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Abstract— Hardware verification typically uses two primary 

types of stimulus generation: engineer-directed stimulus 

generation and open-loop random generation. This paper 

proposes a third approach for generating stimulus that 

automatically identifies and produces high-value test patterns 

from a constraint-based stimulus model. A trial implementation 

built on top of an intelligent testbench automation tool is 

described. 
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I. INTRODUCTION 

In today’s hardware-verification space, two categories of tests 

are being created: engineer-directed tests and open-loop 

random tests. Directed and coverage-driven testing are 

examples of engineer-directed activities. Based on a test plan, 

the engineer lays out a goal of cases to test and either proceeds 

to create a test to exercise those cases (directed test) or defines 

functional coverage to ensure that random stimulus hits the 

identified test goal. Engineer-directed testing has many 

benefits, including ensuring that key functionality is verified 

in a documented and repeatable manner. The primary 

drawback is the “imagination gap”: the very human inability 

to imagine key but obscure combinations of functionality that 

must be verified. In contrast, the main benefit of open-loop 

random simulation is that it closes this gap. Taking the 

engineer out the imagination loop enables automation to create 

legal but obscure cases and helps to find bugs. 

 

Both engineer-directed and open-loop random testing are 

valuable techniques. Consequently, a typical verification cycle 

starts with engineer-directed tests to verify basic functionality, 

transitions to a ‘random simulations’ stage to help find bugs, 

and concludes with closing coverage on the engineer-defined 

functional coverage goals. There are, of course, challenges in 

each phase of this cycle. This paper focuses on the random-

regressions phase of the verification cycle. It proposes a 

technique to augment the generation of pure-random stimulus 

with high-value stimulus identified using common patterns 

and information extracted from a constraint model. 

 

II. CHALLENGES OF PURE-RANDOM GENERATION 

In order to understand why it would be desirable to augment 

pure-random generation during the random regressions phase 

of the verification cycle, it is necessary to explore some of the 

downsides of pure-random generation.  

 

In our example three-phase verification cycle, both the bring-

up phase and the coverage-closure phase provide good metrics 

on what is being tested relative to defined goals. By contrast, 

in the random regressions phase, the only meaningful metric 

of verification progress is bugs found. When a bug is found, 

the stimulus generated during that simulation is identified by 

the random seed. This is a good thing in the sense that it 

allows the stimulus set to be reproduced such that the bug can 

be examined and corrected. The drawback is that changes to 

the design and testbench environment – perhaps to resolve the 

just-discovered defect – change the meaning of the seed and 

make it impossible to reproduce the same stimulus pattern that 

uncovered the issue. In addition, when a defect is discovered, 

ideally it would be desirable to generate new, similar stimulus 

to the one that uncovered the defect. The random seed 

provides no information to enable this to be done. 

 

Our verification goal during the random regressions phase of 

the verification cycle is to get to as many corners of the 

stimulus state space as possible. Random-resistant corner 

cases are an unfortunate artifact of even the best constraint 

solver and present an obstacle to achieving this verification 

goal. Random-resistant cases result from the fact that random 

stimulus generation is all about probability. A well-

implemented random constraint solver will generate an even 

distribution of values across the domain of random variables 

in the absence of constraints.  

 

Take, for example, the simple SystemVerilog class with two 

random variables shown in Figure 1. 

 



 
Figure 1 - Unconstrained random-stimulus class 

 

Both variables have a reachable domain of 0 through 15. 

Running 1,000 randomizations and counting the number of 

times each variable takes on each value might result in a plot 

like the one in Figure 2. 

 

 
Figure 2 - Unconstrained-random value distribution 

 

Note that the distribution of values is very even across the 

reachable domain and between the A and B variables. From a 

verification perspective, this is good since it means that we’re 

testing different cases most of the time. 

 

However, the presence of constraints changes this situation 

substantially. Constraints make random selection of some 

values or value combinations substantially less probable. For 

example, a constraint might be added between A and B such 

that for most values of A, B is forced to 0. 

 

 
Figure 3 - Constrained-random stimulus class 

 

This constraint has no impact on the reachable domain of A 

and B individually. However, this relationship significantly 

alters the results of running another 1000 randomizations, as 

shown in Figure 4. 

 

 
Figure 4 - Constrained-random value distribution 

 

Note that the effect of this simple constraint is to skew the 

value distribution for both variables, making values 0 and 1 

occur much more frequently for A and value 0 occur much 

more frequently for B. From a verification perspective, this is 

bad, since we’re mostly testing the same thing over and over 

again. 

