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Abstract— The interface is perhaps the most versatile part of 

the SystemVerilog language when it comes to verification. The 

interface is where static meets dynamic, abstract meets concrete, 

the rubber meets the road, the glue that holds a verification 

environment together…  

The interface is the main communication mechanism between 

the static Device Under Test (DUT) and the dynamic testbench 

world. Since the introduction of the SystemVerilog language in 

2005, there have been several papers written on interfaces and 

testbench-DUT connections [3-11], but no comprehensive 

reference that shows the many ways to use an interface.  

This paper gives an overview of where to apply the different 

testbench-DUT connection methods for a typical System on Chip 

(SOC) design.  

Keywords—interface; abstract; concrete; register layer; 

backdoor access 

I. INTRODUCTION  

The most common method to connect a testbench to a DUT 
is the SystemVerilog virtual interface. This approach is well-
defined and proven, and in many situations the best way to 
connect to the DUT. In large and complex SOC’s containing 
one or more blocks of reused IP, non-standard communications 
protocols, and application specific IP, how does a user connect 
all of the legacy Verification IP (VIP) and UVM compliant 
VIP in a manner that allows creating a reusable UVM 
testbench? What if the user has a large library of VHDL Bus 
Functional Models (BFMs)? Do they have to rewrite all of 
these in SystemVerilog? What if the user has Verilog or 
SystemVerilog BFM’s? Can these be integrated into a UVM 
testbench? What if the design requires code running on a 
processor? How does the user synchronize the testbench with 
the processor? 

Based on our professional experience, we believe the 
testbench should be completely independent of the DUT, and 
the DUT treated as a blackbox. As such, we are adamantly 
opposed to the usage of SystemVerilog hierarchical references 
from the dynamic testbench world back to the static DUT 
world. The testbench should be architected such that it doesn’t 
know or care about the DUT hierarchy. This will make the 
testbench more easily reused. When the testbench does require 
access to an instance inside the DUT, for example, backdoor 
register read/write, we show how to use the SystemVerilog 
bind construct and/or the abstract-concrete class to connect the 

DUT to the testbench. This keeps the “hierarchical” reference 
where it belongs in the static DUT world. 

In all of the examples shown, the overriding theme is the 
test environment is architected as though all of the VIP is 
UVM compliant. This allows users to migrate legacy VIP to 
Universal Verification Components (UVCs) as time permits 
without having to change the test environment, sequences, and 
tests. The BFMs will be integrated into an environment and 
look just like a UVC. The abstract base class/concrete derived 
class connection method is included here since it looks similar 
to an interface, and in some cases is the best way to connect the 
DUT to the testbench. 

Fig. 1 is a high-level block diagram of a typical SOC – 
processor, peripherals, and custom logic. The examples that 
follow refer to the UART block of our SOC. 
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Fig. 1. Typical SOC Block Diagram 

II. VHDL BUS FUNCTIONAL MODEL 

Contrary to popular belief, VHDL is not “dead,” nor is it 
the new Latin [10]. VHDL is still widely used for FPGA 
development. In many cases, users may have a large library of 
existing VHDL BFM’s and a desire to migrate to a UVM test 
environment, but may not know how to integrate the BFM 
into a UVM testbench. Some of these users are under the 
assumption that all of their legacy VHDL models must be 
converted to a SystemVerilog UVC. Here, we demonstrate 
that conversion to a UVC is not obligatory. Unlike the Verilog 
BFM, for which there are multiple ways of integrating into a 



UVM test environment, there is only one way to connect a 
VHDL BFM in a UVM testbench.  

There are a few problems to consider when using a VHDL 
BFM, the most important being there is no Language 
Reference Manual (LRM) for VHDL-SystemVerilog 
simulation. This means each simulator vendor has its own 
specific rules on interoperability (restrictions on VHDL port 
types, generics, and data types). Next, it is not possible to call 
a VHDL procedure from SystemVerilog; or use a cross 
module reference (XMR) into a VHDL entity from 
SystemVerilog (note: there is also no support in the UVM 
base class library for register model backdoor access to VHDL 
since this is vendor dependent).  

The interoperability and procedure calling problems can be 
solved by adding two layers of code to the BFM. The first 
layer is a VHDL wrapper that serves two purposes: to 
decompose ports of record type into individual signals; and to 
call the BFM procedures. The second layer is to connect the 
VHDL BFM wrapper to a SystemVerilog virtual interface. To 
ensure the greatest probability of interoperability success 
between different simulators, the ports on the VHDL BFM 
wrapper will use std_logic, std_logic_vector, integer, and real 
data types (Note: strings are typically supported as well). 

