
Tackling Random Blind Spots with Strategy-Driven

Stimulus Generation

Matthew Ballance

Mentor Graphics Corporation

Design Verification Technology Division

Wilsonville, Oregon

matt_ballance@mentor.com

Abstract— Hardware verification typically uses two primary

types of stimulus generation: engineer-directed stimulus

generation and open-loop random generation. This paper

proposes a third approach for generating stimulus that

automatically identifies and produces high-value test patterns

from a constraint-based stimulus model. A trial implementation

built on top of an intelligent testbench automation tool is

described.

Keywords—functional verification; automated test generation;

intelligent testbench automation; graph-based stimulus

I. INTRODUCTION

In today’s hardware-verification space, two categories of tests

are being created: engineer-directed tests and open-loop

random tests. Directed and coverage-driven testing are

examples of engineer-directed activities. Based on a test plan,

the engineer lays out a goal of cases to test and either proceeds

to create a test to exercise those cases (directed test) or defines

functional coverage to ensure that random stimulus hits the

identified test goal. Engineer-directed testing has many

benefits, including ensuring that key functionality is verified

in a documented and repeatable manner. The primary

drawback is the “imagination gap”: the very human inability

to imagine key but obscure combinations of functionality that

must be verified. In contrast, the main benefit of open-loop

random simulation is that it closes this gap. Taking the

engineer out the imagination loop enables automation to create

legal but obscure cases and helps to find bugs.

Both engineer-directed and open-loop random testing are

valuable techniques. Consequently, a typical verification cycle

starts with engineer-directed tests to verify basic functionality,

transitions to a ‘random simulations’ stage to help find bugs,

and concludes with closing coverage on the engineer-defined

functional coverage goals. There are, of course, challenges in

each phase of this cycle. This paper focuses on the random-

regressions phase of the verification cycle. It proposes a

technique to augment the generation of pure-random stimulus

with high-value stimulus identified using common patterns

and information extracted from a constraint model.

II. CHALLENGES OF PURE-RANDOM GENERATION

In order to understand why it would be desirable to augment

pure-random generation during the random regressions phase

of the verification cycle, it is necessary to explore some of the

downsides of pure-random generation.

In our example three-phase verification cycle, both the bring-

up phase and the coverage-closure phase provide good metrics

on what is being tested relative to defined goals. By contrast,

in the random regressions phase, the only meaningful metric

of verification progress is bugs found. When a bug is found,

the stimulus generated during that simulation is identified by

the random seed. This is a good thing in the sense that it

allows the stimulus set to be reproduced such that the bug can

be examined and corrected. The drawback is that changes to

the design and testbench environment – perhaps to resolve the

just-discovered defect – change the meaning of the seed and

make it impossible to reproduce the same stimulus pattern that

uncovered the issue. In addition, when a defect is discovered,

ideally it would be desirable to generate new, similar stimulus

to the one that uncovered the defect. The random seed

provides no information to enable this to be done.

Our verification goal during the random regressions phase of

the verification cycle is to get to as many corners of the

stimulus state space as possible. Random-resistant corner

cases are an unfortunate artifact of even the best constraint

solver and present an obstacle to achieving this verification

goal. Random-resistant cases result from the fact that random

stimulus generation is all about probability. A well-

implemented random constraint solver will generate an even

distribution of values across the domain of random variables

in the absence of constraints.

Take, for example, the simple SystemVerilog class with two

random variables shown in Figure 1.

Figure 1 - Unconstrained random-stimulus class

Both variables have a reachable domain of 0 through 15.

Running 1,000 randomizations and counting the number of

times each variable takes on each value might result in a plot

like the one in Figure 2.

Figure 2 - Unconstrained-random value distribution

Note that the distribution of values is very even across the

reachable domain and between the A and B variables. From a

verification perspective, this is good since it means that we’re

testing different cases most of the time.

However, the presence of constraints changes this situation

substantially. Constraints make random selection of some

values or value combinations substantially less probable. For

example, a constraint might be added between A and B such

that for most values of A, B is forced to 0.

Figure 3 - Constrained-random stimulus class

This constraint has no impact on the reachable domain of A

and B individually. However, this relationship significantly

alters the results of running another 1000 randomizations, as

shown in Figure 4.

