
Tackling Register Aliasing Verification

Challenges in Complex ASIC Design

Shan Yan, Jie Wu, Jing Li
Broadcom Limited

shan.yan@broadcom.com, jie.wu@broadcom.com, jing-r.li@broadcom.com

Abstract- Register design and implementation is one of the most important parts of today's complex ASIC designs.

Register verification is a significant part of the design verification problem. Register aliasing issues are very hard to
capture, with hundreds or thousands of registers implemented in a single chip. With the traditional simulation-based
verification method for finding the register aliasing issue, it is usually hard to achieve coverage completeness and is very

time consuming. In this paper, we propose a register verification methodology that combines assertion-based technique
and simulation to find register aliasing issues. Our methodology comprises two parts. First, for each register module in
the design, an assertion model is developed to check read_enable and write_enable signals for the register access. An

overall read_enable counter and write_enable counter are maintained at the chip level to count register access on all
registers. The assertion models for all register modules are bound into all the instances of that module. The assertion
models are to check that no more than one read or write access happens to any register instance at any given time.

Second, three register access sequences are carefully designed to test the register read and write accesses to make sure all
register aliasing issues can be captured. All sequences use the UVM Register Access Layer (RAL) model and combine
both frontdoor and backdoor accesses. To make our methodology applicable to complex designs, the whole procedure is

automated. We applied this methodology to three projects within our high-speed interconnect physical layer products.
Several register aliasing bugs were found in the earlier stage of the design. The performance has also significantly
improved to O(n) by using our methodology, compared to the traditional simulation-based register aliasing verification

method of O(n2).

I. INTRODUCTION

Register design and implementation is one of the most important parts of today’s hardware and IC designs.

Registers contain the configuration setting of the hardware and are the basis of the hardware and software interface.

Register verification is a significant part of the design verification problem. It is one of the first aspects of the design

that must be tested because the rest of the semiconductor functionality depends on the accuracy of the register

implementation.

In hardware design, register aliasing describes two possible situations. One is that a register location in the

hardware design can be accessed through different symbolic names and addresses, as shown in Figure 1(a). Thus,

modifying the value in that location through one name implicitly modifies the values associated with all aliased

names. The other situation is that one symbolic name and address is associated with multiple register locations in the

hardware design, as shown in Figure 1(b). Thus, modifying the value through one name and address modifies the

values of registers associated with that name. Register aliasing can either be a hardware design choice or a hardware

failure. In a failure, register aliasing problems are usually caused by hardware design bugs, such as address decoding

logic errors, one or more address bits being shorted together, or being forced to ground (logic 0) or to the supply

voltage (logic 1). In these cases, the register accesses through symbolic names or addresses cannot reach the

locations intended or may reach the wrong location [1].

Register aliasing issues are very hard to capture for today’s complex ASIC designs with hundreds or thousands of

registers implemented. The traditional simulation-based verification method for finding the register aliasing issue is

usually based on the methodology of writing a unique value to one register and reading back the values from all

registers and then comparing. However, this methodology is very time consuming because all the registers inside the

whole SoC have to be tested at once and can’t be split by blocks and tested in parallel. But otherwise, the issue

cannot be captured. This makes the simulation time O(n
2
), where n is the total number of registers in the whole SoC

design. Also, the sequence and order of how the registers are written and read have to be carefully designed or the

issue may not be captured correctly and the coverage completeness cannot be reached.

A

H

Q1

Q8

ENB

Register

A

H

Q1

Q8

ENB

Register B

A

H

Q1

Q8

ENB

Register A

Addr_A
(Regname_A)

Addr_B
(Regname_B)

Addr_A
(Regname_A)

(a) Two addresses reach to the same register (b) One address reaches to two registers

Figure 1. Register aliasing scenarios

In this paper, we propose a register verification methodology that can achieve register verification coverage

completeness and easily detect register aliasing issues. Our methodology combines assertion-based technique and

simulation, and thus can achieve great performance improvement over the traditional pure simulation-based

verification methodology. Our methodology comprises two parts. First, for each register module in the design, an

assertion model is developed to check read_enable and write_enable signals for the register access. An overall

read_enable counter and write_enable counter are maintained at the chip level to count register access on all

registers at given time. The assertion models for all register modules are bound into all the instances of that module.

When register read or write access happens to a specific instance, the corresponding read_enable and write_enable

are asserted, and the read_enable or write_enable counter is counted. If the counters are counted to more than 1 at

any time during simulation, it means there are accesses to more than one register at the same time. Thus, the register

aliasing issue is captured. With the assertion information reported, the aliased registers are easily found and

reported.

