
SystemVerilog Interface Cookbook

Paul Egan

Rockwell Automation

Milwaukee, WI

pbegan@ra.rockwell.com

Kathleen Otten

Rockwell Automation

Milwaukee, WI

kkotten@ra.rockwell.com

Abstract— The interface is perhaps the most versatile part of

the SystemVerilog language when it comes to verification. The

interface is where static meets dynamic, abstract meets concrete,

the rubber meets the road, the glue that holds a verification

environment together…

The interface is the main communication mechanism between

the static Device Under Test (DUT) and the dynamic testbench

world. Since the introduction of the SystemVerilog language in

2005, there have been several papers written on interfaces and

testbench-DUT connections [3-11], but no comprehensive

reference that shows the many ways to use an interface.

This paper gives an overview of where to apply the different

testbench-DUT connection methods for a typical System on Chip

(SOC) design.

Keywords—interface; abstract; concrete; register layer;

backdoor access

I. INTRODUCTION

The most common method to connect a testbench to a DUT
is the SystemVerilog virtual interface. This approach is well-
defined and proven, and in many situations the best way to
connect to the DUT. In large and complex SOC’s containing
one or more blocks of reused IP, non-standard communications
protocols, and application specific IP, how does a user connect
all of the legacy Verification IP (VIP) and UVM compliant
VIP in a manner that allows creating a reusable UVM
testbench? What if the user has a large library of VHDL Bus
Functional Models (BFMs)? Do they have to rewrite all of
these in SystemVerilog? What if the user has Verilog or
SystemVerilog BFM’s? Can these be integrated into a UVM
testbench? What if the design requires code running on a
processor? How does the user synchronize the testbench with
the processor?

Based on our professional experience, we believe the
testbench should be completely independent of the DUT, and
the DUT treated as a blackbox. As such, we are adamantly
opposed to the usage of SystemVerilog hierarchical references
from the dynamic testbench world back to the static DUT
world. The testbench should be architected such that it doesn’t
know or care about the DUT hierarchy. This will make the
testbench more easily reused. When the testbench does require
access to an instance inside the DUT, for example, backdoor
register read/write, we show how to use the SystemVerilog
bind construct and/or the abstract-concrete class to connect the

DUT to the testbench. This keeps the “hierarchical” reference
where it belongs in the static DUT world.

In all of the examples shown, the overriding theme is the
test environment is architected as though all of the VIP is
UVM compliant. This allows users to migrate legacy VIP to
Universal Verification Components (UVCs) as time permits
without having to change the test environment, sequences, and
tests. The BFMs will be integrated into an environment and
look just like a UVC. The abstract base class/concrete derived
class connection method is included here since it looks similar
to an interface, and in some cases is the best way to connect the
DUT to the testbench.

Fig. 1 is a high-level block diagram of a typical SOC –
processor, peripherals, and custom logic. The examples that
follow refer to the UART block of our SOC.

SOC

Processor

UART

I2C

SPI

USB

I/
O

Memory

Fig. 1. Typical SOC Block Diagram

II. VHDL BUS FUNCTIONAL MODEL

Contrary to popular belief, VHDL is not “dead,” nor is it
the new Latin [10]. VHDL is still widely used for FPGA
development. In many cases, users may have a large library of
existing VHDL BFM’s and a desire to migrate to a UVM test
environment, but may not know how to integrate the BFM
into a UVM testbench. Some of these users are under the
assumption that all of their legacy VHDL models must be
converted to a SystemVerilog UVC. Here, we demonstrate
that conversion to a UVC is not obligatory. Unlike the Verilog
BFM, for which there are multiple ways of integrating into a

UVM test environment, there is only one way to connect a
VHDL BFM in a UVM testbench.

There are a few problems to consider when using a VHDL
BFM, the most important being there is no Language
Reference Manual (LRM) for VHDL-SystemVerilog
simulation. This means each simulator vendor has its own
specific rules on interoperability (restrictions on VHDL port
types, generics, and data types). Next, it is not possible to call
a VHDL procedure from SystemVerilog; or use a cross
module reference (XMR) into a VHDL entity from
SystemVerilog (note: there is also no support in the UVM
base class library for register model backdoor access to VHDL
since this is vendor dependent).

The interoperability and procedure calling problems can be
solved by adding two layers of code to the BFM. The first
layer is a VHDL wrapper that serves two purposes: to
decompose ports of record type into individual signals; and to
call the BFM procedures. The second layer is to connect the
VHDL BFM wrapper to a SystemVerilog virtual interface. To
ensure the greatest probability of interoperability success
between different simulators, the ports on the VHDL BFM
wrapper will use std_logic, std_logic_vector, integer, and real
data types (Note: strings are typically supported as well).

In the example shown in Fig. 2, the DUT is a simple
UART in a typical UVM testbench. The test environment
contains our shell UART UVC agent (and possibly a
scoreboard and other agents). The static testbench contains the
DUT, a clock and reset generator, the wrapped BFM, and
some virtual interfaces.

