
Tackling the Complexity Problem in Control and

Datapath Designs with Formal Verification

Ashish Darbari

Axiomise

Per Bjesse

Synopsys

Nitin Mhaske

Synopsys

Ravindra Aneja

Synopsys

Agenda

• Introduction

• Formal verification for SoC designs

• Formal verification for control paths

• Formal verification for data paths

• Summary

2

Current Formal Landscape

• Large number of companies are deploying formal

• Formal has become critical aspect of verification strategy

• Formal Apps are acting as catalyst

3

Formal Adoption

• Number of formal papers at DVCon/DAC/SNUG has gone up

• Number of users with formal expertise are growing

• Introduction of “Formal Signoff” flow is accelerating the adoption

4

Formal is Central to Verification Strategy

• Simulation cycles aren’t scaling
– Need to look at each problem differently

• Let’s break down the verification problem
– Verification plan consists of individual tasks

– Some well suited for simulation

– Some well suited for emulation

– Some well suited for static/formal verification

– Use the right task for the right problem

• Consider multiple tools in the verification flow
– Not all problems can be solved by the same approach

– Use the right tool for the right problem
• Find bugs, saves time and $$$

SimulationEmulation

Static

Formal

5

Datapath Validation

Verify Datapath Designs

against the Specification

DPV

Auto Checks

Functional Checks for RTL Structures

AEP

Connectivity Checking

Verify IP/SoC Connections

CC

X-Propagation Verification

Detects Effects of “X”

FXP

Security Verification

Identify Data Leak/Integrity Issues

FSV

Property Verification

Verify User Defined Properties

FPV

Sequential Equivalence

Verify Clock gating and RTL optimizations

SEQ

Formal Coverage Analyzer

Achieve Faster Coverage Closure

FCA

Regression Mode Accelerator

Increases verification throughput

with faster convergence

RMA

Functional Safety Verification

Detectable and Diagnosable Faults

FuSa

Formal Testbench Analyzer

Achieve Formal Signoff with Faults Analysis

FTA

Register Verification

Verify Registers against IP-XACT/RALF

FRV

VC Formal Apps

6

Formal Signoff Criteria

7

Enough Properties? Property Density

Over Constraints Analysis

Bounded Proof Coverage

Formal Core

Fault Injection Analysis

False Positives?

Sufficient Sequential Depth?

What is truly verified?

Can I catch all bugs?

2
0

0
0

s
N

o
w

VC Formal™

Design/Verification Team’s Challenges

• Applicability
– Class of verification problems?

– Control path

– Data path?

• Data Transport, Data Transformation?

• Scalability
– Module, block, subsystem level or chip level?

• Savings
– Can we replace anything with Formal?

– Can Formal compress overall verification time?

– Can we do more with less resources?

This tutorial will
answer some of
these questions

8

Presenters: Ashish Darbari

Dr Ashish Darbari is the founder and CEO of Axiomise - a formal

verification training, consulting, and services company.

Ashish obtained his DPhil from the University of Oxford in formal.

Before starting Axiomise, Ashish worked at Intel, ARM, GM,

Imagination Technologies, and OneSpin Solutions.

Ashish has been working in formal verification for over 20 years

and has 18 patents and over two dozen research papers. Ashish is

a Senior member of IEEE and ACM; and a Fellow of British

Computing Society, and Fellow of IETE.

9

Presenters: Nitin Mhaske

Nitin Mhaske is a Senior Staff AE in VC Formal team with

special interest in developing Apps that makes formal easy to

apply and solve hard problems.

He has 18 years of experience in semiconductor and EDA

companies. Prior to Synopsys, he was verification architect

at Altera and Senior AE Manager at Atrenta for assertion

based verification products. He holds 3 patents in assertion

synthesis technology domain.

10

Presenters: Per Bjesse

Per Bjesse is a Synopsys Scientist with a PhD in Computer

Science from Chalmers Technical University in Sweden.

Per has worked on formal verification at Synopsys for 15+ years on

tools and applications ranging from equivalence checking, symbolic

simulation, and software verification to standard model checking.

Per is the backend architect for all formal products in Synopsys

Verification Group.

11

FORMAL VERIFICATION FOR SOC

DESIGNS

SoC VERIFICATION

FORMAL

VERIFICATION FLOW

MODELING

SCALABILITY

SMART TRACKER

CASE STUDIES

OVERVIEW

13

DDR

CPU GPU Vision Radio

INTERCONNECT

USB I2C Bluetooth Ethernet

DMA

Load Store

Unit

Memory

Subsystem

Tile Memory

Architecture
Routers

DMA Data

Transfer

Bus Bridges

Bus Bridges

NoC

Sequential designs are the root cause for verification complexity

SoC Architecture

14

SoC Verification

Verification

=

Design |=
Requirements

SoC verification

=

IP verification +
Interfaces

Functional bugs

imply

security and safety
bugs

15

SoC Verification Challenges

Functional Safety Security Power Performance

16

SoC Verification Challenges

Clocks Resets Timing Synthesis Layout

17

SoC VERIFICATION

MODELING

SCALABILITY

SMART TRACKER

FORMAL

VERIFICATION FLOW

18

What is Formal Verification?

19

SPECIFICATION

Mathematical logic in specifying requirements

VERIFICATION

Verification is done by establishing a mathematical proof

Injecting Formal in the Verification Flow

VERIFICATION PLAN APPS USER-DEFINED

PROPERTIES

COVERAGE BACK

ANNOTATION

20

Think IP think of interfaces

Think of requirements and specifications

Think of Properties (ABV)

Formal ABV in a Nutshell

Assertions
CoversConstraints

assume property

(@(posegde clk) !req |=> ##[0:$] req);

assert property

(@(posegde clk) !ack |=> ##[0:$] ack);

RTL/DESIGN

?