 

In the simple examples above, the total stimulus space is quite 

small (256 total), so all individual values of A and B are 

selected. The total stimulus space in a real verification 

environment is enormous, which can result in large portions of 

the stimulus space remaining unexercised during random 

regressions. During the coverage closure phase of our 

verification cycle, these random-resistant corner cases are 

visible – at least where they intersect defined functional 

coverage goals. There are many techniques for dealing with 

random-resistant corner cases with respect to coverage 

closure, including the use of intelligent testbench tools, 

providing more direction to the random solver in the form of 

solve-order directives or random distributions, or simply 

creating directed tests. However, during the random 

regressions phase, these random corner cases aren’t even 

visible.  

 

III. STRATEGY-DRIVEN STIMULUS GENERATION OVERVIEW 

This paper proposes a stimulus-generation technique to help 

address the challenges outlined above. In seeking to design 

techniques that address the challenges described above, it 

helps to revisit the goals of random stimulus generation. 

Fundamentally, the goals of random stimulus generation are: 

 

• maximize the verification benefits realized from 

covering a subset of the complete stimulus space 

• generate stimulus across the reachable stimulus space 

• generate cases that the verification engineer is 

unlikely to think of  

class unconstrained; 

 

  rand bit[3:0]  A; 

  rand bit[3:0]  B; 

 

  constraint c { 

    if (A > 1) { 

      B == 0; 

    } 

  } 

 

endclass 

class unconstrained; 

 

  rand bit[3:0]  A; 

  rand bit[3:0]  B; 

 

endclass 



 

Strategy-driven stimulus generation seeks to address these 

goals by generating stimulus according to a set of user-

controllable strategies. For example, one strategy might be to 

subdivide the reachable domain of each stimulus variable into 

at most 64 ranges and ensure that a value in each range of each 

variable is produced. A generation strategy like this helps to 

address all three goals above by: 

 

• defining a subset of the complete stimulus space 

• ensuring that stimulus is generated across the 

reachable domain of each variable 

• in the process of generating values across the domain 

of each variable, generating values and value 

combinations that the verification engineer is unlikely 

to think of  

 

In addition to addressing the same fundamental goals as 

random generation, the strategy-driven approach adds an 

important piece of information when a bug is discovered. It 

not only allows for reproducing a bug by running the same 

generation strategy with the same random seed, but also 

provides more information about the type of stimulus being 

generated when the bug occurred. If, for example, a bug was 

uncovered when targeting at most 64 value ranges across the 

domain of each stimulus variable, it would certainly make 

sense to continue running that generation strategy after the bug 

was corrected to guard against regressions. It could also be 

valuable to run a strategy targeting at most 128 or 256 value 

ranges across the domain of each stimulus variable. In other 

words, strategy-driven stimulus generation adds new 

information to that verification process that can guide what is 

done after a bug is discovered and corrected. 

 

 

IV. DEVISING STIMULUS-GENERATION STRATEGIES 

The work described in this paper focuses on strategies around 

two fundamental aspects of stimulus generation strategy: 

techniques for selecting variable target values and value 

ranges, and techniques for selecting variable target 

combinations. In both cases, the selection techniques will 

leverage information present in the constraint system as well 

as common patterns that are quite independent of the 

constraint system. 

 

The simple constraint system in Figure 5 will be used as an 

example to show how various stimulus-generation strategies 

can be applied to a real world case. 

 

 
Figure 5 - Ethernet-frame transaction class 

 

This abbreviated UVM sequence item is used to specify 

transmit operations in a UVM testbench created for the 

Ethernet MAC design from the opencores.org website [1].  

 

V. TARGET-VALUE SELECTION STRATEGIES 

Target-value strategies can be devised from information 

captured in the constraint system as well as recipes that are 

quite independent of a specific constraint system. Several 

target-value selection strategies are described below. 

 

Prior to applying a target-value selection strategy, it always 

makes sense to apply reachability analysis to determine the 

true domain of each stimulus variable. After determining the 

actual reachable domain of each variable, a value-range 

selection strategy can be applied on top of the reachable 

domain.  

 

The constraint system shown in Figure 5 has an apparent value 

space of 131,081 and a total stimulus space of 

103,079,215,104 combinations prior to analyzing the 

reachable domain of each variable, as shown in Table 2.  