Testbench UVM Environment

UART UVC
UART Virtual

Interface
Scoreboard

Coverage

Virtual

Sequencer

Register

Model

Clock and

Reset

Generator

UART (DUT)

VHDL UART

BFM Wrapper

Fig. 2. Testbench and Environment with Legacy VHDL BFM

The legacy BFM shown in Fig. 3 includes a record in its

port map. It pops transactions out of a queue and calls the
uart_read, uart_write, and uart_reset tasks which are defined
in the package shown in Fig. 4. This package also defines the
record used in the port map.

entity uart_bfm is

 port(

 clk_in : in std_logic; -- BFM clock input

 rst_in : in std_logic; -- BFM reset input

 datout : in std_logic_vector (7 downto 0); -- data from uart

 interrupt : in std_logic; -- interrupt(1)

 sout : in std_logic; -- serial output

 clk : out std_logic; -- 10 mhz clock

 reg_rw : out reg_rw_trans_t; -- Outputs for register R/W transactions

 rst : out std_logic; -- reset(0)

 sin : out std_logic -- serial input

);

end uart_bfm ;

architecture beh of uart_bfm is begin

main: process begin

case trans_queue(q_index_out).opcode is

when reset =>

uart_reset (trans_q => trans_queue(q_index_out),

rst_n => rst);

q_index_out := q_index_out + 1;

when write =>

uart_write (trans_q => trans_queue(q_index_out),

wr_data => reg_rw.datin,

wr_addr => reg_rw.addr,

rw_n => reg_rw.nrw,

chip_select => reg_rw.cs);

q_index_out := q_index_out + 1;

when read =>

uart_read (trans_q => trans_queue(q_index_out),

rd_addr => reg_rw.addr,

rd_data => datout,

rw_n => reg_rw.nrw,

chip_select => reg_rw.cs);

 q_index_out := q_index_out + 1;

 end case;

end process main;

end beh;

Fig. 3. Legacy VHDL BFM Source Code

package uart_bfm_pkg is

-- define records and enumerated types

type reg_rw_trans_t is

record

addr : std_logic_vector (2 downto 0); -- 3-bit address

cs : std_logic; -- chip select

datin : std_logic_vector (7 downto 0); -- data to uart

nrw : std_logic; -- r(0), w(1)

end record;

type opcode_e is (reset, write, read, none);

-- Declare procedures

procedure write (write_data : in std_logic_vector(7 downto 0);

 write_addr : in std_logic_vector(2 downto 0));

procedure read (read_addr : in std_logic_vector(2 downto 0));

procedure reset(num_clks : in natural);

procedure uart_reset (variabletrans_q : inout trans_t;

 signal rst_n : out std_logic);

procedure uart_write (variabletrans_q : inout trans_t;

 signal wr_data: out std_logic_vector(7 downto 0);

 signal wr_addr: out std_logic_vector(2 downto 0);

 signal rw_n : out std_logic;

 signal chip_select : out std_logic);

 procedure uart_read (variabletrans_q : inout trans_t;

 signal rd_data : in std_logic_vector(7 downto 0);

 signal rd_addr: out std_logic_vector (2 downto 0);

 signal rw_n : out std_logic;

 signal chip_select : out std_logic);

end uart_bfm_pkg;

package body uart_bfm_pkg is

procedure reset(num_clks : in natural) is

variable reset_trans : trans_t :=

(opcode => reset,

address => (others => '0'),

write_data => (others => '0'),

read_data => (others => '0'),

num_clks => num_clks);

begin

trans_queue(q_index_in) := reset_trans;

q_index_in := q_index_in + 1;

end reset;

procedure uart_reset (variabletrans_q : inout trans_t;

 signal rst_n : out std_logic) is

begin

report "In uart_reset";

rst_n <= '0' after CLK_PRD, '1' after trans_q.num_clks*CLK_PRD;

wait for trans_q.num_clks*CLK_PRD;

end uart_reset;

-- Define remaining procedures

 end uart_bfm_pkg;

Fig. 4. Package Accompanying the Legacy VHDL BFM

The VHDL BFM wrapper shown in Fig. 5 decomposes the

BFM’s ports of record type into individual signals. Based
upon signals driven by the virtual interface, it calls tasks
which insert transactions into the queue utilized by the
uart_bfm beh architecture.

entity uart_bfm_wrapper is

port(

-- Inputs for BFM

 clk_in : std_logic;

rst_in : std_logic;

-- other inputs for BFM

-- Inputs from UVC

write_data : in std_logic_vector (7 downto 0);

rw_addr : in std_logic_vector (2 downto 0);

r_wn : in std_logic;

num_clks : natural;

reset_start : in std_logic;

rw_start : in std_logic;

-- Outputs for DUT

addr : out std_logic_vector (2 downto 0);

clk : out std_logic;

-- other outputs for DUT...

