential Overlapping / Pipelined
— Sequential Non-Overlapping

SYSTEMS INITIATIVE

start
b/c

a+b+c=out

if} e

T

out

125

2019

DESIGN AND VERIFICATION™

DVCON What Is Transactional Equivalence?

Transaction boundaries

Clock ﬁ_m g@_@ out
G
Transaction [g N Mgy ﬂn“ c *
CIock | | | a
’ = ©

Clock

— a

Flops capture on positive edge

accellera .

SYSTEMS INITIATIVE

2019

=ecei-Datapath Verification using HECTOR Technology

CONFERENCE AND EXHIBITION

- Formal Block-level Transaction Equivalence Checking

CoC Cto RTL RTL to RTL
C/C++ C/C++
Reference Implementation C/C++ RTL Model RTL Model Transformed
Model Model Model RTL

Proves consistency of independently developed models
Exhaustively verifies successive design refinements

Great for corner case bugs

SN X X

Does not require testbenches, assertions, coverage

accellera .

SYSTEMS INITIATIVE

2019

DESIGN AND VERIFICATION™

DVEON Building a Proof

. Relatlng transactions

Clock 1m

- .=-

Clock L1 [1 [1

CIock |_| I

SYSTEMS INITIATIVE

Model: Picking an arbitrary matched
transaction

Combinational - No state, just need to
match inputs

Fully Pipelined - State represented by

previous transactions can be “All X's”.

Memories need to be mapped, but can
be unconstrained

Iterative - Memories need to be mapped,
Input state needs to be constrained and
checked

128

svesr Common Functions Verified with HECTOR Technology

CONFERENCE AND EXHIBITION

Low effort Medium effort High effort
Integer Logical operations Integer Multiply High radix SRT dividers
Addition/Subtraction Multiply accumulate

Absolute value
Multiply (result < 20 bits)

Cryptography SHA Primitives Floating Point Multiply Systolic array multiplier matrices
AES single round Multiply accumulate
Floating Point Convert Integer / Divide (SRT radix 2/4) Streaming data operations
Addition/Subtraction Floating Point Square root (SRT radix 2/4)
Multiply (half precision)
Compare
May require advanced techniques Requires advanced techniques
Implementation specific results Implementation specific results

SYSTEMS INITIATIVE

DESIGN AND VERIFICATION™

DVCON Case Study 1: 64-bit Floating Point

Function _Approximate « All ISA defined rounding modes
Runtime (minutes)

Opcode 1 2

Opcode 2 ! * Numeric results, NaN handling,

Opcode 3 i and exceptions

Opcode 4 3

Opcode 5 4

Opcode 6, ver. 1 410 ¢ VeI‘IfIEd RTL eqUivaIence to C

simulation reference model
Opcode 6, ver. 2 103

”In the case of math modules..., the formal verification work has found more than 100 bugs that might not

otherwise have been found until silicon!”

accellera .

SYSTEMS INITIATIVE

DESIGN AND VERIFICATION®™

DVCOIN Case Study 2: 32-bit Floating Point
) Approximate Runtime . i
Function (minutes) Verified RTL equivalence to SoftFloat
FP ADD 5 reference model
FP SUB 5
FP MUL 5 » Multiple RTL bugs discovered
FP MUL ADD 120
FP DIV 240 . HDPS,
FP SQRT 240 solveNB _division/solveNB_sqrt

accelerates convergence of
traditionally difficult problems

accellera .

IIIIIIIIIIIIIIIIII

2019

DESIGN AND VERIFICATION®™

izl Case Study 3: Al Inference
 Complex MAC arrays = = =
] | v] A] A
; + + +
 Verify scalable from 3x3 to 128x128
— Multiplier inputs 16 bit 1 | |
— Adder inputs 32 bit > T > T > ’I‘ —
+ + +
« Datapath verification results
- Matrix 8 x 8: proved in seconds = e e
« Matrix 32 x 32: proved in minutes - 5 il
* Matrix 64 x 64: proved in a few hours + + +
» Matrix 128 x 128: proved in 30hrs

accellera .

SYSTEMS INITIATIVE

hat Is the Manual Effort to Build a Proof?

— Easier problems just run.
* First time users pleasantly surprised with quick setup

— Harder problem needs some manual guidance
« Case split, abstractions,
« Expert design domain knowledge is required
* Formal background helps but not necessary

accellera .

IIIIIIIIIIIIIIIIII

DESIGN AND VERIFICATION™

CONFERENCE AND EXHIBITION

DATAPATH VERIFICATION BEHIND THE
SCENES

EEEEEEEEEEEEEE

2019

DESIGN AND VERIFICATION®™

DVEEL How Is DPV Different than Model Checking?