In the example shown in Fig. 2, the DUT is a simple 
UART in a typical UVM testbench. The test environment 
contains our shell UART UVC agent (and possibly a 
scoreboard and other agents). The static testbench contains the 
DUT, a clock and reset generator, the wrapped BFM, and 
some virtual interfaces. 
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Fig. 2. Testbench and Environment with Legacy VHDL BFM 

 
The legacy BFM shown in Fig. 3 includes a record in its 

port map. It pops transactions out of a queue and calls the 
uart_read, uart_write, and uart_reset tasks which are defined 
in the package shown in Fig. 4. This package also defines the 
record used in the port map. 

 

 

entity uart_bfm is

   port( 

      clk_in : in std_logic;              -- BFM clock input

      rst_in    : in std_logic;              -- BFM reset input

      datout : in    std_logic_vector (7 downto 0); -- data from uart

      interrupt : in   std_logic;              -- interrupt(1)

      sout     : in std_logic;              -- serial output

      clk       : out std_logic;              -- 10 mhz clock

      reg_rw    : out reg_rw_trans_t; -- Outputs for register R/W transactions

      rst       : out std_logic;              -- reset(0)

      sin       : out std_logic               -- serial input

   );

end uart_bfm ;

architecture beh of uart_bfm is begin

main: process begin 

case trans_queue(q_index_out).opcode is

when reset =>

uart_reset ( trans_q => trans_queue(q_index_out),

rst_n => rst);

q_index_out := q_index_out + 1;

when write =>

uart_write ( trans_q => trans_queue(q_index_out),

wr_data => reg_rw.datin,

wr_addr => reg_rw.addr,

rw_n        => reg_rw.nrw,

chip_select => reg_rw.cs);

q_index_out := q_index_out + 1;

  

when read =>

uart_read  ( trans_q => trans_queue(q_index_out),

rd_addr => reg_rw.addr,

rd_data   => datout,

rw_n => reg_rw.nrw,

chip_select => reg_rw.cs);

        q_index_out := q_index_out + 1;

    end case;

end process main;

end beh;

 
 

Fig. 3. Legacy VHDL BFM Source Code 



package uart_bfm_pkg is 

-- define records and enumerated types

type reg_rw_trans_t is

record

addr : std_logic_vector (2 downto 0); -- 3-bit address

cs      : std_logic;                      -- chip select

datin  : std_logic_vector (7 downto 0); -- data to uart

nrw    : std_logic;                      -- r(0), w(1)

end record;

type opcode_e is (reset, write, read, none);

-- Declare procedures

procedure write ( write_data : in std_logic_vector(7 downto 0);

                  write_addr : in std_logic_vector(2 downto 0));

procedure read ( read_addr : in std_logic_vector(2 downto 0));

procedure reset( num_clks : in natural );

procedure uart_reset ( variabletrans_q : inout trans_t;

                          signal   rst_n   : out std_logic);   

procedure uart_write ( variabletrans_q : inout trans_t;

   signal   wr_data: out std_logic_vector(7 downto 0);

                           signal   wr_addr: out std_logic_vector(2 downto 0);

   signal   rw_n : out std_logic;

                           signal   chip_select : out std_logic);      

   procedure uart_read (variabletrans_q : inout trans_t;

                           signal  rd_data : in std_logic_vector(7 downto 0);

                           signal rd_addr: out std_logic_vector (2 downto 0);

   signal   rw_n : out std_logic;

   signal   chip_select : out std_logic);

end uart_bfm_pkg;

package body uart_bfm_pkg is

procedure reset( num_clks : in natural ) is

variable reset_trans : trans_t :=

( opcode => reset,

address => (others => '0'),

write_data => (others => '0'),

read_data => (others => '0'),

num_clks => num_clks);

begin

trans_queue(q_index_in) := reset_trans; 

q_index_in := q_index_in + 1;

end reset;

procedure uart_reset ( variabletrans_q : inout trans_t;

                          signal   rst_n   : out std_logic) is

begin

report "In uart_reset";

rst_n <= '0' after CLK_PRD, '1' after trans_q.num_clks*CLK_PRD;

wait for trans_q.num_clks*CLK_PRD;

end uart_reset;

-- Define remaining procedures

   end uart_bfm_pkg;

 
Fig. 4. Package Accompanying the Legacy VHDL BFM 

 
The VHDL BFM wrapper shown in Fig. 5 decomposes the 

BFM’s ports of record type into individual signals. Based 
upon signals driven by the virtual interface, it calls tasks 
which insert transactions into the queue utilized by the 
uart_bfm beh architecture. 

 

entity uart_bfm_wrapper is

port(

-- Inputs for BFM

  clk_in      : std_logic;

rst_in      : std_logic;

-- other inputs for BFM

-- Inputs from UVC

write_data  : in std_logic_vector (7 downto 0);

rw_addr     : in std_logic_vector (2 downto 0);

r_wn        : in std_logic;

num_clks    : natural;

reset_start : in std_logic;

rw_start : in std_logic;

-- Outputs for DUT

addr : out std_logic_vector (2 downto 0);

clk : out std_logic;

-- other outputs for DUT...