-- Outputs for UVC

read_data : out std_logic_vector (7 downto 0);

reset_done : out std_logic;

rw_done : out std_logic

);

end uart_bfm_wrapper;

architecture beh of uart_bfm_wrapper is

-- Declare components and any internal signals...

begin

uart_bfm_inst : uart_bfm

port map (

-- Decompose records

reg_rw.addr => addr,

reg_rw.cs => cs_internal,

reg_rw.datin => datin,

reg_rw.nrw => nrw,

-- Connect other BFM I/O...

);

 main: process begin

if (reset_start = '1') then

reset_done <= '0';

 reset(num_clks => num_clks);

 wait until rising_edge(rst_internal);

reset_done <= '1';

 elsif (rw_start = '1') then

 rw_done <= '0';

 if (r_wn = '1') then

 read(rw_addr);

 else

 write(write_data, rw_addr);

 end if;

 wait until rising_edge(cs_internal);

 rw_done <= '1';

 end if;

end process main;

end beh;

Fig. 5. VHDL BFM Wrapper Source Code

Fig. 6 shows the SystemVerilog interface that will connect

the dynamic verification environment to the VHDL BFM
wrapper.

interface uart_uvc_if (input clk, input reset);

// Inputs to BFM Wrapper

logic [7:0] write_data;

logic [2:0] rw_addr;

logic r_wn;

logic [2:0] num_clks;

logic reset_start;

logic rw_start;

// Outputs from BFM Wrapper

logic [7:0] read_data;

logic reset_done;

logic rw_done;

endinterface: uart_uvc_if

Fig. 6. Second Layer: SystemVerilog Interface

The testbench in Fig. 7 instantiates the DUT, the VHDL

BFM wrapper, and the SystemVerilog interface:

module uart_tb ();

uart_uvc_if uart_if(.clk (clk_in), .reset (rst_in));

uart dut(

.addr (addr),

// Make remaining port connections...

);

uart_bfm_wrapper bfm_wrapper

(

.clk_in (clk_in),

 .rst_in (rst_in),

// Inputs from DUT ///////////////////////

.datout (datout),

.interrupt (interrupt),

.sout (sout),

 // Inputs from UVC ///////////////////////

 .write_data (uart_if.write_data),

 .rw_addr (uart_if.rw_addr),

 .r_wn (uart_if.r_wn),

 .num_clks (uart_if.num_clks),

 .start_reset (uart_if.start_reset),

 .start_rw (uart_if.start_rw),

 // Outputs for DUT ///////////////////////

 .addr (addr),

 .clk (clk),

 .cs (cs),

 .datin (datin),

 .nrw (nrw),

 .rst (rst),

 .sin (sin),

// Outputs for UVC ///////////////////////

.read_data (uart_if.read_data),

 .reset_done (uart_if.reset_done),

 .rw_done (uart_if.rw_done)

);

 // Add the virtual interface to the uvm_config_db

 initial begin

 uvm_config_db #(virtual uart_uvc_if)::set(null, "uvm_test_top", "vif_uart", uart_if);

 run_test();

 end

endmodule: uart_tb

Fig. 7. Testbench Source Code

The main task of the UART agent in the environment is to
call procedures in the BFM. The procedures, in turn, wiggle
the pins on the DUT. The start and done signals of the
uart_uvc_if cause the procedures to be called. When a
sequence is started on the UART agent with either a read or
write sequence item, the driver sets the rw_start signal, which
is connected through the wrapper layers to the BFM. This
initiates a procedure call (either read or write) from the VHDL
wrapper to the BFM. When the procedure completes, the
wrapper sets the rw_done signal which tells the uart_driver to
call item_done. See the driver source code in Fig. 8.

virtual task drive_non_blocking();

forever begin

@(negedge vif.clk)

if (!vif.reset) begin

seq_item_port.try_next_item(req_txn);

if (req_txn == null) begin

// Send Idle pattern

end

else begin

drive_dut();

// Calls item_done at the rising edge of vif.rw_done

seq_item_port.item_done();

end

end

end

endtask: drive_non_blocking

virtual task drive_dut();

vif.write_data <= req_txn.write_data;

vif.rw_addr <= req_txn.rw_addr;

vif.num_clks <= req_txn.num_clks;

if (req_txn.trans_type == RESET) begin

vif.start_reset <= 1'b1;

vif.start_rw <= 1'b0;

@(posedge vif.reset_done);

vif.start_reset <= 1'b0;

end else begin

vif.start_reset <= 1'b0;

vif.start_rw <= 1'b1;

if (req_txn.trans_type == READ) begin

vif.r_wn <= 1'b1;

end else begin

vif.r_wn <= 1'b0;

end

@(posedge vif.rw_done);

req_txn.read_data = vif.read_data;

vif.start_rw <= 1'b0;

end

endtask: drive_dut

Fig. 8. UART Driver Source Code

From the perspective of the test environment, everything

looks and operates just like a plain old vanilla UVM test
environment. The tests and test environment can be used
without modification; and at some later time when a project
schedule allows, the UART UVC could be migrated to a
standard UVC with minimal changes in the uart_driver code.

