
Tackling the challenge of simulating multi-rail macros in a power aware flow

Himanshu Bhatt Amol Herlekar Vikas Grover Subhadip Nath

(Mgr., CAE) (Sr. Staff, CAE) (Sr. Mgr.) (Sr. Design Engineer)

Synopsys, Inc. Synopsys, Inc. AMD, Inc. AMD, Inc.

himanb@synopsys.com herlekar@synopsys.com vikas.grover@amd.com subhadip.nath@amd.com

ABSTRACT
Digital and analog macros such as pll, serdes, and
memory models have become an integral part of
designs. For verification, macro vendors provide
behavioral models that capture the macro
functionality to some level of user-defined
accuracy. For implementation, technology libraries
(liberty syntax) are provided to the user. For
functional simulation, behavioral models are
integrated into the verification flow, while during
implementation the macros get inserted for the
corresponding behavioral models. This has been the
traditional flow among design houses.
Low-power verification makes the problem more
complex. The challenges are compounded if the
macro is a multi-rail macro (having more than one
power rail) or has an internal power switch,
because in such cases, the macro cannot be
partitioned into a single power domain. Assuming
that the macro can be switched off, the objectives
are to make sure that such macros can be
accurately handled during low power simulation
and that the simulator can expose issues like
missing/incorrect connections, missing isolation
cells or level shifters. The primary issue then is how
to simulate macros in a power-aware flow such that
the low-power information integrity is sustained.

Keywords
Low Power, Functional Verification, UPF
Unified Power Format, IEEE 1801

1. Introduction
The solution to sustaining low-power information
integrity when simulating macros in a power-aware
flow requires a methodology that delivers accurate
simulation results. The pace of design and the cost
of silicon failure do not permit the electronics
industry a similar turnaround time for power-aware

design. The idea behind low-power verification is to
catch any issues related to power-up and power-
down sequences and to make sure that all required
isolation cells, level-shifter cells, retention cells and
corresponding policies in UPF are in place. All legal
states and sequences must be covered and the
design must never end up in any illegal state which
it cannot exit.

This paper describes a methodology that makes
catching bugs easier without actually imposing low-
power semantics on the macro behavioral model. In
this flow, macro .dbs (liberty files compiled and
dumped by the synthesis tool) should be provided
to the simulator. The simulator will use the .dbs to
associate driving rails for each macro port because
the .lib contains related power and ground pins for
each logic port. The simulator will try to match the
db instances with the macros in the device under
test. If the PG ports are matched, then the
behavioral model is said to be power-aware
otherwise it is non-power-aware.

 Once .db matching is done, the simulation
semantics for such macros is that the UPF
specification for the macro simply is ignored. No
corruption semantics is applied to the internals of
the model. No instrumentation for low-power
semantics (e.g. isolation or retention) is done inside
the model. This methodology thus helps avoid any
undesired corruption or wake-up issues. Users can
do a more accurate multi-rail macro simulation
because ports are corrupted based on related
power-down functions or related PG pins. Such
issues as missing isolation cells will be caught in
simulation because ‘x’ will propagate. This
minimizes the risk of subtle bugs escaping into
silicon.

mailto:himanb@synopsys.com
mailto:herlekar@synopsys.com
mailto:vikas.grover@amd.com

This paper focusses on the low power simulation
semantics of digital models only. AMS/analog
models simulation is out of scope of this paper.

Simulation flow using macro with .db

This paper provides successful examples of this
methodology in finding low-power functional bugs.

2. Low-power simulation of macros using .dbs
The macro models can be supplied in both Verilog
behavioral codes and/or in implemented .dbs.
There are two kinds of these models:
• Power-aware needs to model accurately the

effect of the supplies on the internal logic and
also the relationship between input supplies
and the outputs of the block.

• Non-power-aware is the standard behavioral
model typically provided, with no supplies
defined.

Power-aware model
This represents pre-implemented blocks with
supplies. The corresponding RTL model has PG pins
defined.

The PG pins in RTL can be declared as
 input/output ports
 UPF::supply_net_type
 reg/wire/logic
 supply0/supply1
The supply connections to the PG pins will be made
– Explicit – based on connect_supply_net in UPF
– Implicit – tied to primary supplies of the domain
The ‘corruption’ (or not) is handled by the model
itself
Example: if (VDD1! == 1’b1) Q = 1’bz
Because the model is assumed to define its power-
aware behavior, the simulator will not apply any
corruption on these models.