FAIL

PASS

MATHEMATICAL MODEL

FORMAL VERIFICATION TOOL

[e.g., VC Formal]

SPECIFICATION

module handshake_async (

input wire req,

input wire clk,

input wire resetn,

output wire ack,

);

assign …

endmodule

21

What Happens on a Pass?

Property is true on all input
combinations on all reachable
states of the design

There are no over-constraints

22

What Happens on a Fail?

Bug in the design

Bug in the formalisation of the design intent
(property formalisation bug)

Bug in the understanding of what the intent really is -
the formalisation is correct, the intent is wrong

Missing constraint in specifying what are the legal
values allowed on the inputs

Remember with formal you get stimulus for free, so
you need to ban the illegal stimulus

23

What Happens When You Get ?

• Constraints

• Assertions, covers

• Modelling code (glue logic)

Review

• Breaking down requirements into smaller ones

• Abstraction – initial value, data, temporal

• Structural decomposition

• Case splitting

• Scenario splitting

• Black-boxing

• Cut-pointing

Problem reduction methodologies

24

Formal Verification Flow

RTL/C++/SystemCVERIFICATION
STRATEGY

VERIFICATION
PLAN

TESTBENCH

Scoreboard

Assertions

SPECIFICATION

Coverage

BUGS

COVERAGE

NO

YES

FORMAL TOOL
[e.g., VC Formal]

Constraints

TAPEOUT ?

NO STIMULUS
REQUIRED

EXHAUSTIVE
PROOFS

SHORTER
DEBUG TRACES

25

The ADEPT FV® Agile Flow

26

Erase Bugs and Prove Absence

Formal Verification Testbench

• Abstractions

• Constraints

Erase bugs in both design and testbench

• Catch design bugs

• Catch testbench bugs

• Manual injection of bugs

• Run coverage analysis

Prove absence of bugs

• Invariants and assume guarantee

• Scalable results on bigger configs

• Run coverage analysis

27

Correctness Graph

28

Functional correctness Liveness Livelock Deadlock Starvation

Evacuation Local Liveness

Productivity

In-order delivery

Source: Formal Verification of On-Chip Communication Fabrics, Freek Verbeek, 2013, Radboud University

In-order delivery is a stronger notion of correctness than productivity

Verification Matters

Where possible proving in-order properties is sufficient to prove absence of

Liveness, Deadlock, Livelock and Starvation

29

Sources of Complexity

Control

Serialisation Arbitration Counters Arrays FSMs

Datapath/Arithmetic

Addition Multiplication Division Multiplication/Accumulate Square root

30

SoC VERIFICATION

FORMAL

VERIFICATION FLOW

SCALABILITY

SMART TRACKER

MODELING

31

FORMAL MODELS

Building Blocks of Formal Testbenches

Events

• Formal models are constructed by capturing events

• Events are the right level at which we should think of verification

• An event is usually defined as some kind of asynchronous activity

33

Events

• Events have a start and a complete state

• We identify events by tagging them with a START and a STOP state

• Events come in two flavours

– WITHOUT abstraction

– WITH abstraction

• Events with abstraction provide reduction in proof complexity

34

Modeling Events

• The trick is to think transactional for our verification

• Leave the exact definition of a transaction somewhat abstract to

begin with

• Refine it on a case-by-case basis

• The key here is to use symbolic transactions by exploiting

abstractions

35

ABSTRACTIONS

The key to success with formal

Data Abstraction

• Abstract away 0 and 1 by a new Boolean symbol

– The result is a logarithmic reduction in state-space search

• You already use symbols without knowing

– use of high level languages is already a symbolic step forward as

– we don’t use truth tables for design

• Sometimes we also use an X value to get data abstraction

37

Temporal Abstraction

• Don’t sample the state of signals on every clock edge

• Sampling only occurring when certain key events are observed

• Use events to define “observation windows”

– Each observation window has a start and a stop state

– We can define multiple observation windows

– Verification

• Establish legal stimulus by providing constraints

• Make claims [assert/cover] on these observation windows

38

SoC VERIFICATION

FORMAL

VERIFICATION FLOW

SCALABILITY

SMART TRACKER

FIFO

MODELING

39

FIFO

Everything can be reduced to a FIFO!

Why FIFO?

• FIFOs everywhere:

– Arbiters, UART, USB, CPUs, GPUs, Routers

• Introduces massive challenge for proof convergence

– FIFOs introduce long latencies in other designs

– Conceptually not very hard to understand

– But easy to get it wrong

– Can be extremely challenging to verify especially find corner case bugs

– Async FIFOs

41

Verification Requirements

• Ordering is correct

• No duplication, No data loss, No data corruption

• Empty and Full checks

– Empty at the right time

– Full at the right time

– If empty then eventually full

– If full then eventually empty

42

Verification Strategy

• Build mechanisms to track data

• Provide any constraints or assumptions

• Write checks/assertions to establish “correctness always holds”

• Write cover properties to prove that behaviours can hold sometimes

• Ensure that you have not missed any bug in your test bench

43

Formal Verification Strategy

• We will not send any input sequences

• Let the formal tool exercise “for free” all input sequences

• Constrain out the illegal ones explicitly

• We track inputs going into the DUT and check if the expected ones come out

• In formal we use “symbols”

• Symbols encodes two values at once – one ‘0’ and another ‘1’

• Checking by formal tool is symbolic – covering all combinations of 0s and 1s

44

Formalizing Ordering

• For any two data values sent into a DUT in a pre-determined order, if they exit the

DUT in the same order as they were sent in, then the DUT maintains ordering on the

elements

• For any two “symbolic” values sent into a DUT in a pre-determined order, if they

exit the DUT in the same order as they were sent in, then the DUT maintains

ordering on the elements

Ɐd1 d2. (d1 sampled_in_before d2) ==> (d1 sampled_out_before d2)