III. VERILOG BUS FUNCTIONAL MODEL

For a Verilog BFM, there are multiple options available to
integrate the BFM into a UVM testbench. The method chosen
depends on a few factors:

 Can the BFM code be modified?

 Does the BFM require parameters?

 Does the BFM use a parameterized interface?

These factors will determine which method is best suited to
integrate a specific BFM into the UVM testbench. All of the
following solutions allow using multiple BFMs in the
testbench without having to hardcode instance identifiers in the
test environment.

A. BFM Wrapper

If the existing Verilog BFM cannot be modified or is
encrypted Verilog, one way to handle this is creating a wrapper
around the BFM, just as was done for the preceding VHDL
example.

B. Abstract and Concrete Class

It is also possible to use the Verilog BFM as is through the
use of abstract and concrete classes [11]. In this case, the static
testbench and dynamic environment take on slightly different
forms, with the testbench defining a concrete class, which
derives from an abstract class defined in the environment:

UVM Environment

UART UVC

defines

Abstract

Class

Scoreboard

Coverage

Virtual

Sequencer

Register

Model

Testbench

UART (DUT)

Legacy Verilog

UART BFM

Clock and

Reset

Generator

Concrete Class extends

Abstract Class and calls tasks

in Legacy Verilog UART BFM

Fig. 9. Testbench and Environment Utilizing Concrete and Abstract Classes

module uart_tb;

 uart_bfm uart_bfm_inst(

 // BFM port connections

);

 uart dut (

 // DUT port connections...

);

 class uart_driver_concrete extends uart_driver;

`uvm_component_utils(uart_driver_concrete)

 task uart_write(input logic [7:0] bit_data, input logic [2:0] addr_w);

 uart_bfm_inst.uart_write(bit_data, addr_w);

 endtask: uart_write

 task uart_read(input logic [2:0] addr_r, output logic [7:0] read_data);

 uart_bfm_inst.uart_read(addr_r);

 read_data = datout;

 endtask: uart_read

 task uart_reset(input integer num_clocks);

 uart_bfm_inst.uart_reset(num_clocks);

 endtask: uart_reset

task run_phase(uvm_phase phase);

forever begin

seq_item_port.get_next_item(req_txn);

@(posedge clk_in) #1;

case(req_txn.trans_type)

RESET: uart_reset(req_txn.num_clks);

READ: uart_read(req_txn.rw_addr, req_txn.read_data);

WRITE: uart_write(req_txn.write_data, req_txn.rw_addr);

endcase

seq_item_port.item_done();

end

endtask: run_phase

endclass: uart_driver_concrete

initial begin

uart_driver::type_id::set_type_override(uart_driver_concrete::get_type());

run_test();

end

endmodule: uart_tb

virtual class uart_driver extends uvm_driver #(uart_seq_item, uart_seq_item);

`uvm_component_utils(uart_driver)

pure virtual task uart_write(logic [7:0] bit_data, logic [2:0] addr_w);

pure virtual task uart_read(logic [2:0] addr_r, output logic [7:0] read_data);

pure virtual task uart_reset(integer num_clocks);

endclass: uart_driver

Fig. 10. Testbench & Environment Code Defining the Abstract & Concrete

Classes

Note that in Fig. 9, there is no virtual interface. Instead of

a virtual interface, this method uses a type override in the
testbench code to connect the dynamic test environment to the
static testbench. The derived class, uart_driver_concrete, has
access to the legacy Verilog BFM by nature of being defined
in the same scope where the BFM is instantiated. When the
dynamic test environment’s base class member, uart_driver, is
created as a uart_driver_concrete through a type override, it
will have the same scope, and therefore, also have access to
the BFM. See Fig. 10. This use of base and derived class thus
gives the illusion of a virtual interface. The “magic” that
allows everything to come together is the factory pattern [12];
the base class is registered with the UVM factory and
overridden at runtime.

If the BFM has a parameterized interface, the
abstract/concrete class is a good choice for connecting to the
DUT (see The Problem with Parameters).

C. Tasks in Interface

If a user is fortunate enough to have a BFM that can be
modified, by far the easiest approach is to copy and paste the
tasks right into a SystemVerilog interface. The static testbench
will have the virtual interface, which contains the BFM tasks.
The test environment will contain the shell UART agent. The
diagram below is nearly identical to the VHDL example shown
previously. The environment is the same, but the static
testbench shown here in Fig. 11 is different in that the virtual
interface connects directly to the DUT, rather than to a BFM
wrapper.

Testbench UVM Environment

UART UVC
UART Virtual

Interface
Scoreboard

Coverage

Virtual

Sequencer

Register

Model

Clock and

Reset

Generator

UART (DUT)

Fig. 11. Testbench and Environment for a Converted Legacy Verilog BFM

When a sequence is started on the UART agent, the

uart_driver will call the appropriate task in the uart_uvc_if.