Non-Power Aware Model

Here the corresponding RTL model does not have
the PG pins. Supply connections to the PG pins will
be made
– Explicit – based on connect_supply_net in UPF
– Implicit – tied to primary supplies of the domain
The simulator will apply corruption on logic pins if
power_down_function for the output pins
evaluates to TRUE or in case of no
power_down_function, if corresponding
related_power_pin/related_ground_pin is turned
OFF

Example of a multi-rail memory

Behavior:
…
if shutoff (vddmp)
 corrupt_periph
 if (iso_arr == 0)
 corrupt_array
…

 Internal behavior depends on inputs and
supplies (vddmp / vddma)

 Array can be retained if vddma is ON and
iso_arr = 1

 Signals are connected in RTL
 Supplies are connected in UPF
connect_supply_net Vtop –port u_mem/vddmp
connect_supply_net Varr –port u_mem/vddma
set_domain_supply_net pd_top –primary_power
Vtop
Example of a MRM Liberty Model

The above figure shows the definition of the macro
cell. The supplies and related power and ground
pins are defined.

We refer to this methodology as “simulating the
macros for port-based corruption using .dbs.”

Macros with internally switchable models should
preferably have complete PA models. Otherwise
tool will do port corruption based on power-down
function or related supply.

2.1 Methodology details
The methodology is to provide macro .dbs (liberty
files compiled and dumped by the synthesis tool) as
input to the simulator, which uses this information
to simulate the models depending on whether
these are power-aware or non-power-aware.

Information related to .dbs (search path and .db
name) can be provided in a configuration file:

db_search_path = {path1 path2 path3}
db_link_library = {db1 db2 db3}
This .db configuration file can be passed to the
simulator during compilation as follows:
%vcs –upf <UPF_FILE> <DESIGN_FILES>
-power_config <DB_CONFIG_FILE>

Sample .db_config file

The tool will try to match the .db instances with the
macros in the device under test. If the following
conditions are specified then a .db cell is said to
have matched with the behavioral model:
 Name of the macro behavioral model and the

.db cell must match.
 All macro behavioral model ports must match

the .db cell logic pins in name and width.
 If there are PG ports in the model, they must

match .db PG ports and should not have a width
of more than 1.

If the PG ports are matched, then the behavioral
model is said to be power-aware. Otherwise, it is
non-power-aware.

Once .db matching is done, the simulation
semantics for such macros are the following:
 Any UPF specification for the macro is ignored.
 For all such macros, no corruption semantics is

applied to the internals of the model. This helps
avoid any undesired corruption or wake-up
issues.

 No instrumentation for low-power semantics
(e.g. isolation or retention) is done inside the
model.

 If the behavioral model is power-aware, it is
assumed that the model internally takes care of
corruption, and so the simulator does not
instrument anything for corruption. Only the
tool drives appropriate values on the PG ports
of the model. This is the default behavior and
can be overridden to instrument corruption by
the simulator.

Example of a power-aware model:

module BUFFD0HVT (I, Z, VDD, VSS);
input I, VDD, VSS;
output Z;
assign Z = (VDD) ? I : 1'bx;
endmodule

 If the behavioral model is non-power-aware,

macro logic pins are corrupted based on power-
down function, if specified, otherwise related
power ground pins are used for corruption.
Again, this is the default behavior and can be
overridden to skip corruption.

Example of a non-power-aware model:

module BUFFD0HVT (I, Z);
input I;
output Z;
assign Z = I;
endmodule

As described, as per this methodology, by default

 Corruption will not happen on power aware
models

 Corruption will happen for non-power aware
models

This methodology provides users the flexibility to
override the default behaviors using the following
UPF commands:

• Apply corruption on all cells:
 set_design_attributes –attribute
 { SNPS_override_pbp_corruption TRUE}
• Do NOT apply corruption on all cells:
 set_design_attributes –attribute
 { SNPS_override_pbp_corruption FALSE}
• Apply corruption on an individual cell:
 set_simstate_behavior ENABLE –model
 {model_name}
• Do not apply corruption on an individual cell:
 set_simstate_behavior DISABLE –model
 {model_name}

The preceding methodology describes the process
as implemented and used in the Synopsys low-
power simulation (MVSIM-NLP), but the general
concept can be applied to any simulator.

2.1.1 Alternative solutions considered

We considered two other approaches. The first one
is to treat the macros as “always on.”