 

 

 

 

 

class ethmac_tx_seq_item; 

  rand frame_fmt_e      frame_fmt; 

  rand bit   pad;  

  rand bit              crc; 

  rand bit              has_tag; 

  rand bit[15:0]        len; 

  rand bit[15:0]        payload_len; 

 

  constraint c { 

    len inside {[4:4096]}; 

 

    if (len < 46) { pad == 0; } 

  

    if (frame_fmt == FRAME_FMT_ETH) { 

      crc == 1; 

      if (has_tag) { 

        payload_len inside {[42:1500]}; 

        len == (payload_len + 6+6+2+4); 

      } else { 

        payload_len inside {[46:1500]}; 

        len == (payload_len + 6+6+2); 

      } 

    } else { 

       len == payload_len; 

    } 

  }  

endclass 



Field Apparent 

Domain 

Domain Size 

frame_fmt 0..2 3 

pad 0,1 2 

crc 0,1 2 

has_tag 0,1 2 

len 0..65535 65536 

payload_len 0..65535 65536 

  131081 

Table 1 - Apparent value space size 

 

After reachability analysis, total value space is shown to be 

8,186 and the total stimulus space is shown to be 402,063,576. 

 

Field Actual Domain Domain Size 

frame_fmt 0..2 3 

Pad 0,1 2 

Crc 0,1 2 

Has_tag 0,1 2 

Len 4..4096 4093 

Payload_len 4..4096 4093 

  8186 

Table 2 - Reachable value space size 

 

A. Uniform Target-Range Strategy 

The simplest scheme for selecting target-value ranges is to 

evenly divide the reachable domain of each variable into at 

most N ranges. This strategy is similar to the functional 

coverage strategy of selecting an auto-bin-max setting and 

applying a coverpoint with automatic bins to each stimulus 

variable. 

 

In the simple example shown in Figure 5, most of the stimulus 

fields are small. However, the len and payload_len fields have 

a larger reachable domain, and thus partitioning the domain of 

these fields is sensible. 

 

Field Target Value Ranges 

frame_fmt 3 

pad 2 

crc 2 

has_tag 2 

len 256 

payload_len 256 

 521 

Table 3 - Target value ranges 
 

B. Edge Target-Range Strategy 

Corner cases are often significant from the perspective of 

verification. For example, in the case above, frame padding 

will be enabled if the total frame length is less than 46 bytes. 

The Edge target-range selection strategy makes the 

assumption that producing several individual values at the 

minimum and maximum of each large variable’s reachable 

domain will provoke more-interesting activity in the design. 

The Edge target-range selection strategy is an extension of the 

uniform target-range selection strategy. With this strategy, a 

maximum of N total range will be selected. In addition, M 

individual-value bins will be selected at the minimum and 

maximum of the reachable domain. In the case of the ‘len’ 

field in the example sequence item, specifying N=16 and M=4 

results in four individual-value ranges selected at the 

minimum of the reachable domain of ‘len’, four individual-

value ranges selected at the maximum of the reachable domain 

of ‘len’ and eight uniform-sized ranges selected in the middle 

of the reachable domain of ‘len’, as illustrated in Figure 6.  

 

 
 

 

 

C. Constraint-Guided Target-Range Strategy 

The constraints used to specify the bounds of legal stimulus 

also provide a wealth of information about what cases may be 

most interesting to create. For the purposes of selecting target 

values and value ranges, equality and inside operators 

involving constant quantities are most actionable. Target 

values can be inferred from these operators when used either 

as a condition or in the body of a condition. Below are several 

examples showing how using constraint-guided target-value 

selection can help to ensure that the stimulus space is traversed 

more comprehensively. 

 

 
Figure 7 - Condition-inferred target values 

 

In the example shown in Figure 7, an inside operator is used 

within a condition. Given the large domain of A, targeting the 

range 1…5 will ensure that the constraint B < 10 is activated. 

 

 

rand bit[15:0]   A; 

rand bit[15:0]   B; 

 

constraint c { 

  if (A inside {[1:5]}) { 

    B < 10; 

  } 

} 

Figure 6 - Edges target-range selection example 



 
Figure 8 - Body constraint-inferred target values 

 

In the example shown in Figure 8, an equality constraint is 

used as the body of a condition. Targeting the value B=20 will 

ensure that the condition A<2 occurs. 

 

In the real world, constraint-guided target-range selection can 

be an extremely valuable technique for constraint systems with 

complex conditional logic. The target values selected by use of 

this technique help to ensure that all conditional-constraint 

branches are entered. 

 

VI. VARIABLE-COMBINATION SELECTION STRATEGIES 

Selecting target variables to exercise in combination leads to 

production of even more varied and complex stimulus. 