This interface, the uart_uvc_if, is shown in Fig. 12.

interface uart_uvc_if (input clk, input reset);

logic [7:0] datout;

logic [2:0] addr;

logic cs;

logic [7:0] datin;

logic nrw;

// Additional interface signals...

task uart_write;

input [7:0] bit_data;

input [2:0] addr_w;

begin

addr = addr_w;

nrw = # (CLK_PRD) 1;

datin = bit_data;

cs = #(CLK_PRD) 0;

cs = #(5*CLK_PRD) 1;

nrw = #(CLK_PRD) 0;

CLK_PRD;

end

endtask

task uart_read ;

input [2:0] addr_r;

output [7:0] read_data;

begin

// Code to drive a read transaction to the DUT...

end

endtask

task uart_reset ;

input integer num_clocks;

begin

// Code to drive a reset to the DUT...

end

endtask

endinterface: uart_uvc_if

class uart_driver extends uvm_driver #(uart_seq_item, uart_seq_item);

virtual task drive_dut();

if (req_txn.trans_type == RESET) begin

 vif.uart_reset(req_txn.num_clks);

 end else if (req_txn.trans_type == READ) begin

 vif.uart_read(req_txn.rw_addr, req_txn.read_data);

 end else begin

 vif.uart_write(req_txn.write_data, req_txn.rw_addr);

 end

endtask: drive_dut

endclass: uart_driver

Fig. 12. BFM Copied into an Interface and Driver Task

IV. HARDWARE/SOFTWARE FLOW CONTROL

One problem encountered when verifying any SOC is
answering the age-old question: which comes first, the
software or the hardware? For companies with a large number
of proficient software engineers, creating a simulation
environment driven by code running on a processor makes
sense. These companies verify the SOC by running real
application code that was developed concurrent with the ASIC.
On the other hand, if the software is verified using existing
hardware, or after the real hardware is available, the simulation
environment will be hardware centric. In both cases, there will
be code running on the processor. The main difference is
whether the hardware/UVM side or the software side is the
main controller.

In either case, some type of synchronization/handshaking
mechanism is required between the hardware and software.
This synchronization is typically accomplished using shared
memory (or a mailbox). The general flow of any test is as
follows: the processor is loaded with code, the processor boots,
and then the mailbox is monitored for commands that tell the
hardware what to do (for example to send some Ethernet
packets from the VIP to the DUT, or to send some data from
the SPI port on the DUT to the SPI VIP). This is the “software-

centric” flow; the “hardware-centric” flow is similar, except
once the processor finishes booting, control is passed over to
the SystemVerilog side, and sequences are started. In the
hardware-centric flow, the processor operations are distilled
down to three commands: read, write, compare. This allows
functional verification of the SOC hardware using a minimal
amount of C (or assembly) code.

To pass control back and forth between the hardware and
software requires monitoring and driving nodes inside the
DUT, ideally without using hierarchical references to the
shared memory. For the hardware-centric approach we will use
a processor agent that writes commands (read, write, or
compare) to a shared memory and sets the processor interrupt.
The processor interrupt subroutine reads the shared memory,
executes the requested command, and then clears the interrupt
upon completion of the command.

The processor agent, shown in Fig. 13, is a standard UVM
agent, except the driver has an extra interface. The event_if
interface, defined in Fig. 14, contains events that the driver can
use to control commands to the processor. For example, it
could wait for the ev_isr_done event before calling item_done.

The monitor, shown in Fig. 14, sets these events anytime
the memory contents are changed. In addition to being used by
the driver, the events will be used by the sequences running in
the test environment to control the execution. For example, at
the event “ev_isr_done”, a sequence would start sending
packets.

To monitor the shared memory, we use a SystemVerilog
bind construct, similar to the whitebox verification technique
[3]. Writing or reading data to/from the shared memory is done
using tasks in a virtual interface.

class firmware_agent extends uvm_agent;

 firmware_config m_cfg;

 firmware_monitor m_monitor;

 firmware_driver m_driver;

 uvm_sequencer #(firmware_item, firmware_item) m_sequencer;

 virtual function void build_phase(uvm_phase phase);

 if(!uvm_config_db #(firmware_config)::get(this, "", "firmware_config", m_cfg)) begin