Figure 4 - Constrained-random value distribution

Note that the effect of this simple constraint is to skew the

value distribution for both variables, making values 0 and 1

occur much more frequently for A and value 0 occur much

more frequently for B. From a verification perspective, this is

bad, since we’re mostly testing the same thing over and over

again.

In the simple examples above, the total stimulus space is quite

small (256 total), so all individual values of A and B are

selected. The total stimulus space in a real verification

environment is enormous, which can result in large portions of

the stimulus space remaining unexercised during random

regressions. During the coverage closure phase of our

verification cycle, these random-resistant corner cases are

visible – at least where they intersect defined functional

coverage goals. There are many techniques for dealing with

random-resistant corner cases with respect to coverage

closure, including the use of intelligent testbench tools,

providing more direction to the random solver in the form of

solve-order directives or random distributions, or simply

creating directed tests. However, during the random

regressions phase, these random corner cases aren’t even

visible.

III. STRATEGY-DRIVEN STIMULUS GENERATION OVERVIEW

This paper proposes a stimulus-generation technique to help

address the challenges outlined above. In seeking to design

techniques that address the challenges described above, it

helps to revisit the goals of random stimulus generation.

Fundamentally, the goals of random stimulus generation are:

• maximize the verification benefits realized from

covering a subset of the complete stimulus space

• generate stimulus across the reachable stimulus space

• generate cases that the verification engineer is

unlikely to think of

class unconstrained;

 rand bit[3:0] A;

 rand bit[3:0] B;

 constraint c {

 if (A > 1) {

 B == 0;

 }

 }

endclass

class unconstrained;

 rand bit[3:0] A;

 rand bit[3:0] B;

endclass

Strategy-driven stimulus generation seeks to address these

goals by generating stimulus according to a set of user-

controllable strategies. For example, one strategy might be to

subdivide the reachable domain of each stimulus variable into

at most 64 ranges and ensure that a value in each range of each

variable is produced. A generation strategy like this helps to

address all three goals above by:

• defining a subset of the complete stimulus space

• ensuring that stimulus is generated across the

reachable domain of each variable

• in the process of generating values across the domain

of each variable, generating values and value

combinations that the verification engineer is unlikely

to think of

In addition to addressing the same fundamental goals as

random generation, the strategy-driven approach adds an

important piece of information when a bug is discovered. It

not only allows for reproducing a bug by running the same

generation strategy with the same random seed, but also

provides more information about the type of stimulus being

generated when the bug occurred. If, for example, a bug was

uncovered when targeting at most 64 value ranges across the

domain of each stimulus variable, it would certainly make

sense to continue running that generation strategy after the bug

was corrected to guard against regressions. It could also be

valuable to run a strategy targeting at most 128 or 256 value

ranges across the domain of each stimulus variable. In other

words, strategy-driven stimulus generation adds new

information to that verification process that can guide what is

done after a bug is discovered and corrected.

IV. DEVISING STIMULUS-GENERATION STRATEGIES

The work described in this paper focuses on strategies around

two fundamental aspects of stimulus generation strategy:

techniques for selecting variable target values and value

ranges, and techniques for selecting variable target

combinations. In both cases, the selection techniques will

leverage information present in the constraint system as well

as common patterns that are quite independent of the

constraint system.

The simple constraint system in Figure 5 will be used as an

example to show how various stimulus-generation strategies

can be applied to a real world case.

Figure 5 - Ethernet-frame transaction class

This abbreviated UVM sequence item is used to specify

transmit operations in a UVM testbench created for the

Ethernet MAC design from the opencores.org website [1].

V. TARGET-VALUE SELECTION STRATEGIES

Target-value strategies can be devised from information

captured in the constraint system as well as recipes that are

quite independent of a specific constraint system. Several

target-value selection strategies are described below.

Prior to applying a target-value selection strategy, it always

makes sense to apply reachability analysis to determine the

true domain of each stimulus variable. After determining the

actual reachable domain of each variable, a value-range

selection strategy can be applied on top of the reachable

domain.