45

Symbolic Transactions

logic [DATA_WIDTH-1:0] wd1;

logic [DATA_WIDTH-1:0] wd2;

am_fifo_core_d1_stable:

assume property (@(posedge clk) ##1 $stable(wd1));

am_fifo_core_d2_stable:

assume property (@(posedge clk) ##1 $stable(wd2));

46

Sampling Registers

reg sampled_i_1;

reg sampled_i_2;

reg sampled_o_1;

reg sampled_o_2;

wire ready_to_sampled_i_1;

wire ready_to_sampled_i_2;

wire ready_to_sampled_o_1;

wire ready_to_sampled_o_2;

SAMPLING IN

SAMPLING OUT

47

Watching In and Out

assign ready_to_sample_i_1 = data_i==wd1 && push_i && !sampled_i_1 &&

arbit_window;

assign ready_to_sample_i_2 = data_i==wd2 && push_i && !sampled_i_2 &&

arbit_window;

WATCHING WHEN TO SAMPLE IN

assign ready_to_sample_o_1 = sampled_i_1 && data_o==wd1 && pop_i &&

!sampled_o_1;

assign ready_to_sample_o_2 = sampled_in_d2 && data_o==wd2 && pop_i &&

!sampled_o_2;

WATCHING WHEN TO SAMPLE OUT

48

Events

always @(posedge clk or negedge resetn)

if (!resetn) begin

sampled_i_1 <= 1'b0;

sampled_o_1 <= 1'b0;

sampled_i_2 <= 1'b0;

sampled_o_2 <= 1'b0;

end

else begin

sampled_i_1 <= sampled_i_1 || ready_to_sample_i_1;

sampled_i_2 <= sampled_i_2 || ready_to_sample_i_2;

sampled_o_1 <= sampled_o_1 || ready_to_sample_o_1;

sampled_o_2 <= sampled_o_2 || ready_to_sample_o_2;

end

SAMPLING REGISTERS

49

Putting it altogether

assume property (@(posedge clk) empty_o |-> !pop_i);

assume property (@(posedge clk) full_o |-> (!push_i || pop_i));

assume property (@(posedge clk) !sampled_i_1 |-> !sampled_i_2);

assert property (@(posedge clk) sampled_i_1 && sampled_i_2 && !sampled_o_1

|->

!sampled_o_2);

INTERFACE CONSTRAINTS

TESTBENCH CONSTRAINT

MASTER CHECK

50

Liveness

assume property (@(posedge clk)!pop_i |-> s_eventually (pop_i));

assert property (@(posedge clk) sampled_i_1 |-> s_eventually (sampled_o_1));

LIVENESS

PROOF OF MASTER

CHECK
ASSUME MASTER CHECK PROVE LIVENESS

ASSUME GUARANTEE REASONING

51

Analysis

• Only four registers used to model an end-to-end master check that verifies

– Ordering

– Data loss

– Data duplication

– Data corruption

• Proving then assuming the master check establishes liveness

• But there is a challenge

– As depth increases the results degrade

• Scalability is limited

52

SoC VERIFICATION

FORMAL

VERIFICATION FLOW

MODELING

SMART TRACKER

SCALABILITY

53

Proof Engineering

Scalable formal verification

=

“Proof Engineering”

10120 MILLION states; 1 billion gates and beyond

Assume Guarantee

Case Splitting

Scenario Splitting

54

ASSUME GUARANTEE

You assume I guarantee! I assume you guarantee!!

Assume Guarantee

• Break the whole puzzle into smaller jigsaws

• Identify helper lemmas as individual components of jigsaw

• Identify how they fit together to complete the full puzzle

• PROVE helper lemmas then ASSUME them to prove other lemmas

56

Too Few States

• Current solution has too few states

• Exploit “data independence”

– It does not matter what the specific data values are

– It only matters how many are ahead of the watched data value

– We will exploit this “how many are ahead” by introducing more states

– Yes, we bring in counters to improve performance for proof convergence!

57

Increment/Decrement

assign incr_1 = push_i && !sampled_i_1;

assign incr_2 = push_i && !sampled_i_2;

assign decr_1 = pop_i && !sampled_o_1;

assign decr_2 = pop_i && !sampled_o_2;

INCREMENT

DECREMENT

58

How Many are Ahead?

always @(posedge clk or negedge resetn)

if (!resetn) begin

tracking_counter_1 <= ‘h0;

tracking_counter_2 <= ‘h0;

end

else begin

tracking_counter_1 <= tracking_counter_1 + incr_1 - decr_1;

tracking_counter_2 <= tracking_counter_2 + incr_2 - decr_2;

end

TRACKING COUNTERS

59

Putting it altogether

assume property (@(posedge clk) empty_o |-> !pop_i);

assume property (@(posedge clk) full_o |-> (!push_i || pop_i));

assume property (@(posedge clk) !sampled_i_1 |-> !sampled_i_2);

assert property (@(posedge clk) sampled_i_1 && sampled_i_2 && !sampled_o_1

|->

!sampled_o_2);

INTERFACE CONSTRAINTS

TESTBENCH CONSTRAINT

MASTER CHECK

60

Liveness

assume property (@(posedge clk)!pop_i |-> s_eventually(pop_i));

assert property (@(posedge clk) sampled_i_1 |-> s_eventually (sampled_o_1));

LIVENESS

PROOF OF MASTER

CHECK
ASSUME MASTER CHECK PROVE LIVENESS

ASSUME GUARANTEE REASONING

61

Invariants and Assume Guarantee

Positional Invariant tells the tool where exactly in the DUT the tracked value is