 `uvm_error("build_phase", "firmware_config not found")

 end

 endfunction: build_phase

 virtual function void connect_phase(uvm_phase phase);

 m_driver.vif_fw = m_cfg.vif_fw;

 m_driver.vif_event = m_cfg.vif_event;

 endfunction: connect_phase

endclass: firmware_agent

interface firmware_if();

task backdoor_write (logic [31:0] address, logic[31:0] data, logic [2:0] fw_cmd);

 top_tb.dut_wrapper.dut.u_top.u_proc_sys.u_mem.u_mailbox[66:64] = fw_cmd;

 top_tb.dut_wrapper.dut.u_top.u_proc_sys.u_mem.u_mailbox[63:32] = data;

 top_tb.dut_wrapper.dut.u_top.u_proc_sys.u_mem.u_mailbox[31:0] = address;

 endtask

 task backdoor_read (logic [31:0] address, logic[31:0] data, logic [2:0] fw_cmd);

 fw_cmd = top_tb.dut_wrapper.dut.u_top.u_proc_sys.u_mem.u_mailbox[66:64];

 data = top_tb.dut_wrapper.dut.u_top.u_proc_sys.u_mem.u_mailbox[63:32];

 address = top_tb.dut_wrapper.dut.u_top.u_proc_sys.u_mem.u_mailbox[31:0];

 endtask

endinterface: firmware_if

class firmware_driver extends uvm_driver #(firmware_item, firmware_item);

virtual firmware_if vif_fw;

 virtual event_if vif_event;

task run_phase(uvm_phase phase);

forever begin

seq_item_port.get_next_item(req_txn);

case(req_txn.trans_type)

READ: vif_fw.backdoor_read(req_txn.address, req_txn.data,req_txn.fw_cmd);

WRITE: vif_fw.backdoor_write(req_txn.address, req_txn.data,req_tx.fw_cmd);

endcase

seq_item_port.item_done();

end

endtask: run_phase

endclass: firmware_driver

Fig. 13. Processor Agent

class firmware_monitor extends uvm_monitor;

 // Note: standard UVM phase code not shown

 firmware_item mon_txn, t;

 virtual event_if event_vif;

 task monitor_dut();

 forever begin

 @(event_vif.message) begin

 case (event_vif.message)

 boot_done: begin

 -> event_vif.boot_done_ev;

 `uvm_info({get_type_name(),":monitor_dut"},"Boot Done", UVM_NONE)

 end

 cpu_instr_start: begin

 -> event_vif.cpu_instr_start_ev;

 `uvm_info({get_type_name(),":monitor_dut"},"CPU Instruction Start", UVM_NONE)

 end

 cpu_instr_finish: begin

 -> event_vif.cpu_instr_finish_ev;

 `uvm_info({get_type_name(),":monitor_dut"},"CPU Instruction Finished", UVM_NONE)

 end

 cpu_isr_start: begin

 -> event_vif.cpu_isr_start_ev;

 `uvm_info({get_type_name(),":monitor_dut"},"CPU Interrupt Subroutine Start", UVM_NONE)

 end

 cpu_isr_finish: begin

 -> event_vif.cpu_isr_finish_ev;

 `uvm_info({get_type_name(),":monitor_dut"},"CPU Interrupt Subroutine Finished", UVM_NONE)

 end

 default : begin

 -> event_vif.warning_ev;

 `uvm_info({get_type_name(),":monitor_dut"},$psprintf("Invalid CPU message : %h",

firmware_vif.message), UVM_NONE)

 end

 endcase

 mon_txn.address = event_vif.address;

 mon_txn.data = event_vif.data;

 mon_txn.fw_cmd = event_vif.fw_cmd;

 $cast(t, mon_txn.clone());

 ap.write(t);

 `uvm_info({get_type_name(),":monitor_dut"}, t.convert2string(), UVM_MEDIUM)

 end

 end

 endtask: monitor_dut

interface event_if (input logic clock);

 logic [31:0] address;

 logic [31:0] data;

 logic [2:0] fw_cmd;

 event boot_done_ev;

 event cpu_instr_start_ev;

 event cpu_instr_finish_ev;

 event cpu_isr_start_ev;

 event cpu_isr_finish_ev;

 event cpu_warning_ev;

endinterface: event_if

module top_tb();

 firmware_if fw_if;

 top_wrapper dut_wrapper ();

 bind dut_wrapper.dut.u_top.u_proc_sys.u_mem.u_mailbox

 fw_event monitor_module_i (.*, .address(mem_addr), .data(mem_data),.fw_cmd(mem_cmd));

 initial begin

 uvm_config_db #(virtual firmware_if)::set(null, "uvm_test_top", "vif_firmware", fw_if);

 end

endmodule: top_tb

module fw_event (

 input logic clock,

 input logic [31:0] address,

 input logic [31:0] data,

 input logic [1:0] fw_cmd);

 import uvm_pkg::*;

 event_if ev_if(.*);

 initial begin

 uvm_config_db #(virtual event_if)::set(null, "uvm_test_top", "vif_event", ev_if);

 end

endmodule: fw_event

Fig. 14. Firmware Monitor

V. UVM REGISTER LAYER BACKDOOR ACCESS

The UVM base class library has a built-in mechanism to
allow backdoor access to registers, but there may be situations
when registers are not accessible using the default DPI: a
VHDL DUT or registers declared as multidimensional arrays,
or the usage of the DPI has too great of an impact on
simulation performance. There is a base class available for
user-defined backdoor access that can be used instead. One
approach [5] uses hierarchical access to the DUT to bypass the

DPI and improve simulation performance, but the testbench is
no longer completely decoupled from the DUT, and the
register model cannot be contained in a package. An
alternative is to move the hierarchical references to an
interface.