-- Outputs for UVC

read_data : out std_logic_vector (7 downto 0);

reset_done : out std_logic;

rw_done : out std_logic

);

end uart_bfm_wrapper;

architecture beh of uart_bfm_wrapper is 

-- Declare components and any internal signals...

begin

uart_bfm_inst : uart_bfm

port map (

-- Decompose records

reg_rw.addr => addr,

reg_rw.cs    => cs_internal,

reg_rw.datin => datin,

reg_rw.nrw   => nrw,

-- Connect other BFM I/O...

);

  main: process begin   

if (reset_start = '1') then

reset_done <= '0';

      reset(num_clks => num_clks);

      wait until rising_edge(rst_internal);

reset_done <= '1';

   elsif (rw_start = '1') then

      rw_done <= '0';

      if (r_wn = '1') then

        read(rw_addr);

      else

        write(write_data, rw_addr);

      end if;

      wait until rising_edge(cs_internal);

      rw_done <= '1';

   end if;

end process main;

end beh;  
 

Fig. 5. VHDL BFM Wrapper Source Code 



 
Fig. 6 shows the SystemVerilog interface that will connect 

the dynamic verification environment to the VHDL BFM 
wrapper. 

interface uart_uvc_if (input clk, input reset);

// Inputs to BFM Wrapper

logic  [7:0] write_data;

logic  [2:0] rw_addr;

logic        r_wn;

logic  [2:0] num_clks;

logic        reset_start;

logic        rw_start;

  

// Outputs from BFM Wrapper

logic  [7:0] read_data;

logic        reset_done;

logic        rw_done;

endinterface: uart_uvc_if

 

Fig. 6. Second Layer: SystemVerilog Interface 

 
The testbench in Fig. 7 instantiates the DUT, the VHDL 

BFM wrapper, and the SystemVerilog interface: 

 
module uart_tb ();

 

uart_uvc_if uart_if(.clk (clk_in), .reset (rst_in));

uart dut( 

.addr      (addr),

// Make remaining port connections...

);

uart_bfm_wrapper bfm_wrapper

(

.clk_in (clk_in),

  .rst_in   (rst_in),

// Inputs from DUT ///////////////////////

.datout (datout),

.interrupt (interrupt),

.sout        (sout),

  // Inputs from UVC ///////////////////////

  .write_data (uart_if.write_data),

  .rw_addr     (uart_if.rw_addr),

  .r_wn        (uart_if.r_wn),

  .num_clks   (uart_if.num_clks),

  .start_reset (uart_if.start_reset),

  .start_rw    (uart_if.start_rw),

  // Outputs for DUT ///////////////////////

  .addr (addr),

  .clk    (clk),

  .cs     (cs),

  .datin (datin),

  .nrw   (nrw),

  .rst     (rst),

  .sin    (sin),

// Outputs for UVC ///////////////////////

.read_data (uart_if.read_data),

  .reset_done (uart_if.reset_done),

  .rw_done     (uart_if.rw_done)

  );

  // Add the virtual interface to the uvm_config_db

  initial begin

    uvm_config_db #(virtual uart_uvc_if)::set(null, "uvm_test_top", "vif_uart", uart_if);

    run_test();

  end

endmodule: uart_tb

 
 

Fig. 7. Testbench Source Code 

 

The main task of the UART agent in the environment is to 
call procedures in the BFM. The procedures, in turn, wiggle 
the pins on the DUT. The start and done signals of the 
uart_uvc_if cause the procedures to be called. When a 
sequence is started on the UART agent with either a read or 
write sequence item, the driver sets the rw_start signal, which 
is connected through the wrapper layers to the BFM. This 
initiates a procedure call (either read or write) from the VHDL 
wrapper to the BFM. When the procedure completes, the 
wrapper sets the rw_done signal which tells the uart_driver to 
call item_done. See the driver source code in Fig. 8. 

 

virtual task drive_non_blocking();

forever begin

@(negedge vif.clk)

if (!vif.reset) begin

seq_item_port.try_next_item(req_txn);

if (req_txn == null) begin

// Send Idle pattern

end

else begin

drive_dut();

// Calls item_done at the rising edge of vif.rw_done

seq_item_port.item_done();

end 

end 

end

endtask: drive_non_blocking

virtual task drive_dut();

vif.write_data <= req_txn.write_data;

vif.rw_addr    <= req_txn.rw_addr;

vif.num_clks   <= req_txn.num_clks;

if (req_txn.trans_type == RESET) begin

vif.start_reset <= 1'b1;

vif.start_rw    <= 1'b0;

@(posedge vif.reset_done);

vif.start_reset <= 1'b0;

end else begin

vif.start_reset <= 1'b0;

vif.start_rw    <= 1'b1;

if (req_txn.trans_type == READ) begin

vif.r_wn <= 1'b1;

end else begin

vif.r_wn <= 1'b0;

end

@(posedge vif.rw_done);

req_txn.read_data = vif.read_data;

vif.start_rw     <= 1'b0;

end

endtask: drive_dut

 
 

Fig. 8. UART Driver Source Code 

 
From the perspective of the test environment, everything 

looks and operates just like a plain old vanilla UVM test 
environment. The tests and test environment can be used 
without modification; and at some later time when a project 
schedule allows, the UART UVC could be migrated to a 
standard UVC with minimal changes in the uart_driver code. 