If the watched value not in the DUT then the counts between the DUT and the abstract model agree

If watched value is in the DUT then the tracking counter is in between the read and the write pointers

If the watched value has not entered in the DUT then it couldn’t have left it

Once the tracking value has entered and exited the DUT then counters agree

62

Performance Results

0.061111 2 8 20 70
223

766

11125 16 62 116

650

1470

3989

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 500 1000 1500 2000 2500

R
U

N
 T

IM
E

FIFO DEPTH

ORDERING

63

SoC VERIFICATION

FORMAL

VERIFICATION FLOW

MODELING

SCALABILITY

SMART TRACKER

64

Basic Concept

• Use one symbolic watched data value to track

• A single counter to count how many values are “ahead” of this watched data

• On every push, this counter increments, and every pop it decrements

• Once the watched data is seen on the inputs, the counter is not incremented

• When the counter is 1, expect to see the watched value appear on the output

65

Symbolic Transaction

logic [DATA_WIDTH-1:0] wd;

am_fifo_core_d1_stable:

assume property (@(posedge clk) ##1 $stable(wd));

reg sampled_i;

reg sampled_o;

wire ready_to_sample_i;

wire ready_to_sample_o;

SAMPLING IN

SAMPLING OUT

66

Events

assign ready_to_sample_i = data_i==wd && incr && arbit_window;

WATCHING WHEN TO SAMPLE IN

assign ready_to_sample_o = (tracking_counter == 1)&& sampled_i && decr;

WATCHING WHEN TO SAMPLE OUT

always @(posedge clk or negedge resetn)

if (!resetn) begin

sampled_i <= 1'b0;

sampled_o <= 1’b0; end

else begin

sampled_i <= sampled_i || ready_to_sample_i;

sampled_o <= sampled_o || ready_to_sample_o; end

SAMPLING REGISTERS

67

Increment/Decrement

assign incr = push_i && !sampled_i;

assign decr = pop_i && !sampled_o;

INCREMENT

DECREMENT

68

How Many are Ahead?

always @(posedge clk or negedge resetn)

if (!resetn) begin

tracking_counter <= ‘h0;

end

else begin

tracking_counter <= tracking_counter + incr - decr;

end

TRACKING COUNTER

69

Putting it Altogether

assume property (@(posedge clk) empty_o |-> !pop_i);

assume property (@(posedge clk) full_o |-> (!push_i || pop_i));

assert property (@(posedge clk) ready_to_sample_o |-> data_o==wd);

INTERFACE CONSTRAINTS

MASTER CHECK

70

Invariants and Assume Guarantee

Positional Invariant tells the tool where exactly in the DUT the tracked value is

If the watched value not in the DUT then the counts between the DUT and the abstract model agree

If watched value is in the DUT then the tracking counter is in between the read and the write pointers

If the watched value has not entered in the DUT then it couldn’t have left it

Once the tracking value has entered and exited the DUT then counters agree

71

Smart Tracker Performance

Source: More is Less: Exhaustive Formal Verification of Sequentially Deep Data-Transport Components, Darbari et al. DAC 2014 72

Two Transaction vs Smart Tracker

Source: Industrial Strength Formal Using Abstractions, A. Darbari & I. Singleton, Tech Report, 2016, Available from arxiv.org
73

Liveness

assume property (@(posedge clk)!pop_i |-> s_eventually (pop_i));

assert property (@(posedge clk) sampled_i |-> s_eventually (sampled_o));

LIVENESS

PROOF OF MASTER

CHECK
ASSUME MASTER CHECK PROVE LIVENESS

ASSUME GUARANTEE REASONING

74

SoC VERIFICATION

FORMAL

VERIFICATION FLOW

MODELING

SCALABILITY

SMART TRACKER

CROSS BAR

75

Memory Subsystem Arbiter

4 GROUPS with 2 BANKS in each group

9 REQUESTORS

INSTANCE 0INSTANCE 1

Register files

Random stallers

FIFOS

FSMs

2k LINES OF RTL

Verification Challenge

Concurrency

Serialisation

Priority

76

Arbitration Policy

77

Rules of Arbitration

78

Proof Engineering

Scalable formal verification

=

“Proof Engineering”

10120 MILLION states; 1 billion gates and beyond

Assume Guarantee

Scenario Splitting

Case Splitting

79

Scenario Splitting

• First scenario

– Focus only first-come-first-serve behaviour

• Second scenario

– Focus on multi-instance activity but narrow down the observation to only

those requests that are directed to the same bank

• Last scenario

– Observe traffic originating from any requestor going to any bank and

ensuring that these requests are received and not lost

80

Multiple Active Requests: Case Splitting

• Two transaction abstraction + Case Splitting

• Overall 176 assertions for

– REQ=2 [2 requestor groups]

– GRP=4 [4 groups of mem banks]

– BNK=2 [2 banks in each group]

– CASES=11

CASES

R0, R1

R0, R2

R0, R3

R0, R1, R2

R0, R1, R3

R0, R2, R3

R1, R2, R3

R1, R2

R1, R3

R2, R3

R0, R1, R2, R3
81

Solution Mechanics

• Smart tracker abstraction for checking first-come-first-serve

• Two-transactions abstraction for establishing priority

wire [BNK-1:0] ready_to_sample_out [REQ-2:0][i-1:0][GRP-1:0];

wire [3:0] decr [REQ-2:0][i-1:0][GRP-1:0][BNK-1:0];

wire [i-1:0] hsk_in [REQ-2:0];

wire [BNK-1:0] hsk_out [GRP-1:0];

reg [MAX:0] tracking_cnt [REQ-2:0][i-1:0][GRP-1:0][BNK-1:0];

reg [BNK-1:0] seen_in_watched_id [REQ-2:0][i-1:0][GRP-1:0];

reg [BNK-1:0] seen_out_watched_id [REQ-2:0][i-1:0][GRP-1:0];

