Tackling the challenge of simulating multi-rail
macros in a power-aware flow

Himanshu Bhatt/Amol Herlekar Vikas Grover/Subhadip Nath
Synopsys Inc. AMD, Inc.

March 4th, 2014

CONFERENCE & EXHIBITION

Agenda

 Should macro be power-aware?
* Available macro power-aware simulation methodologies
e Simulate macro as “always on”

e Simulate macro with UPF

e Simulate macro with .db
e Use cases

e Conclusion

DESIGN & VERIFICATION
T W
- | W A 'r:
L2 Z =

g Should macro be power-aware?

e Macros like PLL, SerDes, memory, etc., are replaced
with behavioral models during functional verification.

 Behavioral models are never going to be synthesized.
s it really necessary to impose power-aware
simulation semantics on them?

 Another school of thought believes in thorough low-
power verification of macros for the sake of
verification confidence.

/& Available macro power-aware
EM5 simulation methodologies*

1. Non-power-aware
2. Power-aware

Simulate macro as “always on”

Simulate macro with UPF Non-power-aware

1. Non-power-aware
2. Power-aware

Simulate macro with .db

DN & _FEI!IFIE_A‘[ION

Y (=]

y Simulate macro as “always on”

CONFERENCE & EXHIBITION

e Because macros are replaced with behavioral models during
simulation, any design issue caught on these models during
simulation might not be a real design issue.

* Instrumenting low-power semantics on non-synthesizable code
might cause unwanted shut-down issues, and turning existing
user-defined tasks and checkers into power-aware is
troublesome.

e MVSIM-NLP implemented the following command to make
behavioral models always-on

set_design_attributes - models <MODULE_NAME> -attribute UPF_dont_touch TRUE

_

le

g Simulate macro as “always on”

CONFERENCE & EXHIBITION

PD TOP.

macro behawv

/ out_comb[0]
/— out_comb[1]~

4-__ out_seal1]
— out_seq[0]
cope Trace Window Help VIP =& x

il =] A n | [Be Be of ODSB-El-a-om-
QaAQ Q@@ -] | s

in driver.]

D-rith 1
0 in_driver 1'51->1"bx
-© oul_comb|0] 1=
o oul_comb[1] 1-3%

o oul_seq[l] 1-3%
5% Eile Edit View Simulator Signal Scope JIrace Window Help VIP

so0 x0ops~ ||B® @[0000000 s.en
& 3 [Any Edge -”_1 aa®

o [5

© oul_seq[l] 0->x

Name [vaue

o=rith 1
0 in_driver 1'b1->1"b
-© oul_comb|0] 1

-© out_combfl] 1-3%

<= UPF_dont_touch TRUE

o out_seq[1] 0

DESIGN & VERIFICATIUN

l 0 9 | fl (5l I"
‘ I i
1
I 2

m Simulate macro as “always on”

CONFERENCE & EXHIBITION

e Another variation of this “always on” simulation

methodology is to make the macro’s behavioral model
power-aware.

%% Eite Edit m'w Sipulator Signal Scope Trace Window Help VIP
| xo0ps ~ (55 ga vl"'\-'_ Bo Bo £ Sell=koR R R o RS AP0, B
1 S g oo

module macro_behav (

input wire power_supply,

output wire power_aware

);

assign power_aware = power_supply ? orig_signal : 1’bx;

endmodule

DESIGN EI!II‘-‘ICAﬂUN

—

CONFERENCE & EXHIBITION

e Simulate macro with UPF

e Unified Power Format is devised for power-intent

specificati

on.

1.08VIOFF

VC

save/restore b

PD _Top |_J |_J
(VCC)
T vcc | vss
VCC | VSS

‘_"i
Do
sleep .m

C_SW

create_supply_port V55
create_supply_netVCC —domain PD_Macro
create_supply_netVs5 —domain PD_Macro
create_supply_netVCC_5W —domain PD_Macro
connect_supply_netVCC —ports VCC
connect_supply_netVsSs —ports VS5
create_power_switch VCC_P5W —domain PD_Macro b
—control_port {ctrl Sleep} —input_supply_port {vin VCC}
—output_supply_port fvout VCC_SWh
—on_state {on_state vin Icirl}
set_domain_supply_net PD_Macro—primary_power_netVCC |
—primary_ground_netVSs5
1 related supply net—power VOO SWE —object list {DOX]
set_isolation 1so_from_macro —domain FD_Macro '

-clamp_value 0 —applies_to outputs
set_isolation_controliso_from_macro—domain PD_Macro

-isolation_signal {iso_en}—isolation_sense high -location self
set_retenfion ret_macro —domain PD_Macro !