After this, three register sequences are carefully designed to test the register read and write accesses. All

sequences use the UVM Register Access Layer (RAL) model and combine both frontdoor and backdoor accesses.

The first two sequences are based on UVM RAL backdoor access. One sequence is a backdoor write to a register

and then a frontdoor read from that register, and so on for all the registers. The other sequence is a frontdoor write to

one register and then a backdoor read from that register, and so on for all the registers. The hierarchical paths to the

registers per design specifications are provided for the backdoor access. Using these two sequences, the correctness

of the decoding logic and access paths can be verified for all registers. The first two sequences make sure each read

and write can reach to the correct location in the hardware. With this goal achieved, the third sequence of frontdoor

writes and frontdoor reads of each register is used to test register aliasing. This step ensures each read and write does

not reach the unwanted locations in the hardware. Each read and write only need be done once, thus reducing overall

simulation time to O(n). Furthermore, with the assertions in place, the tests can be broken down to run on a per-

block basis, and all the blocks can be tested in parallel to further save simulation time.

To make our methodology applicable to complex designs, we automated the whole procedure. In our designs, an

internal format-RDB is used to define the registers. These RDB files are used to generate both the UVM RAL model

and the register blocks in the hardware. Thus scripts are developed to use the same register naming rule to

automatically extract the registers’ RTL hierarchical paths and put them into the UVM RAL model for backdoor

access. Tests are also automatically generated for each design block to run the three sequences.

We applied this methodology to three projects of our high-speed interconnect physical layer products. Each of our

chips contains thousands of registers. Several register aliasing bugs were found in the earlier stage of the design,

giving us the confidence for a bug-free design and tapeout. Also, the performance has significantly improved by

using our methodology. Using traditional register testing sequences, each simulation would run for a couple of days

depending on the types of the register interfaces. Now, with each test running on a single register block and multiple

tests running in parallel on the LSF farm, all tests can finish within hours.

The rest of the paper is organized as follows. Section II outlines the related work. Section III presents our

assertion-based register aliasing modelling and methodologies in detail. Section IV presents the three register access

sequences that are designed to test the register accesses. Results of applying our methodologies to our projects are

shown in Section V, and the conclusion is presented in Section VI.

II. PREVIOUS WORK

The traditional verification method for finding the register aliasing issue is usually based on the methodology of

writing a unique value to one register, reading back the values from all registers, and then comparing to detect

register aliasing[2]. However, this methodology is very time consuming because all the registers inside the whole

SoC have to be tested together. They cannot be split by blocks and tested in parallel. But otherwise, the issue cannot

be captured. This makes the simulation time for running such sequence be O(n
2
), where n is the total number of

registers in the whole SoC design. Since today’s design complexity has become greater and greater, ASIC chips

usually contain hundreds or thousands of registers. Such a method is hardly applicable to those designs. Further, the

sequence and order of how the registers are written with random value and read back have to be carefully designed.

Otherwise, the issue may not be captured correctly and the coverage completeness cannot be reached.

III. ASSERTION-BASED REGISTER ACCESS MODELLING

To efficiently detect register aliasing issues and achieve register verification coverage completeness in complex

ASIC designs, we propose a register verification methodology that combines assertion-based technique and

simulation. Our methodology comprises two parts. First, an assertion-based register access model is developed for

each type of register module in the design. The details are presented in this section. Second, three simulation

sequences are carefully designed to test the register read and write accesses. Those details are presented in next

section. In combination, our methodology can achieve great performance improvement over the traditional pure

simulation-based verification.

In ASIC designs, several standard or home-developed register modules would be used and instantiated to

implement registers of various types. For each module type, it would commonly have clock, reset, default value,

register address, write_data and read_data inputs, and read_data outputs, as shown in Figure 2. It also has

read_enable and write_enable signals to control the register read and write accesses. Our assertion model is

developed for each register module type to check the read_enable and write_enable signals for register access. For

our designs, the bus architecture is used, and all the registers are attached to the same bus for access. Thus, at any

given time, only one register is accessed by the master on the bus. An overall read_enable counter and a

write_enable counter are maintained at the chip level to count register access on all registers. The assertion models

for all register modules are bound into all the instances of that module. When register read or write access happens

to a specific instance, the corresponding read_enable and write_enable are asserted, and the read_enable or

write_enable counter is counted. If the counters are counted to more than 1 at any time during simulation, it means

there are accesses to more than one register at the same time. Thus, the register aliasing issue is captured. With the

assertion information reported, the aliased registers are easily found and reported.

regaddr

wdata

rdata_out

Register
Module

clk

rst

clken

blken

dfsdfs

rden

wren

rdata_in

Figure 2. Register module

Figure 3 and 4 show the code of the assertion model.