DATA STRUCTURES

64 TRACKING COUNTERS NEEDED

82

Master Checks: First-come-first-serve

generate

for (g=0; g<GRP; g=g+1)

for (b=0; b<BNK; b=b+1)

assert property (ready_to_sample_out[0][0][g][b] &&

!other_req_active[0]

|->

(OUT_ID[g][b] == watched_id));

endgenerate

RUNTIME IS 1 HOUR PER PROPERTY

OVERALL 64 ASSERTIONS

83

Master Checks: Priority Checks

reg [CASES-1:0] seen_multi_inst[REQ-1:0][GRP-1:0][BNK-1:0];

generate

for (r=0;r<REQ-1;r=r+1)

for (g=0;g<GRP;grp_i=g+1)

for (b=0;b<BNK;b=b+1)

check_arbitration_i0_and_i1:

assert property (seen_multi_inst [r][g][b][0] &&

!req_out [r][0][g][b]

|->

!req_out [r][1][g][b]);

endgenerate

RUNTIME: 5-7 MIN PER ASSERTION

OVERALL 176 ASSERTIONS

84

Correctness Requirements

• Starvation

– If any requestor was starved access it would never be seen coming out

• Fairness

– If any requestor was serviced unfairly with respect to the arbitration

scheme then the priority/ordering assertions would fail

• Liveness

– All incoming requests granted eventually proved using assume guarantee

• Deadlock

– No deadlock as all incoming requests are granted at correct destination

85

Revisiting Correctness Graph

Functional correctness Liveness Livelock Deadlock Starvation

Evacuation Local Liveness

Productivity

In-order delivery

Source: Formal Verification of On-Chip Communication Fabrics, Freek Verbeek, 2013, Radboud University

In-order delivery is a stronger notion of correctness than productivity

86

DDR

CPU GPU Vision Radio

INTERCONNECT

USB I2C Bluetooth Ethernet

DMA

Load Store

Unit

Memory

Subsystem

Tile Memory

Architecture
Routers

DMA Data

Transfer

Bus Bridges

Bus Bridges

NoC

Sequential complexity

SoC Verification

87

Summary

• We described challenges with SoC Verification

• Showed how an agile formal verification flow can be used

– Focus was on Erase and Prove phases

• Tutorial on how to build efficient and scalable formal models

• Addressed scalability aspects through case studies

– Abstraction

– Assume Guarantee

– Scenario Splitting

– Case splitting

88

FORMAL VERIFICATION FOR CONTROL

PATHS

Agenda

• Control Path Complexity

• Formal Apps for Control Path Verification

• Formal Environment Architecture

• Abstraction/Bug Hunting Techniques

• Example Bugs

90

CONTROL PATH COMPLEXITY

High Level Design Architecture

Controller

Accepts external and control

input, generates control and

external output and

sequences the movement of

data in the Datapath.

Datapath

Responsible for data

manipulation. Usually

includes a limited amount of

storage.

Memory

Optional block used for long

term storage of data

structures.

92

FSMs For Control Paths

10G/40G EthernetPCIE/USB LTSSM

Control paths commonly

implemented using

FSMs:

- Many states w/ sub-

states M/C

- Multiple paths to reach to

the same state

- Convoluted state

transitions

- Priority among

simultaneously occurring

transition conditions

93

Control Path Verification Challenges

No good models to check control path accuracy

State space explosion due to temporal input behavior

Not every control path bug manifest into scoreboard bug efficiently

Limited visibility at the interface boundary

Traditional coverage metrics

insufficient

94

Example Bug Escapes

Bug: What happens when ack and req are asserted in the same cycle?

A packet processing engine responsible for packet transfers

to/from memory and is sharing DMA

• DMA acknowledge the request (Req) within 0-10 cycles

• Acknowledge (Ack) is asserted for one cycle

• Ack is asserted in the same cycle as Req when no other

high priority request is pending or for a parking master

Will starve permanently

waiting for ack

95

FORMAL APPS FOR CONTROL PATH

VERIFICATION

Introduction to Formal Apps

Build & Verify user properties

Auto generated properties

Periodic regressions w/ faster closure

97

Property Verification

Verify User Defined Properties

FPV

Auto Checks (AEP)

Functional Checks for RTL Structures

AEP

Formal Coverage Analyzer

Achieve Faster Coverage Closure

FCA

Regression Mode Accelerator

Increases verification throughput

with faster convergence

RMA

FORMAL ENVIRONMENT

ARCHITECTURE

Properties for FSM

State Transition (Out) checks
When current state Recovery_Speed changes, next state possible are

Recovery_lock and Detect_Quiet states

State (Output) checks
Directed_speed_change if asserted, has to be go low when entered in

Recovery.speed state

End-To-End checks
When targeted link speed is different than current port speed, LINK

DATA RATE has to change in # time

State Transition (In) checks

Entry to Recovery_Speed is possible only when current states are

Recovery_lock, Recovery_Config, Recovery, eq* states

99

Coding Assertion Properties

Transition (Out) checks

Output Signal checks

End-to-end checks

Transition (IN) checks Assertions using RTL internal signals

+ Good for bug hunting

+ Typically 1/2 cycle assertions; Easier to converge

+ Lesser COI; Pinpoints to the root cause

- Needs design knowledge

Assertions using RTL boundary signals

+ Map to spec level features; hence gives higher confidence

- Tend to be long temporal; relatively Harder to converge

- Harder to code and debug

Methodology Recommendation: Begin with white-box/internal assertions and then move to end to end checks

(Assume-Guarantee in upcoming slides)

100

Orthogonal Properties

Orthogonal properties capturing specification intent (than duplicating RTL) finds bugs

Cs == Wait_for_req && Req |=> Cs == Wait_for_ack

Cs == Wait_for_ack && Ack |=> Cs == Process

Req & Ack

Req & !Ack

Ack |=> Cs == Process

Won’t find bug Will find bug

Bug: What happens when Ack and Req are

asserted in the same cycle?

