
Tackling the challenge of simulating multi-rail 
macros in a power-aware flow 

Himanshu Bhatt/Amol Herlekar          Vikas Grover/Subhadip Nath
Synopsys Inc. AMD, Inc.

March 4th, 2014



Agenda
• Should macro be power-aware?

• Available macro power-aware simulation methodologies

• Simulate macro as “always on”

• Simulate macro with UPF

• Simulate macro with .db

• Use cases

• Conclusion



Should macro be power-aware?
• Macros like PLL, SerDes, memory, etc., are replaced 

with behavioral models during functional verification.

• Behavioral models are never going to be synthesized. 
Is it really necessary to impose power-aware 
simulation semantics on them?

• Another school of thought believes in thorough low-
power verification of macros for the sake of 
verification confidence.



Available macro power-aware
simulation methodologies*

Simulation Behavioral Model

Simulate macro as “always on” 1. Non-power-aware
2. Power-aware

Simulate macro with UPF Non-power-aware 

Simulate macro with .db 1. Non-power-aware
2. Power-aware 



Simulate macro as “always on”
• Because macros are replaced with behavioral models during 

simulation, any design issue caught on these models during  
simulation might not be a real design issue.

• Instrumenting low-power semantics on non-synthesizable code 
might cause unwanted shut-down issues, and turning existing 
user-defined tasks and checkers into power-aware is 
troublesome.

• MVSIM-NLP implemented the following command to make 
behavioral models always-on

set_design_attributes –models <MODULE_NAME> -attribute UPF_dont_touch TRUE



Simulate macro as “always on”

<= UPF_dont_touch TRUE



Simulate macro as “always on”
• Another variation of this “always on” simulation 

methodology is to make the macro’s behavioral model 
power-aware.

module macro_behav (
input wire power_supply,
…
output wire power_aware

);
…
assign power_aware = power_supply ? orig_signal : 1’bx;
…

endmodule



Simulate macro with UPF
• Unified Power Format is devised for power-intent 

specification.
Power Supply Network

Power Strategy

Power State Table



Simulate macro with UPF

• UPF is more flexible.



Simulate macro with .db
• Instead of creating a UPF file for each macro, leveraging the 

macro’s existing technology library files can save effort if this 
methodology meets the requirements.

• MVSIM-NLP is able to read the macro’s .db files and associate 
the driving rail for each macro port.



Simulation flow using macro with .db 

Compile the design

Elaborate the design and UPF 
using  -power_config 
<DB_CONFIG_FILE>

Simulate the elaborated 
snapshot



Simulate macro with .db
• To match a .db cell with a behavioral model, the 

following conditions must be met:
– Name of the macro’s behavioral model and name of the .db cell match.

– All macro behavioral model ports match the .db cell’s logic pins in name 

and width.

– If there are PG ports in the macro’s behavioral model, they must match 

db’s PG ports and their width should be 1.

• If all conditions are met, MVSIM-NLP treats the 
macro’s behavioral model as power-aware.



Simulate macro with .db
• The following two models are both power-aware.
• The waveform shows MVSIM-NLP won’t do any corruption 

instrumentation.



Simulate macro with .db
• The following behavioral model doesn’t match all 

conditions; thus, it is treated as non-power-aware.



Overriding default behavior
• Apply corruption on all cells:

set_design_attributes –attribute
{ SNPS_override_pbp_corruption TRUE}

• Do NOT apply corruption on all cells:
set_design_attributes –attribute
{ SNPS_override_pbp_corruption FALSE}

• Apply corruption on an individual cell:
set_simstate_behavior ENABLE –model
{model_name}

• Do NOT apply corruption on an individual cell:
set_simstate_behavior DISABLE –model
{model_name}



Use model description at AMD
• Non-power-aware BFM models for macros instantiated in 

design
• Corresponding .db files passed to simulator
• UPF with necessary isolation policies passed to simulator
• CSNs specified in UPF to connect supply rails of macros
• Necessary power information present in. db files

• BFMs were non-power-aware by themselves
• Default NLP behavior for PBC utilized in power sequencing 

tests (i.e., models identified as power-aware not corrupted, 
while non-power-aware models corrupted)



Use model description at AMD (cont.)
Macro information
• Around 2,000 unique .db files passed to MVSIM-NLP with 

db_link_library variable
• NLP tool matched about 500 unique multi-rail macro .dbs. 

(Breakdown: 100 with 2 power rails, 400 with 3 power rails, and a 
few having 6 power rails, excluding ground rails)

• NLP applied this methodology on about 720 such macro instances

Benefits seen from adopting this flow
• Improved debug ability of power issues and decreased debug cycle 

time because undesired corruption and wake-up issues inside 
macro BFMs were not required to be verified.

• Improved SNR and fewer false alarms hit.



Conclusion
Pros of .db methodology

• Helps avoid any undesired corruption or wake-up issues.
• More accurate multi-rail macro simulation because ports are corrupted 

based on related power-down functions or related PG pins.
• Issues like missing isolation cells will be caught in simulation because ‘x’ 

will propagate.

Cons of .db methodology

• If the models have PG pins but not corruption instrumentation, they will 
be treated as power-aware models. In such cases, no corruption will be 
done.

• Using .db flow is recommended based on the assumption that the macro 
vendor has done accurate low-power verification for the macro and that 
there are no holes.



THANK YOU

QUESTIONS?


	� Tackling the challenge of simulating multi-rail macros in a power-aware flow 
	Agenda
	Should macro be power-aware?
	Available macro power-aware�simulation methodologies*
	Simulate macro as “always on”
	Simulate macro as “always on”
	Simulate macro as “always on”
	Simulate macro with UPF
	Simulate macro with UPF
	Simulate macro with .db
	Simulation flow using macro with .db 
	Simulate macro with .db
	Simulate macro with .db
	Simulate macro with .db
	Overriding default behavior
	Use model description at AMD
	Use model description at AMD (cont.)
	Conclusion
	Slide Number 19