Figure 3 shows how the read_enable(rd_en) and write_enable(wr_en) signals of typeA register are checked and

counted when they are asserted. Lines 11-22 show how the rd_en and wr_en are captured. In this register type, the

read operation can always finish in one cycle, and thus rd_en is asserted for only one clock cycle and then

deasserted. For the write operation, it may take more than one cycle before the write is done. To make sure the

assertion of the wr_en signal is only counted once, an extra register reg_wr_d is used (lines 16-22). Two counters,

reg_wcnt and reg_rcnt, are used to record the read count and write count of the registers at the chip level. They are

increased whenever the rd_en or the wr_en is asserted (lines 24-39).

Figure 3. TypeA register module read_enable and write_enable check model example

1 module typeA_reg_bind (clk, dfs, regad, data_in, wr_en, rd_en, resetb, data_out);

2

3 //---

4 // Port Declarations Signal Description

5 //---

6 input clk, resetb;

7 input wr_en, rd_en ; // write enable, read enable

8 input [15: 0] dfs, data_in, data_out; // default register state, input data, output data

9 input [3: 0] regad ; // address

10

11 reg reg_wr_d;

12

13 assign reg_wr = wr_en & regen;

14 assign reg_rd = rd_en & regen;

15

16 always @(negedge clk)

17 begin

18 if (reg_wr) reg_wr_d = 1;

19 end

20

21 always @(negedge reg_wr)

22 reg_wr_d = 0;

23

24 always @(posedge clk)

25 begin

26 if (reg_wr & ~reg_wr_d & `TB_TOP.reg_alias_check) begin

27 $display ($time, "%m : reg_wr is asserted.");

28 `TB_TOP.reg_wcnt = `TB_TOP.reg_wcnt + 1;

29 end

30 end

31

32 always @(posedge reg_rd)

33 begin

34 #1ns; // filtering glitch

35 if (reg_rd & `TB_TOP.reg_alias_check) begin

36 $display ($time, "%m : reg_rd is asserted.");

37 `TB_TOP.reg_rcnt = `TB_TOP.reg_rcnt + 1;

38 end

39 end

40

41 endmodule

Figure 4. Example code for counters, assertions and binding.

1 bit [15:0] reg_wcnt, reg_rcnt;

2 bit reg_rd_chk_on, reg_wr_chk_on;

3 bit reg_alias_check;

4

5 initial

6 begin

7 reg_wcnt = 0;

8 reg_rcnt = 0;

9 reg_wr_chk_on = 1'b0;

10 reg_rd_chk_on = 1'b0;

11 reg_alias_check = 1'b0;

12 if ($test$plusargs("reg_alias_check")) begin

13 reg_alias_check = 1;

14 end

15 end

16

17 always @(posedge reg_alias_check) begin

18 reg_wcnt = 0;

19 reg_rcnt = 0;

20 end

21

22 always @(reg_wcnt)

23 begin

24 assert(reg_wcnt <= 1)

25 else `uvm_error(get_type_name(), $psprintf("!ERROR! : %m reg_wcnt %d > 1 for unicast register

when reg_wr_chk_on is 1", reg_wcnt));

26 end

27

28 always @(reg_rcnt)

29 begin

30 assert(reg_rcnt <= 1)

31 else `uvm_error(get_type_name(), $psprintf("!ERROR! : %m reg_rcnt %d > 1 for unicast register

when reg_rd_chk_on is 1", reg_rcnt));

32 end

33

34 always @(posedge reg_wr_chk_on) begin

35 reg_wcnt = 0;

36 reg_rcnt = 0;

37 end

38

39 always @(posedge reg_rd_chk_on) begin

40 reg_wcnt = 0;

41 reg_rcnt = 0;

42 end

43

44 bind typeA_reg_module typeA_reg_bind u_typeA_reg_bind_inst(.*);

45 bind typeB_reg_module typeB_reg_bind u_typeB_reg_bind_inst(.*);

46 bind typeC_reg_module typeC_reg_bind u_typeC_reg_bind_inst(.*);

Figure 5. Example register read/write tasks using RAL

Figures 4 and 5 illustrate how the two counters are counted and checked for register aliasing errors. In Figure 4,

the assertion models for all register modules are bound into all the instances of that module. In our example, three

register modules are used, and the corresponding models are bound to them accordingly (lines 44-46). The overall

reg_wcnt and reg_rcnt counters are checked whenever there are changes using assertions. When there are register

aliasing errors, the assertions fail immediately, and the problematic registers are also reported so that they can easily

be located (lines 22-42).