In addition to keeping the test environment completely
independent of the DUT, this approach has the added benefit
of removing the DUT hierarchy from the register model, and
can be used with a VHDL DUT (note: backdoor write from
SystemVerilog to VHDL is only possible using simulator
specific utilities). If the DUT hierarchy changes, but the
registers remain the same, there is no need to update the
register model since it doesn’t contain any HDL hierarchical
path constructs, i.e. add_hdl_path(“top_tb.dut_wrapper.dut”)
or
status_reg_h.configure(this,null,”<hierarchical_path_to_register>”).

class status_reg_backdoor extends uvm_status_reg_backdoor;

 `uvm_object_utils(status_reg_backdoor)

// Task to write via backdoor

virtual status_reg_backdoor_if status_reg_backdoor_vif;

virtual task read(uvm_reg_item rw);

do_pre_read(rw);

status_reg_backdoor_vif.backdoor_read(rw);

rw.status = UVM_IS_OK;

do_post_read(rw);

endtask

virtual task write(uvm_reg_item rw);

do_pre_write(rw);

status_reg_backdoor_vif.backdoor_write(rw);

rw.status = UVM_IS_OK;

do_post_write(rw);

endtask

endclass : status_reg_backdoor

interface reg_backdoor_if();

 import uvm_pkg::*;

 task backdoor_read (uvm_reg_item rw);

 rw.value[0]=top_tb.dut_wrapper.dut.u_regs.status_rd_data_ff;

 endtask

 task backdoor_write (uvm_reg_item rw);

 top_tb.dut_wrapper.dut.u_regs.status_rd_data_ff= rw.value[0];

 endtask

endinterface : reg_backdoor_if

class top_reg_block extends uvm_reg_block;

 `uvm_object_utils(top_reg_block)

 rand status_reg status_h;

 virtual function void build();

 m_status_backdoor =

status_reg_backdoor::type_id::create("m_status_backdoor");

 status_h = status_reg::type_id::create("status_h");

 status_h.configure(this);

 status_h.build();

 status_h.set_backdoor(m_status_backdoor);

endfunction;

endclass: top_reg_block

Fig. 15. Register Backdoor Interface Example

 Fig. 15 shows the backdoor read/write tasks for a

SystemVerilog DUT. If the DUT is VHDL, a bind construct
must be used as shown in Fig. 16.

module top_tb();

 reg_backdoor_if status_reg_if(.*);

 top_wrapper dut_wrapper ();

 initial begin

 uvm_config_db #(virtual reg_backdoor_if)::set(null,"*", "vif_reg_backdoor",

 status_reg_if);

 end

endmodule

module vhdl_dut_tb();

 top_wrapper dut_wrapper ();

 bind dut_wrapper.dut.u_top.u_regs vhdl_backdoor_module

 vhdl_backdoor_module_i (.*, .status(status_rd_ff));

endmodule

interface vhdl_reg_backdoor_if(input [31:0] status);

 import uvm_pkg;

 task backdoor_read (uvm_reg_item rw);

 rw.value[0]=status;

 endtask

 task backdoor_write (uvm_reg_item rw);

 `uvm_error(“status_reg_backdoor”, “Backdoor write to VHDL not allowed!”)

 endtask

endinterface : reg_backdoor_if

module vhdl_backdoor_module(input wire [31:0] status);

 import uvm_pkg::*;

 vhdl_reg_backdoor_if vh_status_reg_if(.*);

 initial begin

 uvm_config_db #(virtual vhdl_reg_backdoor_if)::set(null,"*",

 "vif_vh_reg_backdoor", vh_status_reg_if);

 end

endmodule : vhdl_backdoor_module

Fig. 16 Register Backdoor Interface with VHDL DUT

VI. THE PROBLEM WITH PARAMETERS

For most designs that use industry standard
communication or bus protocols, nearly all VIP use
parameterized interfaces, like the one in Fig. 17.
Parameterized interfaces require parameterized classes, which
create a specialization for each combination of the generic
class and actual parameter value. For designs with multiple
combinations of parameters this will add complexity to the
testbench and require using the type-based factory instead of
the string-based factory. For a detailed description of using
parameterized classes in OVM/UVM see [7].

interface ahb_vip_if #(parameter NUM_MASTERS,

 NUM_SLAVES,

 ADDRESS_WIDTH,

WDATA_WIDTH,

RDATA_WIDTH)