Treat the macros as “always on”

Because the behavioral models are not going to be
synthesized and eventually will be replaced by
macros, is it worth implementing low-power
simulation semantics on such behavioral models?
Of course, you might find design issues in the
model, but they might not be real design bugs. Also,
instrumenting low-power semantics on
synthesizable code in such models might be overkill
for the tool. Such models might not be able to
handle shut-down corruption. It might be difficult to
infer resets/clocks and flops. There might be
unwanted shut-down issues due to corruption
because there are lot of $tasks and similar

constructs used in such models. You might end up
debugging undesired wake-up issues.
The user can treat behavioral models as “always on”
by using the following UPF command:

set_design_attributes –models <MODULE_NAME>
-attribute UPF_dont_touch TRUE

Once you have marked the behavioral models as
UPF_dont_touch, the simulator will not do any
instrumentation inside it. The internals as well as
the outputs of such models will not be corrupted by
the tool. If there is some ‘x’ on the inputs of the
model, only that ‘x’ will propagate through the cone
of logic. This will avoid all the unnecessary
corruption and its effects on the macro.
If the behavioral model is power-aware, then the
voltage values can be propagated from the UPF to
the model. In any case, if the model is completely
power-aware, it does not make sense for the
simulation tool to instrument corruption semantics
on the model. The power-aware model will take
care of the internal as well as output corruption
based on the voltage values.
There is also a flipside for such an approach.
Consider the case when such a model is non-power-
aware. What if one of the outputs of such a macro
has a direct sink in a relatively more “on” domain?
Because we are not going to corrupt the outputs of
this macro, simulation will not be able to catch
issues like missing isolation cells. The same might be
true for level shifters.

This mode should not be preferred for macros
having internally switchable domains. It should only
be used if the macro has been thoroughly verified
at block level earlier.

The second alternative methodology is to simulate
the macros with UPF.

Simulate the macros with UPF

Some users like to simulate such macro behavioral
models with UPF for the sake of confidence. If UPF
is provided, the tool instruments the behavioral
model for corruption, isolation, retention and other

low-power simulation semantics. In such a case,
users can catch issues like missing isolation cells
because ‘x’ will propagate. On the flipside
- The design issues that simulation catches in

behavioral model might not be real bugs.
- For retention, flops might be inferred

incorrectly in unsynthesizable code.
- Resets/Clocks might not be inferred correctly

leading to power-up issues.
- Models might not have ability to handle

corruption, so you might end up debugging
non- issues.

- Because any power rail can have only one
power-net and one ground-net, it might not be
possible to simulate multi-rail macros with this
approach, unless the macro forms the boundary
of some power domain, when
set_related_supply_net/set_port_attributes can
be specified.

2.2 Use cases

2.2.1 Use model description at AMD

- Non-power-aware BFM models for macros were

instantiated in the design.
- Corresponding .db files were passed to the

simulator.
- UPF with necessary isolation policies were

passed to the simulator.
- CSNs were specified in the UPF to connect the

supply rails of the macros.
- Necessary power information was present in

the .db files, while the BFMs were non-power-
aware by themselves.

- Default NLP behavior for PBC was utilized in
power-sequencing tests, i.e., models identified
as power-aware were not corrupted, while non-
power-aware models were corrupted.

Macro information:
- Around 2,000 unique .db files were passed to

the NLP tool with db_link_library variable.
- The NLP tool matched about 500 unique multi-

rail macro .dbs. (Breakdown: 100 with two
power rails, 400 with three power rails, and a

few having six power rails, excluding ground
rails).

- NLP applied this methodology on about 720
such macro instances.

2.2.2 Benefits from adopting this flow

- Higher CPS and lower peak memory for power-

aware simulations.
- Improved debug ability of power issues and

decreased debug cycle time because we were
not required to verify undesired corruption and
wake-up issues inside macro BFMs.

2.2.3 Useful bugs found

- Bugs related to power-down and wake-up

sequences were detected and fixed as usual.
- The bug detection improvement may not be

quantifiable due to a change of methodology of
power verification. However, SNR was improved
and fewer false alarms were hit.

Above all, this flow adoption gave the verification
team a better confidence of signing off the low-
power verification.

3. CONCLUSIONS AND FURTHER
DEVELOPMENTS
This closed-loop methodology ensures that no bugs
in a macro used for low-power simulation escape
into silicon.

We conclude the following based on this flow:

Pros of .db methodology:

 Avoid undesired corruption or wake-up issues.
 More accurate multi-rail macro simulation

because ports are corrupted based on related
power- down functions or related PG pins.

 Catch issues like missing isolation cells because
‘x’ will propagate.

Cons of .db methodology:

 If the models have PG pins but not corruption

instrumentation, they will be treated as power-
aware models. In such cases, no corruption will
be done.

 Using .db flow is recommended based on the
assumption that the macro vendor has done
accurate low-power verification for the macro
and that there are no holes. If that is not the
case, then this flow is prone to missing bugs.

 Issue like power-on reset not getting asserted
for memories inside the macro cannot be
caught because there will be no corruption, and
valid data will be read out on power-up even
though no data has been written into the
memory.

4. ACKNOWLEDGMENTS
The authors thank the entire low-power simulation
team, without whose support this flow would not
have been a success.

5. REFERENCES
 IEEE Standard for Design and Verification of
 Low Power Integrated Circuits