 

A. No Combinations 

The simplest approach to selecting target variable 

combinations is to ignore combinations entirely and allow the 

variable-value combinations to occur randomly. Since 

targeting variable combinations – especially more than two 

variables – greatly increases the target stimulus space, not 

targeting any combinations enables greater focus on variable 

values.  

 

For the example used in this paper, only targeting individual 

variables enables targeting large numbers of value ranges. For 

example, when targeting a maximum of 256 value ranges, a 

no-combinations strategy means that a total of 521 values will 

be targeted. If just variable pairs were targeted using the same 

maximum of 256 value ranges, a total of 70,174 value-range 

pairs would be targeted – likely not a feasible number to verify 

in simulation. 

 

B. All-Pairs Target Variable Selection 

All-pairs testing, also known as pairwise testing, has been 

explored extensively for testing software [2]. From several 

case studies on software systems, empirical data suggests that 

70% of defects are triggered by the combination of two or 

fewer input parameters and no defects were triggered by a 

combination of more than six parameters [3]. This data 

suggests that the simplistic combination-selection strategy of 

not selecting any pairs is actually a pretty good one. It also 

suggests that targeting pairs of fields, triples of fields, etc. is a 

good graduated strategy for selecting a subset of the full 

stimulus space. 

 

As mentioned in the previous section, one downside to all-

pairs target-variable selection is that the total combinations 

targeted expands quickly as the targeted variable combinations 

increase from pairs to triples to quads. For example, targeting 

pairwise variable combinations for the example shown above 

results in 926 reachable value combinations to target. If triples 

of variable combinations are targeted, 2,368 reachable value 

combinations are targeted. This rapid expansion of the number 

of targeted variable-value combinations has the practical effect 

of limiting the number of target value ranges that can be 

targeted as the pairwise degree increases. Nevertheless, the all-

pairs strategy provides a valuable automated way to select 

variable combinations that produce more-complex and varied 

stimulus combinations. 

 

VII. IMPLEMENTATION 

As the saying goes, “The proof of the pudding is in the 

eating.” It is critical to actually implement strategy-driven 

stimulus generation tool to assess whether the strategies 

described above have a beneficial impact on the diversity of 

the generated stimulus and the comprehensiveness of 

verification.  

 

Among the most important requirements for the technology 

infrastructure used to implement a strategy-driven stimulus 

generator: 

  

• extract information from existing SystemVerilog 

transaction/sequence item classes  

• provide ways to analyze the stimulus model extracted 

from the SystemVerilog class to, for example, 

determine the reachable domain of each variable 

• provide a high degree of control over the generated 

stimulus and provide a mechanism to ‘close the loop’ 

for stimulus-generation targets; in other words, a way 

to know when all goals have been met 

 

The proof of concept implementation described in this paper 

was built on top of the inFact intelligent testbench automation 

tool. Internally, the inFact tool uses a rule-based stimulus 

description, but it is also able to import random variables and 

constraints directly from SystemVerilog transaction classes. 

The tool provides features that enable reachability analysis. It 

accepts directives to specify stimulus-generation targets and 

provides APIs to monitor the completion status of those 

targets. inFact can integrate into multiple verification 

environments, though this paper only focuses on integration as 

a UVM sequence. The reason for focusing on UVM 

environments is that strategy-driven stimulus generation 

emphasizes applying multiple sets of stimulus based on 

different generation strategies. Because the number of 

automatically-generated test cases is relatively high, changing 

the stimulus-generation mechanism within the testbench must 

be a low-overhead operation. UVM provides several features, 

that make swapping between multiple stimulus-generation 

rand bit[15:0]   A; 

rand bit[15:0]   B; 

 

constraint c { 

  if (A < 2) { 

    B == 20; 

  } 

} 



mechanisms extremely low-overhead, including the factory 

and the modularity and encapsulation provided by sequences. 

 

In the proof-of-concept implementation described in this 

paper, the process for generating stimulus according to a 

strategy is outlined in the process diagram shown in Figure 9. 

 

 
 

 

For each targeted stimulus sequence item or transaction, the 

constraints and random variables are imported from 

SystemVerilog into the inFact tool. Next, reachability analysis 

is applied to each of the stimulus variables to determine the 

reachable domain.  

 

After determining the reachable domain of each variable, the 

user-specified combination of target-value generation strategy 

and variable-combination variable strategy is applied to the 

variable and constraint system. This results in a set of 

generation-target directives, specified in terms of target values 

and value ranges on variables and variable combinations to 

target.  