For our methodology to work correctly, the counters need to start counting at the beginning of any register access

and need to stop counting and reset before the beginning of the next register access. The latter part is very important

because it makes sure that no extra register access happens when it shouldn’t. This is controlled by two bits,

reg_wr_chk_on and reg_rd_chk_on. These two bits are set and reset inside the UVM Register Access Layer (RAL)

model by modifying the register read() and write() tasks. In Figure 5, two tasks, write_register and read_register, are

implemented. At the beginning of the tasks, the reg_wr_chk_on or the reg_rd_chk_on bit is set to 1, and at the end

of the tasks, the reg_wr_chk_on or the reg_rd_chk_on bit is reset to 0. The reg_wcnt or reg_rcnt is reset to 0 only at

posedge of reg_wr_chk_on and reg_rd_chk_on (lines 34-42) to make sure that invalid access can be captured not

only during the expected register access but also when there should be no register access at all.

1 task write_register (intfType intf, string regname = "undef", bit[31:0] wdata, regIntfType reg_if =

APB);

2

3 reg_inst = get_reg_by_name (intf, regname);

4 bit ok = 1'b1;

5 ok &= uvm_hdl_deposit("system.reg_wr_chk_on", 1'b1);

6

7 reg_inst.set(wdata);

8 reg_inst.write(status, wdata, , regif2name(reg_inst, reg_if));

9

10 ok &= uvm_hdl_deposit("system.reg_wr_chk_on", 1'b0);

11 endtask

12 task read_register (intfType intf, string regname = "undef", output bit [31:0] rdata, input regIntfType

reg_if = APB);

13

14 bit ok = 1'b1;

15 ok &= uvm_hdl_deposit("system.reg_rd_chk_on", 1'b1);

16

17 reg_inst = get_reg_by_name (intf, regname);

18 reg_inst.read(status, rdata,,regif2name(reg_inst, reg_if));

19 reg_inst.set(rdata);

20

21 ok &= uvm_hdl_deposit("system.reg_rd_chk_on", 1'b0);

22 endtask

IV. REGISTER ACCESS SEQUENCES

To capture all the register aliasing issues in the design, three register read and write sequences are carefully

designed to work with our register read_enable and write_enable check models. All sequences use the UVM

Register Access Layer (RAL) model and combine both frontdoor and backdoor accesses. Backdoor accesses are

extensively used to reduce simulation time and improve efficiency. The first two sequences are based on UVM RAL

backdoor and frontdoor accesses. The third sequence is based on UVM RAL frontdoor access only. The hierarchical

paths to the registers per design specifications are provided for the backdoor access. All sequences use walking-ones

and walking-zeros subsequences to test every valid bit of each register[3].

A. Backdoor write and frontdoor read sequence

In this sequence, for each register in the design, every valid bit is tested using walking-ones and walking-zeros

subsequences. The value is first written to the register through the backdoor and then read back via the frontdoor to

check correctness. This sequence ensures each read is from the correct location in the design and does not reach to

unwanted locations in hardware. This sequence checks only Readable and Writable (RW) registers and Read-Only

(RO) registers. It can’t check Write-Only (WO) registers. Both decoding logic and register aliasing logic related to

read operation can be captured using this sequence.

B. Frontdoor write and backdoor read sequence

In this sequence, for each register in the design, every valid bit is tested using walking-ones and walking-zeros

subsequences. The value is first written to the register through the frontdoor and then read back via the backdoor to

check correctness. This sequence ensures that each write can reach to the correct location in the design and does not

reach to unwanted locations in hardware. This sequence checks only RW registers and WO registers. It can’t check

RO registers. Both decoding logic and register aliasing logic related to the write operation can be captured using this

sequence.

C. Frontdoor write and frontdoor read sequence

In this sequence, for each register in the design, every valid bit is tested using walking-ones and walking-zeros

subsequences. The value is first written to the register through the frontdoor and then read back via the frontdoor as

well to check correctness. This sequence checks only RW registers. It can’t check RO and WO registers.

By using sequences A and B, the correctness of the decoding logic and access paths can be verified for all

registers. This sequence ensures no potential bugs were introduced due to any potential behavior discrepancy

between frontdoor accesses and backdoor accesses.