-retention_power_netVCC —retention_ground _netVSS
set_retention_control ret_macro —domain FD_Macro |
-save_signal {save high}—restore _signal {restore b low}

ﬁate_po'u\fer_domain PD_Macro \
create_supply_port VCC Power Supply Network

-isolation_power_netVCC —isolation_groun@@w St rategy

add_port_state —stae .
add_port_state VS5 —state (VS5 0.0}

create_pst MACRO_PST —supplies VCCWVCC_SWV5S5}
add pst_state normal —pst MACRO_PST —state {ON ON V55}
_2dd pst_state sleep —pst MACRO PST —state [ON OFF VSS}

add_pori_state VCC_P5SWivout—state {Ohﬂq}gy—esgtes Eﬁt’eof;}r d ble

b

J

ES[GN & VEHFIE‘:A‘I’ION

CONFERENCE & EXHIBITION

e UPF is more flexible.

V1_VDD

V2_VDD

V3_VDD

Simulate macro with UPF

i
h

r _=____——J connect_supply_net

set_related_supply_net/
related_power_pin

Port (color indicates
power domain)
Domain Island_WV1
driven by supply net

V1i_VDD

|:| Domain Island_V2
driven by supply net
V2_VDD

Domain Island_\V3
- driven by supply net

V3i_VDD

& VERIFICATION

L

e Simulate macro with .db

CONFERENCE & EXHIBITION

* Instead of creating a UPF file for each macro, leveraging the
macro’s existing technology library files can save effort if this
methodology meets the requirements.

e MVSIM-NLP is able to read the macro’s .db files and associate
the driving rail for each macro port.

without .db
' z
- T -
with .db
I I_db z_db z

r---""'-_._

L — -
: Related Supplies OR
i CELL
Related Supplies - Power Down Function

DESIGN & VERIFICATION

Slmulatlon flow using macro with .db

CONFERENCE & EXHIBITION

Compile the design

db_search_path { /remote/arch-proj,/ChipTop.libs/Liberty}

db_link_1i [65 0d720d72_ccs_pg.db

Elaborate the design and UPF
using -power_config
<DB_CONFIG_FILE>

Simulate the elaborated
snapshot

e Simulate macro with .db

CONFERENCE & EXHIBITION

e To match a .db cell with a behavioral model, the
following conditions must be met:

— Name of the macro’s behavioral model and name of the .db cell match.

— All macro behavioral model ports match the .db cell’s logic pins in name

and width.

— If there are PG ports in the macro’s behavioral model, they must match

db’s PG ports and their width should be 1.

e |f all conditions are met, MVSIM-NLP treats the
macro’s behavioral model as power-aware.

'R LAY

gopy Simulate macro with .db

CONFERENCE & EXHIBITION

The following two models are both power-aware.

e The waveform shows MVSIM-NLP won’t do any corruption

instrumentation.

module BUFFDOHVT (I, Z, VDD, V5S):

module BUFFDOHVT (I, Z, VDD, VSS);{

imput I, VDD, VSS:-

output Z;«

assign Z = (VDD) ?71: I'bx;e
endmodule-

+- I connechanType(z 0] IMPUCIT_CONNECTION
= 0 ve10:0] VCT_UPF23V_LOGIC
+ [} supplyStsie[1:0] POW_FULL_ON
«- [} supphyhed[15.0] esEenchiop/Viad

b-V33 0

input I, VDD, VSS;«

o

assign Z. = I+

endmeodule-

No cormuption by the simulator

DESIGN & VERIFICATION

b

20 Simulate macro with .db

CONFERENCE & EXHIBITION

 The following behavioral model doesn’t match all
conditions; thus, it is treated as non-power-aware.

module BUFFDOHVT| (I, Z):
input I:

output 7.:. § j|~"—'ﬂ|f£“fﬂ- Related Power is OFF —I

* Na Val 0
assign 7. = I;-] = -

o o 3n
endmodule: | ey .