 



III. VERILOG BUS FUNCTIONAL MODEL 

For a Verilog BFM, there are multiple options available to 
integrate the BFM into a UVM testbench. The method chosen 
depends on a few factors: 

 Can the BFM code be modified? 

 Does the BFM require parameters? 

 Does the BFM use a parameterized interface? 

These factors will determine which method is best suited to 
integrate a specific BFM into the UVM testbench. All of the 
following solutions allow using multiple BFMs in the 
testbench without having to hardcode instance identifiers in the 
test environment. 

A. BFM Wrapper 

If the existing Verilog BFM cannot be modified or is 
encrypted Verilog, one way to handle this is creating a wrapper 
around the BFM, just as was done for the preceding VHDL 
example. 

B. Abstract and Concrete Class 

It is also possible to use the Verilog BFM as is through the 
use of abstract and concrete classes [11]. In this case, the static 
testbench and dynamic environment take on slightly different 
forms, with the testbench defining a concrete class, which 
derives from an abstract class defined in the environment: 
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Fig. 9. Testbench and Environment Utilizing Concrete and Abstract Classes 

 

module uart_tb;

  uart_bfm uart_bfm_inst( 

   // BFM port connections

  );

  uart dut (

      // DUT port connections...             

    );  

    class uart_driver_concrete extends uart_driver;

`uvm_component_utils(uart_driver_concrete)  

      task uart_write(input logic [7:0] bit_data, input logic [2:0] addr_w);

        uart_bfm_inst.uart_write(bit_data, addr_w);

      endtask: uart_write

      

      task uart_read(input logic [2:0] addr_r, output logic [7:0] read_data);

        uart_bfm_inst.uart_read(addr_r);

        read_data = datout;

      endtask: uart_read

      task uart_reset(input integer  num_clocks);

        uart_bfm_inst.uart_reset(num_clocks);

      endtask: uart_reset

task run_phase(uvm_phase phase);

forever begin

seq_item_port.get_next_item(req_txn);

@(posedge clk_in) #1;

case(req_txn.trans_type)

RESET: uart_reset(req_txn.num_clks);

READ: uart_read(req_txn.rw_addr, req_txn.read_data);

WRITE: uart_write(req_txn.write_data, req_txn.rw_addr);

endcase

seq_item_port.item_done();

end

endtask: run_phase

endclass: uart_driver_concrete

initial begin

uart_driver::type_id::set_type_override(uart_driver_concrete::get_type());

run_test(); 

end

endmodule: uart_tb

virtual class uart_driver extends uvm_driver #(uart_seq_item, uart_seq_item);

`uvm_component_utils(uart_driver)  

pure virtual task uart_write(logic [7:0] bit_data, logic [2:0] addr_w);

pure virtual task uart_read(logic [2:0] addr_r, output logic [7:0] read_data);

pure virtual task uart_reset(integer  num_clocks);

  

endclass: uart_driver
 

 
Fig. 10. Testbench & Environment Code Defining the Abstract & Concrete 

Classes 

 
Note that in Fig. 9, there is no virtual interface. Instead of 

a virtual interface, this method uses a type override in the 
testbench code to connect the dynamic test environment to the 
static testbench. The derived class, uart_driver_concrete, has 
access to the legacy Verilog BFM by nature of being defined 
in the same scope where the BFM is instantiated. When the 
dynamic test environment’s base class member, uart_driver, is 
created as a uart_driver_concrete through a type override, it 
will have the same scope, and therefore, also have access to 
the BFM. See Fig. 10. This use of base and derived class thus 
gives the illusion of a virtual interface. The “magic” that 
allows everything to come together is the factory pattern [12]; 
the base class is registered with the UVM factory and 
overridden at runtime. 

If the BFM has a parameterized interface, the 
abstract/concrete class is a good choice for connecting to the 
DUT (see The Problem with Parameters). 



C. Tasks in Interface 

If a user is fortunate enough to have a BFM that can be 
modified, by far the easiest approach is to copy and paste the 
tasks right into a SystemVerilog interface. The static testbench 
will have the virtual interface, which contains the BFM tasks. 
The test environment will contain the shell UART agent. The 
diagram below is nearly identical to the VHDL example shown 
previously. The environment is the same, but the static 
testbench shown here in Fig. 11 is different in that the virtual 
interface connects directly to the DUT, rather than to a BFM 
wrapper. 
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Fig. 11. Testbench and Environment for a Converted Legacy Verilog BFM 

 

When a sequence is started on the UART agent, the 

uart_driver will call the appropriate task in the uart_uvc_if. 