For all three sequences, each read and write only need be done once, thus reducing overall simulation time to

O(n). Furthermore, with the assertions in place, the tests can be broken down to run on a per-block basis, and all the

blocks can be tested in parallel to further save simulation time.

V. RESULTS

To make our methodology applicable to complex designs, we automated the whole procedure. In our designs, an

internal format-RDB (Register Database Format) is used to define the registers. These RDB files are used to

generate both register blocks in the design and a UVM RAL model in verification. Several scripts are developed to

use the same register naming rule to automatically extract the registers’ RTL hierarchical paths in the design and put

them into the UVM RAL model for backdoor access.

Tests are also automatically generated for each design block to run the three sequences.

We applied this methodology to three projects of our high-speed interconnect physical layer products. Each of our

chips contains thousands of registers. Several register aliasing bugs were found in the earlier stage of the design,

giving us the confidence for a bug-free design and tapeout.

A. Address decoding error

The first type of register aliasing bug we found was due to the address decoding logic design errors. The example

scenario is shown in Figure 6. Register A with address AddrA was not overlapped with Register B with address

AddrB in the design specification and RDB. However, due to the decoding logic design error, these two registers

can both be accessed through AddrA, but AddrB cannot access Register B. This type of error can be found using a

traditional register aliasing checking sequence discussed in the previous section. However, this requires a very long

simulation time. This type of error could also possibly be captured using the three sequences alone without the

read_enable and write_enable checking model. Though it’s not guaranteed and depends on the real design scenario.

For example, if RegisterA and RegisterB have the same default value, and AddrB is wrongly designed to access

another register with the same default value, then using those sequences alone only once cannot capture the issue

because the read value could happen to be the same as the write value. Several iterations of the sequences with

randomizations may need to be run to capture the problem. But when using the read_enable and write_enable

checking, this type of bug is guaranteed to be found in one run.

AddrA

AddrB

AddrA

AddrB

(a) Design Specification (b) Design implementation

regaddr

wdata

rdata_out

Register
Module

clk

rst

clken

blken

dfsdfs

rden

wren

rdata_in

regaddr

wdata

rdata_out

Register
Module

clk

rst

clken

blken

dfsdfs

rden

wren

rdata_in

regaddr

wdata

rdata_out

Register
Module

clk

rst

clken

blken

dfsdfs

rden

wren

rdata_in

regaddr

wdata

rdata_out

Register
Module

clk

rst

clken

blken

dfsdfs

rden

wren

rdata_in

Figure 6. Register Aliasing issue due to address decoding error

B. Duplicated registers bugs in the design

Another bug we found in our design is that some legacy registers (address space) from the old projects have been

used to implement new registers and design logic in the new project. However, the old design logic was not removed

completely from the design due to the copy/paste/port-over procedure for faster implementation. The fanouts of the

legacy register were connected to the logic that affected the status/value of some other real registers in the design.

Thus changing the value of the legacy register changes the value of other registers unintentionally, resulting in the

wrong behavior. This is illustrated in Figure 7. Legacy register RegA shared the same address with real RegB. When

RegB is written with some value, RegA is also written with the same value. The value would have affected the

fanout logic RegA connected to, and eventually the status of RegC. This type of register aliasing issue is hard to

identify by either the traditional register aliasing checking sequence or by the three sequences discussed in section

IV. But the issue is easily captured by our read/write_enable checking models.

regaddr

wdata

rdata_out

Legacy
RegA

clk

rst

clken

blken

dfs

rden

wren

rdata_in

regaddr

wdata

rdata_out

RegB

clk

rst

clken

blken

dfs

rden

wren

rdata_in

Fanout
Logic

regaddr

wdata

rdata_out

RegC

clk

rst

clken

blken

dfs

rden

wren

rdata_in

Fanout
Logic

Fanout
Logic

...

AddrB

AddrC

wdataB

...

wdataC

wrenB

wrenC

Figure 7. Register aliasing issue due to the duplicated Registers

C. Multiple registers read/write bugs in the design

The last type of bug we found in our design was due to the logic error of the read_enable and write_enable control

signals. In one of our projects, we have two register blocks that share the same read_enable and write_enable

signals. Another block_select signal was used to select which block should be enabled for access. The example code

is shown in Figure 8. The blk_sel signal didn’t expect to change during the duration when rden was asserted.