St L
| =- 0 VDD_fiag I 320012 o01f | (DD (0013 001F) 00] 0013 0O1F

(" +- 0 conneclionType[2.0] IMPLICIT_CONMNECTION
0 ve10:0] VCT_UPF2SV_LOGIC
+- 11 supplyState] 1:0] POW_FULL_ON "OW _OFF " POW FULL ON W _OFF FOW FULL ON
_#- [supplyNet|15:0] Viestbenchiiop/Vdd

0 vss 10
=1 VSS_fisg 32h0001 0020 Details of PG Pin connectivity
("5 0 connectionType[2:0] IMPLICIT_CONNECTION

5 [vel10:0] VCT_UPF_GNDZEROZSV_LOGIC [l VCT UPF GIC

3 [supplyState]1:0] POW FULL_ON (

+- | supplyNet|15:0] iestbanchiop/ Vs

nZdb St
=- [cell_fiag B4'"000T 1000 D000 0000

-1 cellig[16:0] 16'h0001
+- 0 celType[3.0] NORMAL_CEL
+- [upf2SvPowervel 10:0] VCT_UPF2ZHDL_UNDEF
+- 1 upr2SvGroundvel 10:0] VCT_UPFZHOL_UNDEF Details of VCTs applied
+- 1 sv2UplPower\et 10:0] VCT_HDL2UPF_LINDEF
+- I sv2UplGroundvel] 10:0] VCT_HOL2UPF_LUNDEF VCT HDL2UPF UNDEF

m

H

- T
1]
1=
L Z

Overriding default behavior

C

NO

e Apply corruption on all cells:
set _design_attributes —attribute
{ SNPS_override_pbp _corruption TRUE}
e Do NOT apply corruption on all cells:
set _design_attributes —attribute
{ SNPS_override_pbp_corruption FALSE}
e Apply corruption on an individual cell:
set _simstate _behavior ENABLE —model
{model_name)}
Do NOT apply corruption on an individual cell:
set_simstate _behavior DISABLE —model
{model _name)}

CONFE

ER
- LA
- y
|
|
I

Use model description at AMD

Non-power-aware BFM models for macros instantiated in
design

Corresponding .db files passed to simulator

UPF with necessary isolation policies passed to simulator
CSNs specified in UPF to connect supply rails of macros

Necessary power information present in. db files
e BFMs were non-power-aware by themselves

Default NLP behavior for PBC utilized in power sequencing
tests (i.e., models identified as power-aware not corrupted,
while non-power-aware models corrupted)

DESIGN & VERIFICATION
T R ER B P

i . ' I
i\ -

Use model description at AMD (cont.)

Macro information

e Around 2,000 unique .db files passed to MVSIM-NLP with
db_link_library variable

e NLP tool matched about 500 uniqgue multi-rail macro .dbs.
(Breakdown: 100 with 2 power rails, 400 with 3 power rails, and a

few having 6 power rails, excluding ground rails)
e NLP applied this methodology on about 720 such macro instances

Benefits seen from adopting this flow

 Improved debug ability of power issues and decreased debug cycle
time because undesired corruption and wake-up issues inside
macro BFMs were not required to be verified.

* Improved SNR and fewer false alarms hit.

2014 Conclusion

CONFERENCE & EXHIBITION

Pros of .db methodology

e Helps avoid any undesired corruption or wake-up issues.

e More accurate multi-rail macro simulation because ports are corrupted
based on related power-down functions or related PG pins.

e |ssues like missing isolation cells will be caught in simulation because ‘x’

will propagate.
Cons of .db methodology

 |f the models have PG pins but not corruption instrumentation, they will
be treated as power-aware models. In such cases, no corruption will be

done.
e Using .db flow is recommended based on the assumption that the macro

vendor has done accurate low-power verification for the macro and that
there are no holes.

THANK YOU

QUESTIONS?

	� Tackling the challenge of simulating multi-rail macros in a power-aware flow
	Agenda
	Should macro be power-aware?
	Available macro power-aware�simulation methodologies*
	Simulate macro as “always on”
	Simulate macro as “always on”
	Simulate macro as “always on”
	Simulate macro with UPF
	Simulate macro with UPF
	Simulate macro with .db
	Simulation flow using macro with .db
	Simulate macro with .db
	Simulate macro with .db
	Simulate macro with .db
	Overriding default behavior
	Use model description at AMD
	Use model description at AMD (cont.)
	Conclusion
	Slide Number 19