 

The combination of the imported variable/constraint system 

and the generation-target directives produce a stimulus-

generator class (a UVM sequence for the purposes of this 

paper) that will generate stimulus that is legal according to the 

variables and constraints and focuses on the generation targets 

identified during the strategy-specific analysis. A 

SystemVerilog covergroup is also created that contains 

functional coverage goals that correspond to the generation-

target directives. This covergroup can be used as an 

independent monitor to ensure that the generated stimulus is 

applied to the design as intended. It can also be used as a 

means of grading the verification value of the strategy-

generated stimulus relative to stimulus generated via open-

loop random generation. 

 

VIII. RESULTS 

Grading the effectiveness of the results from strategy-driven 

stimulus generation is important from two perspectives. First, 

it is useful to understand whether the technique offers general 

benefits for verification beyond that offered by open-loop 

random stimulus.  Secondly, grading the effectiveness of 

strategy-driven stimulus generation helps to select the highest-

value strategies to apply. For example, sufficient coverage of 

the no-combinations strategy may be achieved during the 

course of regular open-loop random regressions. However, the 

open-loop random regressions may not achieve sufficient 

coverage of the pairwise strategy. In this case, applying the 

pairwise strategy would add verification benefit. 

 

For the purposes of this paper, results will be analyzed both 

quantitatively and qualitatively using the example shown 

earlier in Figure 5.  

 

A quantitative comparison of results can be done using the 

covergroup created based on the generation-target directives. 

The methodology for comparison was to identify the number 

of tx sequence items generated by the strategy-driven 

sequence to achieve the strategy goal, as monitored by the 

generated covergroup. Then, run 20 simulations, each with a 

unique seed, in which the same number of tx sequence items 

were generated randomly. Comparing the coverage achieved 

by the randomly-generated sequence items against the 

strategy-based coverage goal enables a comparison of whether 

the randomly-generated stimulus reaches the same corners of 

the stimulus space. 

 

Take a stimulus-generation strategy targeting a maximum of 

64 value ranges on each class variable. This strategy required 

68 tx sequence items to achieve the generation goal. By 

contrast, generating transactions purely randomly results in 

99.2% after 5 simulation runs of 68 tx transactions (340 total 

transactions), and no further apparent progress across 15 

additional simulations. A plot comparing progress towards the 

strategy goal of the strategy-driven sequence and the pure-

random sequence is shown in Figure 10. 

 

SystemVerilog 

Class 

Stimulus 

Generator Class 

SystemVerilog 

Covergroup 

Reachability 

Analysis 

Strategy-Specific 

Analysis 

Generation-Target 

Directives 

Figure 9 - Strategy-driven generator creation process 



 
Figure 10 – Results comparison with max 64 even bins 

 

Although pure-random generation did not entirely achieve the 

generation goals, this is a case where it appears that the 

generation targets implied by this generation strategy will be 

eventually achieved as a side effect of the normal open-loop 

random generation. 

 

Next, consider a pairwise generation strategy again with a 

maximum of 64 target ranges on each variable. Results are 

shown in Figure 11. In this case, 180 sequence items generated 

by the strategy-driven generator are required to meet the 

generation goals. By contrast, randomly-generated tx sequence 

items achieve 85.5% of the pairwise goal after 12 simulations 

(2160 transactions), and appear not to make further progress. 

 

 
Figure 11 - Results comparison with a pairwise strategy 

 

This is a case in which strategy-driven generation shows clear 

benefits in terms of efficiently hitting a random blind spot that 

would likely not be noticed until the coverage-closure phase of 

verification (if at all). 

 

Another way to examine the results is to look at a qualitative 

comparison with open-loop random regressions. The UVM 

testbench for the OpenCores Ethernet MAC design was 

developed as an example, and ran through a typical set of 

random regressions and systematic coverage closure on 

verification goals derived from the functional specification. 

Surprisingly, though, application of a pairwise generation 

strategy with the Edges strategy for target-value selection 

uncovered a previously-undiscovered state machine lock-up 

involving very small packets, CRC generation, and small-

packet padding.  

 

IX. CONCLUSION 

Strategy-driven stimulus generation, as described in this paper, 

leverages automation and existing variable/constraint stimulus 

models to select generation targets and systematically stimulus 

that satisfies generate those generation targets in order to 

more-comprehensively exercise random-resistant portions of 

the stimulus space. Several generation strategies were 

described. To evaluate the effectiveness of the technique, the 

result of strategy-driven generation was compared against 

open-loop random generation for the same constraint model. 

By adding strategy-driven stimulus generation to the 

verification toolkit, more metrics are available during the 

random-regressions phase of the verification cycle and bugs 

that normally would lurk in random blind spots are uncovered 

in a more-predictable manner.  
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