This interface, the uart_uvc_if, is shown in Fig. 12. 

 

interface uart_uvc_if (input clk, input reset);

logic  [7:0] datout;

logic  [2:0] addr;

logic        cs;

logic  [7:0] datin;

logic        nrw; 

// Additional interface signals...

task uart_write;

input [7:0] bit_data;

input [2:0] addr_w;

begin

addr = addr_w;

nrw = # (CLK_PRD) 1;

datin = bit_data;

cs = #(CLK_PRD) 0;

cs = #(5*CLK_PRD) 1;

nrw = #(CLK_PRD) 0;

# CLK_PRD;

end 

endtask

task uart_read ;

input  [2:0] addr_r;

output  [7:0] read_data;

begin

// Code to drive a read transaction to the DUT...

end

endtask

task uart_reset ;

input integer num_clocks;    

begin

// Code to drive a reset to the DUT...

end

endtask

endinterface: uart_uvc_if

class uart_driver extends uvm_driver #(uart_seq_item, uart_seq_item);

virtual task drive_dut(); 

if (req_txn.trans_type == RESET) begin

   vif.uart_reset(req_txn.num_clks);

  end else if (req_txn.trans_type == READ) begin

      vif.uart_read(req_txn.rw_addr, req_txn.read_data);

   end else begin

   vif.uart_write(req_txn.write_data, req_txn.rw_addr);

   end

endtask: drive_dut

endclass: uart_driver
 

 
Fig. 12. BFM Copied into an Interface and Driver Task 

 

IV. HARDWARE/SOFTWARE FLOW CONTROL 

One problem encountered when verifying any SOC is 
answering the age-old question: which comes first, the 
software or the hardware? For companies with a large number 
of proficient software engineers, creating a simulation 
environment driven by code running on a processor makes 
sense.  These companies verify the SOC by running real 
application code that was developed concurrent with the ASIC. 
On the other hand, if the software is verified using existing 
hardware, or after the real hardware is available, the simulation 
environment will be hardware centric. In both cases, there will 
be code running on the processor. The main difference is 
whether the hardware/UVM side or the software side is the 
main controller.  

In either case, some type of synchronization/handshaking 
mechanism is required between the hardware and software. 
This synchronization is typically accomplished using shared 
memory (or a mailbox). The general flow of any test is as 
follows: the processor is loaded with code, the processor boots, 
and then the mailbox is monitored for commands that tell the 
hardware what to do (for example to send some Ethernet 
packets from the VIP to the DUT, or to send some data from 
the SPI port on the DUT to the SPI VIP). This is the “software-



centric” flow; the “hardware-centric” flow is similar, except 
once the processor finishes booting, control is passed over to 
the SystemVerilog side, and sequences are started.  In the 
hardware-centric flow, the processor operations are distilled 
down to three commands: read, write, compare. This allows 
functional verification of the SOC hardware using a minimal 
amount of C (or assembly) code. 

To pass control back and forth between the hardware and 
software requires monitoring and driving nodes inside the 
DUT, ideally without using hierarchical references to the 
shared memory. For the hardware-centric approach we will use 
a processor agent that writes commands (read, write, or 
compare) to a shared memory  and sets the processor interrupt. 
The processor interrupt subroutine reads the shared memory, 
executes the requested command, and then clears the interrupt 
upon completion of the command.  

The processor agent, shown in Fig. 13, is a standard UVM 
agent, except the driver has an extra interface. The event_if 
interface, defined in Fig. 14, contains events that the driver can 
use to control commands to the processor. For example, it 
could wait for the ev_isr_done event before calling item_done. 

The monitor, shown in Fig. 14, sets these events anytime 
the memory contents are changed. In addition to being used by 
the driver, the events will be used by the sequences running in 
the test environment to control the execution. For example, at 
the event “ev_isr_done”, a sequence would start sending 
packets. 