However, due to the design bug, blk_sel changed in the middle of rden being asserted. blk2_rden was asserted right

after blk1_rden was asserted. This caused a false read to a register in block 2. If this register were a clear-after-read

register, the status of that register would be cleared by this false read. A similar scenario would happen to writes too

if the write logic were wrong. The generated false writes would change the register value. The example waveform is

shown in Figure 9.

Figure 8. Example code for multiple register read/write bug

rden

blk_sel

blk1_rden

blk2_rden

Figure 9. Waveform for multiple register read/write bug

This type of error can be captured only by using our read_enable and write_enable checking model. As presented

in section III, the counters’ checking not only checks that each register access triggers only one register access, but

they also check that when there is no register access expected, no register access happens. The checking for the latter

part would fail for this type of error because the counters would be cleared at the posedge of

reg_rd_chk_on/reg_wr_chk_on and not at the negedge of reg_rd_chk_on/reg_wr_chk_on. This guarantees that

before the next register access, no more than one register access would happen. In our case, two register reads would

happen for one register access, the read counter would be counted to 2, thus causing the assertion to fail.

Our methodology can also be extended to handle broadcast and multicast register accesses. For broadcast and

multicast registers, we need to identify the number of parallel accesses to them and adjust the assertions to check

counter values for those registers accordingly.

Additionally, the performance has significantly improved by using our methodology. In our projects, we have

thousands of registers in a single chip. With this number of registers, it’s impossible to run the traditional register

aliasing check sequence on the whole chip domain. For example, with a simple calculation, for a chip with 3700

registers, it takes 24832 hours (1034 days) to check all the registers. So we have to split them into blocks and run the

traditional register aliasing check sequence in the per-block domain. However, in this way we can’t guarantee that

we can find all the register aliasing bugs because if the register aliasing bug is across multiple blocks, we can’t find

it. To do the comparison, we tried to keep registers in the same blocks as much as possible when runtime allowed.

For our methodology, the registers can be grouped into very fine granularity blocks. It doesn’t affect its ability to

find register aliasing bugs. With each test running on a single register block and multiple tests running in parallel on

the LSF farm, all the tests can finish within hours. Table I shows the performance comparison of using the

traditional register testing sequences vs. our sequences. We tried to keep the number of registers in one block to less

1 reg rden, blk_sel;

2 wire blk1_rden, blk2_rden;

3 …

4 blk1_rden = rden & blk_sel;

5 blk2_rden = rden & ~blk_sel;

than 300 for the traditional method to work. The runtime varied for different interfaces to access registers. On

average, 31.5x to 61x improvements can be achieved for each project. The bigger the register block, the larger the

improvement due to the O(n
2
) complexity of the traditional method vs. the O(n) complexity of our methodology.

TABLE I

PERFORMANCE COMPARISON

Projects
Average num. of

registers in one block

Average runtime of

traditional register aliasing

test sequence (hours)

Average runtime of

register enable signal

checking sequence (hours)

Improvements

(Runtimetraditional/Runtimenew)

Project A 126 53.55h 1.70h 31.5x

Project B 192 66.86h 1.45h 46.1x

Project C 244 108h 1.77h 61x

VI. SUMMARY

In summary, the register aliasing issue is very hard to capture for register verification with today’s complex ASIC

designs. The traditional simulation-based verification method for finding the register aliasing issue is very time

consuming, and, if not carefully designed, it cannot achieve the coverage completeness. We propose a register

verification methodology to easily detect register aliasing issues. Our register read/write enable signal checking

models and three register access sequences can achieve register verification coverage completeness. By applying

this methodology to three projects within our high-speed interconnect physical layer products, several register

aliasing bugs were found in the earlier stage of the design, giving us the confidence for a bug-free design and

tapeout. Additionally, performance has significantly improved by using our methodology. 31.5x to 61x performance

improvements were achieved over the traditional register testing sequences.

ACKNOWLEDGMENTS

We would like to thank Jing Li and Kang Xiao for their support and encouragement in completing this paper.

REFERENCES

[1] https://en.wikipedia.org/wiki/Aliasing_(computing)#Hardware_aliasing
[2] https://www.doulos.com/knowhow/sysverilog/ovm/tutorial_rgm_2/
[3] http://www.esacademy.com/en/library/technical-articles-and-documents/miscellaneous/software-based-memory-testing.html

https://en.wikipedia.org/wiki/Aliasing_(computing)#Hardware_aliasing
https://www.doulos.com/knowhow/sysverilog/ovm/tutorial_rgm_2/
http://www.esacademy.com/en/library/technical-articles-and-documents/miscellaneous/software-based-memory-testing.html