101

RTL Helper Model for Assertions – 1/2

– Master drives REQ as pulse signal, Slave responds with ACK as pulse

signal

– The relation between REQ and ACK is 1 on 1, Slave must not assert ACK

more than asserted REQ

102

assert property (@(posedge CLK) REQ |=> !REQ);

assert property (@(posedge CLK) ACK |=> !ACK);

assert property (@(posedge CLK) REQ |-> ##[1:$] ACK);

assert property (@(posedge CLK) not (REQ && ACK));

….

Easier to

model in

Verilog

RTL Helper code to model assertions are easier to code, debug and better for tools to converge

RTL Helper Model for Assertions – 2/2

103

tr_inp

Create a new

signal, tr_inp,

using RTL and

write assertions

using it

Constraints Strategy

• Over-constrained environment

– Pros:

• Properties will pass easily

• Easier to understand RTL behavior

– Cons

• Constraints will need to be reviewed and

removed

• Chance of missing important bugs

• Under-constrained environment

– Pros:

• Will be covering a lot of RTL

• Highly effective for bug hunting

– Cons:

• Harder to get a good proof early on

Recommendations:

• Start with fewer constraint for effective bug hunting

• Add constraints one by one; constraint layering – methodical approach

104

Effective Use of Cover Properties

Early stages of

verification to do how

and what if analysis

Early RTL Exploration

To ensure design is not

getting over-constrained

Constraint Analysis

To guide hybrid engines

to cover interesting state

or scenario many cycles

deep from reset

Deep Bug Hunting

Useful to decide the cycle depth

when bounded proofs can be

signed-off with confidence

Bounded Proof Depth Analysis

Important cover properties can be

integrated back to verification plan

for coverage signoff

Integration wit Verification Plan

105

ABSTRACTION/BUG HUNTING

TECHNIQUES

Driving Deep Sequential Inputs/States

Cut-points to drive interesting scenarios on deep

sequential signals with constraints

E.g. Deep state machine w/

- TS1_64_Symbol_Rcvd signal need to be asserted to go from

RcvrLock to RcvrCgf State.

- Would need 64 consecutive TS1 symbols for signal to go high

Cut the driver for TS1_64_Symb_Rcvd

assume next_state == RcvrLock |-> ##[2:64]

TS1_64_Symb_Rcvd

107

Counter/Timer Abstractions

• Reducing the length of counters/timers

– Using parameterized or `define RTL settings

#(.CREDIT_THRESHOLD (8)) // instead of 64

– Using automatic or guided abstraction commands in the tool setup

• Cut the driver and apply additional constraints for interesting cases based on the spec

set_abstraction -construct count=8

st_ini

st_low
st_trg

CEN==1

CEN==1 &&

CNTS==16’hfe09

Snip driver to CNTS

assume –expr {abscnt==st_ini |-> CNTS==0}

assume –expr {abscnt==st_low |-> CNTS>0 && CNTS<16’hfe10}

assume –expr {abscnt==st_trg |-> CNTS==16’hfe10}

assume –expr {abscnt==st_high |-> CNTS>16’hfe10 &&

CNTS<=16’hffff}

st_highCEN==1

CEN==0

CEN==1 &&

CNTS==16’hffff

!(CEN==1 &&

CNTS==16’hfe09)

108

Assume Guarantee

Proven assertions are treated as assumptions for subsequent properties
• Very useful for harder to prove properties in common cone of influence

• Internal (intermediate) properties act as effective invariants and assumptions for end to end properties

• Can be applied on the fly for same run or subsequent runs

109

Block A Block A

assert !(A&B) assume !(A&B)

Run #N
Run #N (On-The-Fly) OR

Run #N+1

Case Splitting

Independent modes/values/bit indexes to be

verified can be separated into diff formal

tasks; reduces complexity

WARNING: Make sure no modes are left out

during case enumeration

10G/40G RX S/M

Enumerate different modes/scenarios for case

split

10G Mode

40G Mode

assume mode == 10G

Check assertions

assume mode == 40G

Check assertions

110

EXAMPLE BUGS

Example Bugs – 1/3

During transmission (TX State), a received error count is maintained.

If error count reaches certain threshold, S/M goes to retry state.

BUG: Error count is expected to reset to zero before starting new data

transmission; however it is reset only in IDLE state and not Ack state

(after entry from Retry)

Paths covered:

IDLE -> TX -> ACK -> TX….

IDLE -> TX -> RETRY -> ACK -> IDLE…

Paths not covered

IDLE -> TX -> RETRY -> ACK -> TX…

States and transitions covered, but not all paths.

IDLE

TX

Retry

Ack

Power
Down

assert property $rose(current_state == TX) |-> error_count == 0

112

Example Bugs – 2/3

Whenever low power request is asserted, state machine should immediately

go to Power-Down state, turn off all clocks, and move to IDLE (non-active)

state.