The constraint system shown in Figure 5 has an apparent value

space of 131,081 and a total stimulus space of

103,079,215,104 combinations prior to analyzing the

reachable domain of each variable, as shown in Table 2.

class ethmac_tx_seq_item;

 rand frame_fmt_e frame_fmt;

 rand bit pad;

 rand bit crc;

 rand bit has_tag;

 rand bit[15:0] len;

 rand bit[15:0] payload_len;

 constraint c {

 len inside {[4:4096]};

 if (len < 46) { pad == 0; }

 if (frame_fmt == FRAME_FMT_ETH) {

 crc == 1;

 if (has_tag) {

 payload_len inside {[42:1500]};

 len == (payload_len + 6+6+2+4);

 } else {

 payload_len inside {[46:1500]};

 len == (payload_len + 6+6+2);

 }

 } else {

 len == payload_len;

 }

 }

endclass

Field Apparent

Domain

Domain Size

frame_fmt 0..2 3

pad 0,1 2

crc 0,1 2

has_tag 0,1 2

len 0..65535 65536

payload_len 0..65535 65536

 131081

Table 1 - Apparent value space size

After reachability analysis, total value space is shown to be

8,186 and the total stimulus space is shown to be 402,063,576.

Field Actual Domain Domain Size

frame_fmt 0..2 3

Pad 0,1 2

Crc 0,1 2

Has_tag 0,1 2

Len 4..4096 4093

Payload_len 4..4096 4093

 8186

Table 2 - Reachable value space size

A. Uniform Target-Range Strategy

The simplest scheme for selecting target-value ranges is to

evenly divide the reachable domain of each variable into at

most N ranges. This strategy is similar to the functional

coverage strategy of selecting an auto-bin-max setting and

applying a coverpoint with automatic bins to each stimulus

variable.

In the simple example shown in Figure 5, most of the stimulus

fields are small. However, the len and payload_len fields have

a larger reachable domain, and thus partitioning the domain of

these fields is sensible.

Field Target Value Ranges

frame_fmt 3

pad 2

crc 2

has_tag 2

len 256

payload_len 256

 521

Table 3 - Target value ranges

B. Edge Target-Range Strategy

Corner cases are often significant from the perspective of

verification. For example, in the case above, frame padding

will be enabled if the total frame length is less than 46 bytes.

The Edge target-range selection strategy makes the

assumption that producing several individual values at the

minimum and maximum of each large variable’s reachable

domain will provoke more-interesting activity in the design.

The Edge target-range selection strategy is an extension of the

uniform target-range selection strategy. With this strategy, a

maximum of N total range will be selected. In addition, M

individual-value bins will be selected at the minimum and

maximum of the reachable domain. In the case of the ‘len’

field in the example sequence item, specifying N=16 and M=4

results in four individual-value ranges selected at the

minimum of the reachable domain of ‘len’, four individual-

value ranges selected at the maximum of the reachable domain

of ‘len’ and eight uniform-sized ranges selected in the middle

of the reachable domain of ‘len’, as illustrated in Figure 6.

C. Constraint-Guided Target-Range Strategy

The constraints used to specify the bounds of legal stimulus

also provide a wealth of information about what cases may be

most interesting to create. For the purposes of selecting target

values and value ranges, equality and inside operators

involving constant quantities are most actionable. Target

values can be inferred from these operators when used either

as a condition or in the body of a condition. Below are several

examples showing how using constraint-guided target-value

selection can help to ensure that the stimulus space is traversed

more comprehensively.

Figure 7 - Condition-inferred target values

In the example shown in Figure 7, an inside operator is used

within a condition. Given the large domain of A, targeting the

range 1…5 will ensure that the constraint B < 10 is activated.

rand bit[15:0] A;

rand bit[15:0] B;

constraint c {

 if (A inside {[1:5]}) {

 B < 10;

 }

}

Figure 6 - Edges target-range selection example

Figure 8 - Body constraint-inferred target values

In the example shown in Figure 8, an equality constraint is

used as the body of a condition. Targeting the value B=20 will

ensure that the condition A<2 occurs.

In the real world, constraint-guided target-range selection can

be an extremely valuable technique for constraint systems with

complex conditional logic. The target values selected by use of

this technique help to ensure that all conditional-constraint

branches are entered.

VI. VARIABLE-COMBINATION SELECTION STRATEGIES

Selecting target variables to exercise in combination leads to

production of even more varied and complex stimulus.

A. No Combinations

The simplest approach to selecting target variable

combinations is to ignore combinations entirely and allow the

variable-value combinations to occur randomly. Since

targeting variable combinations – especially more than two

variables – greatly increases the target stimulus space, not

targeting any combinations enables greater focus on variable

values.