To monitor the shared memory, we use a SystemVerilog 
bind construct, similar to the whitebox verification technique 
[3]. Writing or reading data to/from the shared memory is done 
using tasks in a virtual interface. 

class firmware_agent extends uvm_agent;

  firmware_config m_cfg;

  firmware_monitor    m_monitor;

  firmware_driver      m_driver;

  uvm_sequencer #(firmware_item, firmware_item)  m_sequencer;

 

  virtual function void build_phase(uvm_phase phase);

      if(!uvm_config_db #(firmware_config)::get(this, "", "firmware_config", m_cfg)) begin

      `uvm_error("build_phase", "firmware_config not found")

       end

  endfunction: build_phase

  virtual function void connect_phase(uvm_phase phase);

    m_driver.vif_fw       = m_cfg.vif_fw;  

    m_driver.vif_event = m_cfg.vif_event;

  endfunction: connect_phase

endclass: firmware_agent

interface firmware_if();

task backdoor_write (logic [31:0] address, logic[31:0] data, logic [2:0] fw_cmd);

        top_tb.dut_wrapper.dut.u_top.u_proc_sys.u_mem.u_mailbox[66:64] = fw_cmd;

        top_tb.dut_wrapper.dut.u_top.u_proc_sys.u_mem.u_mailbox[63:32] = data;

        top_tb.dut_wrapper.dut.u_top.u_proc_sys.u_mem.u_mailbox[31:0]   = address;

   endtask

   task backdoor_read (logic [31:0] address, logic[31:0] data, logic [2:0] fw_cmd);

       fw_cmd = top_tb.dut_wrapper.dut.u_top.u_proc_sys.u_mem.u_mailbox[66:64];

       data       = top_tb.dut_wrapper.dut.u_top.u_proc_sys.u_mem.u_mailbox[63:32];

       address = top_tb.dut_wrapper.dut.u_top.u_proc_sys.u_mem.u_mailbox[31:0];  

   endtask      

endinterface: firmware_if

class firmware_driver extends uvm_driver #(firmware_item, firmware_item);

virtual firmware_if vif_fw;

    virtual event_if            vif_event;

task run_phase(uvm_phase phase);

forever begin

seq_item_port.get_next_item(req_txn);

case(req_txn.trans_type)

READ: vif_fw.backdoor_read(req_txn.address, req_txn.data,req_txn.fw_cmd);

WRITE: vif_fw.backdoor_write(req_txn.address, req_txn.data,req_tx.fw_cmd);

endcase

seq_item_port.item_done();

end

endtask: run_phase

endclass: firmware_driver

Fig. 13. Processor Agent 

 

 

 



class firmware_monitor extends uvm_monitor;

 // Note: standard UVM phase code not shown

 firmware_item            mon_txn, t;

 virtual event_if           event_vif;

 task monitor_dut();

    forever begin

      @(event_vif.message) begin

        case (event_vif.message)

          boot_done: begin

            -> event_vif.boot_done_ev;

            `uvm_info({get_type_name(),":monitor_dut"},"Boot Done", UVM_NONE)

          end

          cpu_instr_start: begin

            -> event_vif.cpu_instr_start_ev;

            `uvm_info({get_type_name(),":monitor_dut"},"CPU Instruction Start", UVM_NONE)

          end  

          cpu_instr_finish: begin

            -> event_vif.cpu_instr_finish_ev;

            `uvm_info({get_type_name(),":monitor_dut"},"CPU Instruction Finished", UVM_NONE)

          end            

          cpu_isr_start: begin

            -> event_vif.cpu_isr_start_ev;

            `uvm_info({get_type_name(),":monitor_dut"},"CPU Interrupt Subroutine Start", UVM_NONE)

          end  

          cpu_isr_finish: begin

            -> event_vif.cpu_isr_finish_ev;

            `uvm_info({get_type_name(),":monitor_dut"},"CPU Interrupt Subroutine Finished", UVM_NONE)

          end          

          default : begin

            -> event_vif.warning_ev;

            `uvm_info({get_type_name(),":monitor_dut"},$psprintf("Invalid CPU message : %h",    

firmware_vif.message), UVM_NONE)

          end            

        endcase

        mon_txn.address = event_vif.address;

        mon_txn.data       = event_vif.data;

        mon_txn.fw_cmd  = event_vif.fw_cmd;

        $cast(t, mon_txn.clone());

        ap.write(t);

        `uvm_info({get_type_name(),":monitor_dut"}, t.convert2string(), UVM_MEDIUM)

      end

    end      

  endtask: monitor_dut

interface event_if (input logic clock);

  logic [31:0] address;

  logic [31:0] data;

  logic [2:0]  fw_cmd;

  event boot_done_ev;

  event cpu_instr_start_ev;

  event cpu_instr_finish_ev;

  event cpu_isr_start_ev;

  event cpu_isr_finish_ev;

  event cpu_warning_ev;

endinterface: event_if

module top_tb();

    firmware_if       fw_if;

    top_wrapper dut_wrapper ();

   bind dut_wrapper.dut.u_top.u_proc_sys.u_mem.u_mailbox

          fw_event monitor_module_i (.*, .address(mem_addr), .data(mem_data),.fw_cmd(mem_cmd));

   initial begin

       uvm_config_db #(virtual firmware_if)::set(null, "uvm_test_top", "vif_firmware", fw_if);

   end

endmodule: top_tb

module fw_event   ( 

  input   logic                  clock,

  input   logic [31:0]        address,

  input   logic [31:0]        data,

  input   logic [1:0]          fw_cmd  );

   import uvm_pkg::*;

   event_if ev_if(.*);

   initial begin

       uvm_config_db #(virtual event_if)::set(null, "uvm_test_top", "vif_event", ev_if);

   end

endmodule: fw_event

 