BUG: Design misses the transition arc from Retry state causing

downstream logic to get into deadlock state

Hard to ensure from design boundary that power-down signal is asserted
from every possible state (less visibility)

If the design misses the transition arc, code coverage tools cannot find it

Missing state transition conditions harder to find

assert property $rose(powerdown_request) |-> next_state == PowerDown

IDLE

TX

Retry

Ack

Power
Down

113

Example Bugs – 3/3

case (Current_state)

…

Recovery.idle:

If(consecutive_8_symb_data_rcvd) next state == L0

….

else if(timeout_2ms_expired && no_activity) next_state = Detect

else if(!idle_to_rlock_transition_cnt_expired) next_state = Recovery.Lock

When multiple transition condition are true concurrently, priority of

transition needs to be checked thoroughly

Priority between simultaneously occurring state transition conditions often harder to cover

assert

assert current_state == Recovery.Idle && next_state == Detect |-> !idle_to_rlock_transition_cnt_expired

114

Summary

• Control path complexity introduces bugs that escapes in traditional verification

• Formal apps with user and auto generated properties target control path

exhaustively

• Architecting formal TB with orthogonal assertions and right set of constraints is

key to success

• Abstraction techniques enable effective bug hunting to find corner case bugs

115

DATA PATH VERIFICATION

Datapath Correctness is Important… and Difficult!

Source: https://www.techradar.com/news/computing-

components/processors/pentium-fdiv-the-processor-bug-

that-shook-the-world-1270773

Source: https://itsfoss.com/a-floating-point-error-that-

caused-a-damage-worth-half-a-billion/

Source: https://hackaday.com/2015/10/26/killed-by-a-

machine-the-therac-25/

117

Exhaustive Simulation Takes Too Long

X
3 billion operand pairs per second

A

B
out

16-bit operands

1.5 seconds

32-bit operands 64-bit operands

195 years 3.5 * 1021 years

118

What About Functional Coverage?

119

Source: xkcd.com

(Not a real data representation)

What About Functional Coverage?

Find two 32-bit floating point multiplication operands that:

– Have a positive result?

– Have the largest representable pre-rounded exponent?

– Have all 1’s in the pre-rounded mantissa?

– Round up?

120

Commercial Formal Verification Options

121

Property Verification
(VC Formal FPV)

• Familiar methodology

• Correct properties mean

correct design

• Heavy use of bit-level

modeling

Equivalence Checking
(HECTOR, VC Formal DPV)

• Small learning curve

• Correct properties mean

equivalent designs

• Bit-level and word-level

modeling

Industrially Used But Not Commercially Supported

Theorem Proving

• Steep learning curve

• Correct properties mean

correct design

• Bit-level and word-level

modeling

• Long development time

Symbolic Trajectory Evaluation

• Abstraction integrated

into specification

• Potentially robust but

requires manual

abstraction in general.

• Proprietary and secret

tooling.

122

Equivalence Checking Overview

123

Algorithmic Design
 Untimed C/C++

< 100 – 10K lines >

 Timed Verilog, VHDL

< 1K – 50K lines >
Original Register Transfer Level

Design (RTL)

Optimized Register Transfer Level

Design (RTL)

Gate-Level Design

 Timed Verilog, VHDL

< 1K – 100K lines >

 Netlist

Power

Performance

Area

Automatic or manual

refinement steps

Different Types of Equivalence Checking

Design B

Design A

Boolean

Equivalence

(Formality)

Matched Compare

PointsCompare Boolean

Fan-in Logic

Untimed Transaction Model A

Cycle Accurate Model B

Assume

Equal Inputs

Compare Outputs at

End of Transaction(s)

Transaction

Equivalence

(VC Formal DPV)

124

What Is Transactional Equivalence?

• A transaction consists of:

– Inputs

– Input State (optional)

– State Change

– Outputs

– Output State (optional)

• A transaction can be:

– Combinational

– Sequential Overlapping / Pipelined

– Sequential Non-Overlapping

Defining a transaction

a + b + c = out

+ +
a
b
c

out

+ +
a
b
c

out

+
a

start out

b/c

125

What is Transactional Equivalence?

Transaction boundaries

+ +
a
b
c

out

+ +
a
b
c

out

+
a

start out

b/c

Transaction

Clock
1

2
3

4
5

6
7

8

Transaction

Clock
1

2
3 …

Transaction

Clock
1

2 …

Flops capture on positive edge

126

Datapath Verification using HECTOR Technology

✓ Proves consistency of independently developed models

✓ Exhaustively verifies successive design refinements

✓ Great for corner case bugs

✓ Does not require testbenches, assertions, coverage

Formal Block-level Transaction Equivalence Checking

C/C++
Reference

Model

C/C++
Implementation

Model

HECTOR

RTL Model
Transformed

RTL

HECTOR

C/C++
Model

RTL Model

HECTOR

C to C C to RTL RTL to RTL

127

Building a Proof

• Model: Picking an arbitrary matched

transaction

• Combinational - No state, just need to

match inputs

• Fully Pipelined - State represented by

previous transactions can be “All X’s”.

Memories need to be mapped, but can

be unconstrained

• Iterative - Memories need to be mapped,

input state needs to be constrained and

checked

• Relating transactions

Transaction

Clock
1

2
3

4
5

6
7

8

Transaction

Clock
1

2
3 …

Transaction

Clock
1

2 …

128

Common Functions Verified with HECTOR Technology

May require advanced techniques

Implementation specific results

Requires advanced techniques

Implementation specific results

Low effort

Integer Logical operations
Addition/Subtraction
Absolute value
Multiply (result < 20 bits)

Cryptography SHA Primitives
AES single round

Floating Point Convert
Addition/Subtraction
Multiply (half precision)
Compare

High effort

High radix SRT dividers

Systolic array multiplier matrices

Streaming data operations

Medium effort

Integer Multiply
Multiply accumulate

Floating Point Multiply
Multiply accumulate

Integer /
Floating Point

Divide (SRT radix 2/4)
Square root (SRT radix 2/4)

129

Case Study 1: 64-bit Floating Point

• All ISA defined rounding modes

• Numeric results, NaN handling,

and exceptions

• Verified RTL equivalence to C

simulation reference model

130

Function
Approximate

Runtime (minutes)

Opcode 1 2

Opcode 2 1

Opcode 3 1

Opcode 4 3

Opcode 5 4

Opcode 6, ver. 1 410

Opcode 6, ver. 2 103

”In the case of math modules…, the formal verification work has found more than 100 bugs that might not

otherwise have been found until silicon!”