— Problems are often
» Model checking properties often only need a small part of the design for the proof

are needed
« Model Checking
— The large number of control behaviors are typically the hardest problem
— Individual computation steps are often not that hard to check

« DPV: there is often a relatively manageable control aspect, but the correctness of
can be really hard to show

— The need for IS different

« Model Checking: The main complexity is finding a chain of (optimizations, abstractions, final
solver) that can deal with a particular problem

« DPV: Typically have but lots of case splitting and optimization

accellera .

SYSTEMS INITIATIVE

DESIGN AND VERIFICATION®™

DVCCL Fundamental Technology Building Blocks

* Binary Decision Diagrams and variants ()

 Satisfiability () and Satisfiability modulo theories ()
checkers.

« Polynomial verification procedures/Groebner bases
* Rewriting

* Proprietary leaf level solvers

accellera .

IIIIIIIIIIIIIIIIII

DESIGN AND VERIFICATION®™

DVCON Binary Decision Diagrams (BDDs)

that represent Boolean functions

G
» Invented in the mid 1980s, enabled first wave of fc /. .
verification tools @) (o)
B
. . \ iy | x—\
» Unable to deal with whole larger multipliers T\ M
— But extensions such as *BMDs tried to solve that \EBO'?EL

« Still relevant and useful if used judiciously

accellera .

IIIIIIIIIIIIIIIII

2019

DESIGN AND VERIFICATION®™

DVEON Satisfiability (SAT) solvers

« Takes as input a description of a single output circuit in some syntactic form

« Tries to find one way to the some Boolean value that
makes the

« Lots of design automation problems can be cast into this form
— In particular, the comparison of two implementations of a multiple output circuit

« Unable to prove that two larger multiplier implementation are equivalent, if used
monolithically

« Enabled the second wave of formal verification tools in the early 2000s

accellera .

SYSTEMS INITIATIVE

SMT

« SAT solvers can be extended into a
for custom theories

— Memories
— Infinite precision arithmetic
— Bit vectors

* Thisis called * " (SMT)

* This enabled boom of interest in the field of formal
software verification that started in the early 2000s

accellera .

IIIIIIIIIIIIIIIIII

DESIGN AND VERIFICATION®™

DVEON Polynomial Verification
» Takes as Inputs and decide
* Typically

—one Is a polynomial modelling low-level gates

—the other one a polynomial expressing a higher level
datapath specification

accellera »

IIIIIIIIIIIIIIIII

DESIGN AND VERIFICATION®™

DV Rewriting

« Takes as input

« Generates a rewritten, hopefully , expression
« Examples:
—A(32) * (B(32) + C(32)) -> A(32)*B(32) + A(32)*C(32)
—a&b | a->a&b

accellera
141

IIIIIIIIIIIIIIIII

DESIGN AND VERIFICATION®™

DVCON Putting Leaf Level Solvers Together

« Case splitting
* Abstraction

* Deep integrations of leaf level solvers

« Many of our users run a single check on a grid with 100s of
Processors

accellera .

IIIIIIIIIIIIIIIII

DESIGN AND VERIFICATION®™

DVCON Case Splitting

« Most common technique to solve hard problems

* Breaks original proof into sub-proofs
— Failing sub-proof is failure for larger proof
— All passing sub-proofs true mean larger proof is true

« Useful case splits can be based on operation or based on
microarchitecture

accellera »

SYSTEMS INITIATIVE

2019

DESIGN AND VERIFICATION®™

DVCOIN

CONFERENCE AND EXHIBITION

Brief Overview: 32-bit Floating Point Format

Sign Exgzri]tint Mantissa(fraction) 23 bits IEEE 754
31 30 23 22 0
exp mantissa Meaning
0 Zero +0 and -0 are possible.
OxFF Infinity +inf and -inf are possible
OxFF =0 NaN (Not a Number) Created by invalid operations
=0 Normal number 1.Mant x 2(exp—127)
I= OXFF
0 =0 Denormal number 0.Mant x 27126

The value 1 is represented as:
The value 0.5 is represented as:

exp =127 mantissa=0 1.0 x 2°
exp=126 mantissa=0 1.0 x 2~ '

SYSTEMS INITIATIVE

144

DESIGN AND VERIFICATION®™

* QOperation: (A*B) +C

* Possible case splits
— Any input Infinity or NaN
— Product term zero
— Addend term zero
— All combinations of subnormal/normal non-zero numbers

accellera »

IIIIIIIIIIIIIIIII

DESIGN AND VERIFICATION®™

DVCOIN Other Convergence Techniques

Internal equivalence points or relationships
— Tool will look for these, but may not recognize complex relationships

 Assume-Guarantee

— Split design up into stages to reduce complexity
Bit-level to Word-level abstraction

— Particularly on complex operations (multiply, divide, etc)

Blackbox/cutpoint
— Remove logic that does not participate in the result

accellera i

IIIIIIIIIIIIIIIIII

DESIGN AND VERIFICATION™

DVCON

CONFERENCE AND EXHIBITION

e S A A L
T 5> BTATES
s . wa\— n:,a‘

(accellera)

SYSTEMS INITIATIVE

Thank You

147