For the example used in this paper, only targeting individual

variables enables targeting large numbers of value ranges. For

example, when targeting a maximum of 256 value ranges, a

no-combinations strategy means that a total of 521 values will

be targeted. If just variable pairs were targeted using the same

maximum of 256 value ranges, a total of 70,174 value-range

pairs would be targeted – likely not a feasible number to verify

in simulation.

B. All-Pairs Target Variable Selection

All-pairs testing, also known as pairwise testing, has been

explored extensively for testing software [2]. From several

case studies on software systems, empirical data suggests that

70% of defects are triggered by the combination of two or

fewer input parameters and no defects were triggered by a

combination of more than six parameters [3]. This data

suggests that the simplistic combination-selection strategy of

not selecting any pairs is actually a pretty good one. It also

suggests that targeting pairs of fields, triples of fields, etc. is a

good graduated strategy for selecting a subset of the full

stimulus space.

As mentioned in the previous section, one downside to all-

pairs target-variable selection is that the total combinations

targeted expands quickly as the targeted variable combinations

increase from pairs to triples to quads. For example, targeting

pairwise variable combinations for the example shown above

results in 926 reachable value combinations to target. If triples

of variable combinations are targeted, 2,368 reachable value

combinations are targeted. This rapid expansion of the number

of targeted variable-value combinations has the practical effect

of limiting the number of target value ranges that can be

targeted as the pairwise degree increases. Nevertheless, the all-

pairs strategy provides a valuable automated way to select

variable combinations that produce more-complex and varied

stimulus combinations.

VII. IMPLEMENTATION

As the saying goes, “The proof of the pudding is in the

eating.” It is critical to actually implement strategy-driven

stimulus generation tool to assess whether the strategies

described above have a beneficial impact on the diversity of

the generated stimulus and the comprehensiveness of

verification.

Among the most important requirements for the technology

infrastructure used to implement a strategy-driven stimulus

generator:

• extract information from existing SystemVerilog

transaction/sequence item classes

• provide ways to analyze the stimulus model extracted

from the SystemVerilog class to, for example,

determine the reachable domain of each variable

• provide a high degree of control over the generated

stimulus and provide a mechanism to ‘close the loop’

for stimulus-generation targets; in other words, a way

to know when all goals have been met

The proof of concept implementation described in this paper

was built on top of the inFact intelligent testbench automation

tool. Internally, the inFact tool uses a rule-based stimulus

description, but it is also able to import random variables and

constraints directly from SystemVerilog transaction classes.

The tool provides features that enable reachability analysis. It

accepts directives to specify stimulus-generation targets and

provides APIs to monitor the completion status of those

targets. inFact can integrate into multiple verification

environments, though this paper only focuses on integration as

a UVM sequence. The reason for focusing on UVM

environments is that strategy-driven stimulus generation

emphasizes applying multiple sets of stimulus based on

different generation strategies. Because the number of

automatically-generated test cases is relatively high, changing

the stimulus-generation mechanism within the testbench must

be a low-overhead operation. UVM provides several features,

that make swapping between multiple stimulus-generation

rand bit[15:0] A;

rand bit[15:0] B;

constraint c {

 if (A < 2) {

 B == 20;

 }

}

mechanisms extremely low-overhead, including the factory

and the modularity and encapsulation provided by sequences.

In the proof-of-concept implementation described in this

paper, the process for generating stimulus according to a

strategy is outlined in the process diagram shown in Figure 9.

For each targeted stimulus sequence item or transaction, the

constraints and random variables are imported from

SystemVerilog into the inFact tool. Next, reachability analysis

is applied to each of the stimulus variables to determine the

reachable domain.

After determining the reachable domain of each variable, the

user-specified combination of target-value generation strategy

and variable-combination variable strategy is applied to the

variable and constraint system. This results in a set of

generation-target directives, specified in terms of target values

and value ranges on variables and variable combinations to

target.

The combination of the imported variable/constraint system

and the generation-target directives produce a stimulus-

generator class (a UVM sequence for the purposes of this

paper) that will generate stimulus that is legal according to the

variables and constraints and focuses on the generation targets

identified during the strategy-specific analysis. A

SystemVerilog covergroup is also created that contains

functional coverage goals that correspond to the generation-

target directives. This covergroup can be used as an

independent monitor to ensure that the generated stimulus is

applied to the design as intended. It can also be used as a

means of grading the verification value of the strategy-

generated stimulus relative to stimulus generated via open-

loop random generation.