Case Study 2: 32-bit Floating Point

• Verified RTL equivalence to SoftFloat
reference model

• Multiple RTL bugs discovered

• HDPS,
solveNB_division/solveNB_sqrt
accelerates convergence of
traditionally difficult problems

Function
Approximate Runtime

(minutes)

FP ADD 5

FP SUB 5

FP MUL 5

FP MUL ADD 120

FP DIV 240

FP SQRT 240

131

Case Study 3: AI Inference

• Complex MAC arrays

• Verify scalable from 3x3 to 128x128
– Multiplier inputs 16 bit

– Adder inputs 32 bit

• Datapath verification results
• Matrix 8 x 8: proved in seconds

• Matrix 32 x 32: proved in minutes

• Matrix 64 x 64: proved in a few hours

• Matrix 128 x 128: proved in 30hrs

132

*

+

*

+

*

+

*

+

*

+

*

+

*

+

*

+

*

+

What is the Manual Effort to Build a Proof?

– Easier problems just run.

• First time users pleasantly surprised with quick setup

– Harder problem needs some manual guidance

• Case split, abstractions, ….

• Expert design domain knowledge is required

• Formal background helps but not necessary

133

DATAPATH VERIFICATION BEHIND THE

SCENES

How is DPV Different than Model Checking?

– Problems are often nonlocal
• Model checking properties often only need a small part of the design for the proof

– Different engines are needed
• Model Checking

– The large number of control behaviors are typically the hardest problem

– Individual computation steps are often not that hard to check

• DPV: there is often a relatively manageable control aspect, but the correctness of single step
computations can be really hard to show

– The need for multiprocessing is different
• Model Checking: The main complexity is finding a chain of (optimizations, abstractions, final

solver) that can deal with a particular problem

• DPV: Typically have fewer engines but lots of case splitting and optimization

135

Fundamental Technology Building Blocks

• Binary Decision Diagrams and variants (BDDs)

• Satisfiability (SAT) and Satisfiability modulo theories (SMT)
checkers.

• Polynomial verification procedures/Groebner bases

• Rewriting

• Proprietary leaf level solvers

136

Binary Decision Diagrams (BDDs)

• Graph data structures that represent Boolean functions

• Invented in the mid 1980s, enabled first wave of formal
verification tools

• Unable to deal with whole larger multipliers

– But extensions such as *BMDs tried to solve that

• Still relevant and useful if used judiciously

137

Satisfiability (SAT) solvers

• Takes as input a description of a single output circuit in some syntactic form

• Tries to find one way to the assign all leaf level inputs some Boolean value that
makes the output evaluate to true

• Lots of design automation problems can be cast into this form
– In particular, the comparison of two implementations of a multiple output circuit

• Unable to prove that two larger multiplier implementation are equivalent, if used
monolithically

• Enabled the second wave of formal verification tools in the early 2000s

138

SMT

• SAT solvers can be extended into a platform for plugging
together solvers for custom theories

– Memories

– Infinite precision arithmetic

– Bit vectors

– …..

• This is called “Satisfiability Modulo Theories” (SMT)

• This enabled boom of interest in the field of formal
software verification that started in the early 2000s

139

Polynomial Verification

• Takes two polynomials as inputs and decide if they are

the same

• Typically

– one is a polynomial modelling low-level gates

– the other one a polynomial expressing a higher level

datapath specification

140

Rewriting

• Takes as input expressions in some formal language

• Generates a rewritten, hopefully simpler, expression

• Examples:

– A(32) * (B(32) + C(32)) -> A(32)*B(32) + A(32)*C(32)

– a&b | a -> a&b

141

Putting Leaf Level Solvers Together

– Proof tactics:
• Case splitting

• Abstraction

• ….

– Speciality engines
• Deep integrations of leaf level solvers

– Multi processing
• Many of our users run a single check on a grid with 100s of

processors

142

Case Splitting

• Most common technique to solve hard problems

• Breaks original proof into sub-proofs

– Failing sub-proof is failure for larger proof

– All passing sub-proofs true mean larger proof is true

• Useful case splits can be based on operation or based on

microarchitecture

143

Brief Overview: 32-bit Floating Point Format

144

Mantissa(fraction) 23 bits

0223031 23

Exponent
8 bits

Sign

exp mantissa Meaning

0 0 Zero +0 and -0 are possible.

0xFF 0 Infinity +inf and -inf are possible

0xFF != 0 NaN (Not a Number) Created by invalid operations

!= 0
!= 0xFF

Normal number 1.Mant x 2(𝑒𝑥𝑝−127)

0 != 0 Denormal number 0.Mant x 2−126

IEEE 754

The value 1 is represented as: exp = 127 mantissa = 0 1.0 x 20

The value 0.5 is represented as: exp = 126 mantissa = 0 1.0 x 2−1

Case Split Example - FP Multiply Accumulate

• Operation: (A * B) + C

• Possible case splits

– Any input Infinity or NaN

– Product term zero

– Addend term zero

– All combinations of subnormal/normal non-zero numbers

145

Other Convergence Techniques

• Internal equivalence points or relationships

– Tool will look for these, but may not recognize complex relationships

• Assume-Guarantee

– Split design up into stages to reduce complexity

• Bit-level to Word-level abstraction

– Particularly on complex operations (multiply, divide, etc)

• Blackbox/cutpoint

– Remove logic that does not participate in the result

146

Thank You

147