Fig. 14. Firmware Monitor 

V.  UVM REGISTER LAYER BACKDOOR ACCESS 

The UVM base class library has a built-in mechanism to 
allow backdoor access to registers, but there may be situations 
when registers are not accessible using the default DPI: a 
VHDL DUT or registers declared as multidimensional arrays, 
or the usage of the DPI has too great of an impact on 
simulation performance. There is a base class available for 
user-defined backdoor access that can be used instead. One 
approach [5] uses hierarchical access to the DUT to bypass the 

DPI and improve simulation performance, but the testbench is 
no longer completely decoupled from the DUT, and the 
register model cannot be contained in a package. An 
alternative is to move the hierarchical references to an 
interface. 

In addition to keeping the test environment completely 
independent of the DUT, this approach has the added benefit 
of removing the DUT hierarchy from the register model, and 
can be used with a VHDL DUT (note: backdoor write from 
SystemVerilog to VHDL is only possible using simulator 
specific utilities). If the DUT hierarchy changes, but the 
registers remain the same, there is no need to update the 
register model since it doesn’t contain any HDL hierarchical 
path constructs, i.e. add_hdl_path(“top_tb.dut_wrapper.dut”) 
or 
status_reg_h.configure(this,null,”<hierarchical_path_to_register>”). 

 
class status_reg_backdoor extends uvm_status_reg_backdoor;

        `uvm_object_utils(status_reg_backdoor)

// Task to write via backdoor

virtual status_reg_backdoor_if status_reg_backdoor_vif;

virtual task read(uvm_reg_item rw);

do_pre_read(rw);

status_reg_backdoor_vif.backdoor_read(rw);

rw.status = UVM_IS_OK;

do_post_read(rw);

endtask

 

virtual task write(uvm_reg_item rw);

do_pre_write(rw);

status_reg_backdoor_vif.backdoor_write(rw);

rw.status = UVM_IS_OK;

do_post_write(rw);

endtask

endclass : status_reg_backdoor

interface reg_backdoor_if( );

  import uvm_pkg::*;

  task backdoor_read (uvm_reg_item rw);

   rw.value[0]=top_tb.dut_wrapper.dut.u_regs.status_rd_data_ff;

  endtask

  task backdoor_write (uvm_reg_item rw);

    top_tb.dut_wrapper.dut.u_regs.status_rd_data_ff= rw.value[0];

  endtask

endinterface : reg_backdoor_if

class top_reg_block extends uvm_reg_block;

   `uvm_object_utils(top_reg_block)

   rand status_reg   status_h; 

  virtual function void build();

  m_status_backdoor =    

status_reg_backdoor::type_id::create("m_status_backdoor");

   status_h = status_reg::type_id::create("status_h");

   status_h.configure(this);

   status_h.build();

   status_h.set_backdoor(m_status_backdoor);

endfunction;

endclass: top_reg_block

 

Fig. 15. Register Backdoor Interface Example 

 
 Fig. 15 shows the backdoor read/write tasks for a 

SystemVerilog DUT. If the DUT is VHDL, a bind construct 
must be used as shown in Fig. 16. 



 
module top_tb();

    reg_backdoor_if   status_reg_if(.*);

    top_wrapper dut_wrapper ();

   initial begin

       uvm_config_db #(virtual reg_backdoor_if)::set(null,"*", "vif_reg_backdoor", 

                                   status_reg_if);

   end

endmodule

module vhdl_dut_tb();

  top_wrapper dut_wrapper ();

  bind dut_wrapper.dut.u_top.u_regs vhdl_backdoor_module

          vhdl_backdoor_module_i (.*, .status(status_rd_ff));

endmodule

interface vhdl_reg_backdoor_if(input [31:0] status);

  import uvm_pkg;

  task backdoor_read (uvm_reg_item rw);

    rw.value[0]=status;

  endtask

  task backdoor_write (uvm_reg_item rw);

   `uvm_error(“status_reg_backdoor”, “Backdoor write to VHDL not allowed!”)

  endtask

endinterface : reg_backdoor_if

module vhdl_backdoor_module(input wire [31:0] status );

   import uvm_pkg::*;

 

   vhdl_reg_backdoor_if vh_status_reg_if(.*);

   initial begin

       uvm_config_db #(virtual vhdl_reg_backdoor_if)::set(null,"*", 

 "vif_vh_reg_backdoor", vh_status_reg_if);

   end

endmodule : vhdl_backdoor_module

 