VIII. RESULTS

Grading the effectiveness of the results from strategy-driven

stimulus generation is important from two perspectives. First,

it is useful to understand whether the technique offers general

benefits for verification beyond that offered by open-loop

random stimulus. Secondly, grading the effectiveness of

strategy-driven stimulus generation helps to select the highest-

value strategies to apply. For example, sufficient coverage of

the no-combinations strategy may be achieved during the

course of regular open-loop random regressions. However, the

open-loop random regressions may not achieve sufficient

coverage of the pairwise strategy. In this case, applying the

pairwise strategy would add verification benefit.

For the purposes of this paper, results will be analyzed both

quantitatively and qualitatively using the example shown

earlier in Figure 5.

A quantitative comparison of results can be done using the

covergroup created based on the generation-target directives.

The methodology for comparison was to identify the number

of tx sequence items generated by the strategy-driven

sequence to achieve the strategy goal, as monitored by the

generated covergroup. Then, run 20 simulations, each with a

unique seed, in which the same number of tx sequence items

were generated randomly. Comparing the coverage achieved

by the randomly-generated sequence items against the

strategy-based coverage goal enables a comparison of whether

the randomly-generated stimulus reaches the same corners of

the stimulus space.

Take a stimulus-generation strategy targeting a maximum of

64 value ranges on each class variable. This strategy required

68 tx sequence items to achieve the generation goal. By

contrast, generating transactions purely randomly results in

99.2% after 5 simulation runs of 68 tx transactions (340 total

transactions), and no further apparent progress across 15

additional simulations. A plot comparing progress towards the

strategy goal of the strategy-driven sequence and the pure-

random sequence is shown in Figure 10.

SystemVerilog

Class

Stimulus

Generator Class

SystemVerilog

Covergroup

Reachability

Analysis

Strategy-Specific

Analysis

Generation-Target

Directives

Figure 9 - Strategy-driven generator creation process

Figure 10 – Results comparison with max 64 even bins

Although pure-random generation did not entirely achieve the

generation goals, this is a case where it appears that the

generation targets implied by this generation strategy will be

eventually achieved as a side effect of the normal open-loop

random generation.

Next, consider a pairwise generation strategy again with a

maximum of 64 target ranges on each variable. Results are

shown in Figure 11. In this case, 180 sequence items generated

by the strategy-driven generator are required to meet the

generation goals. By contrast, randomly-generated tx sequence

items achieve 85.5% of the pairwise goal after 12 simulations

(2160 transactions), and appear not to make further progress.

Figure 11 - Results comparison with a pairwise strategy

This is a case in which strategy-driven generation shows clear

benefits in terms of efficiently hitting a random blind spot that

would likely not be noticed until the coverage-closure phase of

verification (if at all).

Another way to examine the results is to look at a qualitative

comparison with open-loop random regressions. The UVM

testbench for the OpenCores Ethernet MAC design was

developed as an example, and ran through a typical set of

random regressions and systematic coverage closure on

verification goals derived from the functional specification.

Surprisingly, though, application of a pairwise generation

strategy with the Edges strategy for target-value selection

uncovered a previously-undiscovered state machine lock-up

involving very small packets, CRC generation, and small-

packet padding.

IX. CONCLUSION

Strategy-driven stimulus generation, as described in this paper,

leverages automation and existing variable/constraint stimulus

models to select generation targets and systematically stimulus

that satisfies generate those generation targets in order to

more-comprehensively exercise random-resistant portions of

the stimulus space. Several generation strategies were

described. To evaluate the effectiveness of the technique, the

result of strategy-driven generation was compared against

open-loop random generation for the same constraint model.

By adding strategy-driven stimulus generation to the

verification toolkit, more metrics are available during the

random-regressions phase of the verification cycle and bugs

that normally would lurk in random blind spots are uncovered

in a more-predictable manner.

REFERENCES

[1] I. Mohor, “Ethernet MAC 10/100 Mbps” [Online]. Available:
http://opencores.org/project,ethmac

[2] D. Richard Kuhn, “Practical Combinatorial Testing” [Online].
Available: http://csrc.nist.gov/groups/SNS/acts/documents/SP800-142-
101006.pdf

[3] D. Richard Kuhn, “Software Fault Interactions and Implications for
Software Testing” [Online]. Available:
http://csrc.nist.gov/groups/SNS/acts/documents/TSE-0172-1003-1.pdf