Fig. 16 Register Backdoor Interface with VHDL DUT 

VI. THE PROBLEM WITH PARAMETERS 

For most designs that use industry standard 
communication or bus protocols, nearly all VIP use 
parameterized interfaces, like the one in Fig. 17. 
Parameterized interfaces require parameterized classes, which 
create a specialization for each combination of the generic 
class and actual parameter value. For designs with multiple 
combinations of parameters this will add complexity to the 
testbench and require using the type-based factory instead of 
the string-based factory. For a detailed description of using 
parameterized classes in OVM/UVM see [7]. 

interface ahb_vip_if #(parameter NUM_MASTERS,

                                                     NUM_SLAVES,

                                                     ADDRESS_WIDTH,

WDATA_WIDTH,

RDATA_WIDTH) 

(input clk, input reset);

  logic [ADDRESS_WIDTH-1:0] haddr;

  logic [2:0]          hburst;

  logic [3:0]          hprot;

  logic [2:0]         hsize;

  logic [1:0]          htrans;

  logic [WDATA_WIDTH-1:0] hwdata;

  logic                hwrite;

  logic [RDATA_WIDTH-1:0] hrdata;

  logic                hreadyout;

  logic                hresp;

  logic                hsel;

  logic                hready;

endinterface: ahb_vip_if

module top_tb ();

 typedef virtual ahb_vip_if #(1,10,32,32,32) vif_ahb_t;

 vif_ahb_t    uart_ahb_if_0();

 vif_ahb_t    spi_ahb_if_0();

 :

 :

endmodule
 

Fig. 17. Parameterized Interface Example 

 
If your design contains only a minimal number of 

parameter values – multiple AHB agents all with the same 
address and data width for example – using a parameterized 
class is probably a good fit. On the other hand, if you have 
multiple parameterized interfaces that require many 
combinations of values, the best solution is to use an abstract 
base class/derived concrete class. 

A. Abstract/Concrete Class 

The abstract base class/concrete derived class really shines 
when specializations become too cumbersome. The example 
shown in Fig. 18 is implemented in much the same way as the 
example in section III.B of this paper. The testbench 
instantiates interfaces with varying parameters. The interface 
itself defines a concrete class, which extends an abstract base 
class and defines the tasks that will toggle the DUT’s pins. 
This abstract class is a member of the driver and is overridden 
by the driver’s call to get_config_object(). With this method, 
the only entity that needs to know the parameters for all the 
interfaces is the testbench itself. 



module uart_tb;

  uart_uvc_if#( .DATA_WIDTH(32), 

.ADDR_WIDTH(4)) uart_if_0(.clk(clk_in), .reset(rst_in));

uart_uvc_if#( .DATA_WIDTH(16), 

.ADDR_WIDTH(2)) uart_if_1(.clk(clk_in), .reset(rst_in));

dut dut_inst ( // DUT port connections...);  

  initial begin

    set_config_object("*","uart_if_0",uart_if_0.create_concrete_if("uart_if_0"),0);

    set_config_object("*","uart_if_1",uart_if_1.create_concrete_if("uart_if_1"),0);

    run_test(); 

  end

endmodule: uart_tb

interface uart_uvc_if #(DATA_WIDTH=8, ADDR_WIDTH=3)(input clk, input reset);

  logic  [DATA_WIDTH-1:0] datout;

  logic  [ADDR_WIDTH-1:0] addr;

  logic  [DATA_WIDTH-1:0] datin;

class uart_if_concrete extends uart_if_base;

task uart_write;

      input integer bit_data;

      input integer addr_w;

      begin

        addr = addr_w;

        nrw = # (CLK_PRD) 1;

        datin = bit_data;

        cs = #(CLK_PRD) 0;

        cs = #(5*CLK_PRD) 1;

        nrw = #(CLK_PRD) 0;

        # CLK_PRD;

      end 

endtask

endclass

uart_if_concrete concrete_if;

function uart_if_base create_concrete_if(string name);

concrete_if = new(name);

return concrete_if;

endfunction

endinterface: uart_uvc_if

class uart_driver#(integer ID=0) extends uvm_driver #(uart_seq_item, uart_seq_item);

  uart_if_base vif;

  function void build();

    super.build();

    get_config_object($sformatf("uart_if_%0d",ID),tmp,0)

endfunction

endclass: uart_driver

 

Fig. 18. Abstract Concrete Parameterized Interface Example 

VII. CONCLUSIONS 

This paper illustrated where to apply the different 

testbench-DUT connection methods for a typical System on 

Chip (SOC) design. It included examples of how to apply the 

testbench to DUT connection methods [3] to a typical SOC 

design while adhering to a strict separation of dynamic and 

static elements. Using the techniques presented in this paper, 

users can create a highly reusable test environment that 

leverages their existing verification IP and allows replacing 

BFMs with UVCs as time permits. 

The interface is the Swiss army knife of verification. 
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