(input clk, input reset);

 logic [ADDRESS_WIDTH-1:0] haddr;

 logic [2:0] hburst;

 logic [3:0] hprot;

 logic [2:0] hsize;

 logic [1:0] htrans;

 logic [WDATA_WIDTH-1:0] hwdata;

 logic hwrite;

 logic [RDATA_WIDTH-1:0] hrdata;

 logic hreadyout;

 logic hresp;

 logic hsel;

 logic hready;

endinterface: ahb_vip_if

module top_tb ();

 typedef virtual ahb_vip_if #(1,10,32,32,32) vif_ahb_t;

 vif_ahb_t uart_ahb_if_0();

 vif_ahb_t spi_ahb_if_0();

 :

 :

endmodule

Fig. 17. Parameterized Interface Example

If your design contains only a minimal number of

parameter values – multiple AHB agents all with the same
address and data width for example – using a parameterized
class is probably a good fit. On the other hand, if you have
multiple parameterized interfaces that require many
combinations of values, the best solution is to use an abstract
base class/derived concrete class.

A. Abstract/Concrete Class

The abstract base class/concrete derived class really shines
when specializations become too cumbersome. The example
shown in Fig. 18 is implemented in much the same way as the
example in section III.B of this paper. The testbench
instantiates interfaces with varying parameters. The interface
itself defines a concrete class, which extends an abstract base
class and defines the tasks that will toggle the DUT’s pins.
This abstract class is a member of the driver and is overridden
by the driver’s call to get_config_object(). With this method,
the only entity that needs to know the parameters for all the
interfaces is the testbench itself.

module uart_tb;

 uart_uvc_if#(.DATA_WIDTH(32),

.ADDR_WIDTH(4)) uart_if_0(.clk(clk_in), .reset(rst_in));

uart_uvc_if#(.DATA_WIDTH(16),

.ADDR_WIDTH(2)) uart_if_1(.clk(clk_in), .reset(rst_in));

dut dut_inst (// DUT port connections...);

 initial begin

 set_config_object("*","uart_if_0",uart_if_0.create_concrete_if("uart_if_0"),0);

 set_config_object("*","uart_if_1",uart_if_1.create_concrete_if("uart_if_1"),0);

 run_test();

 end

endmodule: uart_tb

interface uart_uvc_if #(DATA_WIDTH=8, ADDR_WIDTH=3)(input clk, input reset);

 logic [DATA_WIDTH-1:0] datout;

 logic [ADDR_WIDTH-1:0] addr;

 logic [DATA_WIDTH-1:0] datin;

class uart_if_concrete extends uart_if_base;

task uart_write;

 input integer bit_data;

 input integer addr_w;

 begin

 addr = addr_w;

 nrw = # (CLK_PRD) 1;

 datin = bit_data;

 cs = #(CLK_PRD) 0;

 cs = #(5*CLK_PRD) 1;

 nrw = #(CLK_PRD) 0;

 # CLK_PRD;

 end

endtask

endclass

uart_if_concrete concrete_if;

function uart_if_base create_concrete_if(string name);

concrete_if = new(name);

return concrete_if;

endfunction

endinterface: uart_uvc_if

class uart_driver#(integer ID=0) extends uvm_driver #(uart_seq_item, uart_seq_item);

 uart_if_base vif;

 function void build();

 super.build();

 get_config_object($sformatf("uart_if_%0d",ID),tmp,0)

endfunction

endclass: uart_driver

Fig. 18. Abstract Concrete Parameterized Interface Example

VII. CONCLUSIONS

This paper illustrated where to apply the different

testbench-DUT connection methods for a typical System on

Chip (SOC) design. It included examples of how to apply the

testbench to DUT connection methods [3] to a typical SOC

design while adhering to a strict separation of dynamic and

static elements. Using the techniques presented in this paper,

users can create a highly reusable test environment that

leverages their existing verification IP and allows replacing

BFMs with UVCs as time permits.

The interface is the Swiss army knife of verification.

REFERENCES

[1] “IEEE Standard for Verilog Hardware Description Language”, IEEE
STD 1364-2005, 2005

[2] “IEEE Standard for System Verilog-Unified Hardware Design,
Specification, and Verification Language”, 1800-2012, 2012

[3] Dave Rich, “The Missing Link: The Testbench to DUT Connection”,
Proceedings of Design & Verification Conference , 2012

[4] Galen Blake, Steve Chappell, “One Compile to Rule Them All: An
Elegant Solution for OVM/UVM Testbench Topologies”, Proceedings
of Design & Verification Conference, 2013

[5] Gaurav Gupta, Amit Sharma, Varun S, Abhisek Verma, “Switch the
Gears of the UVM Register Package to cruise through the street named
“Register Verification””, Proceedings of Design & Verification
Conference , 2013

[6] Dave Rich, Jonathan Bromley, “Abstract BFMs Outshine Virtual
Interfaces for Advanced SystemVerilog Testbenches”, Proceedings of
Design & Verification Conference , 2008

[7] Bryan Ramirez, Michael Horn, “Parameters and OVM – Can’t They Just
Get Along?” Design & Verification Conference 2011

[8] Shashi Bhutada, “Polymorphic Interfaces: An Alternative for
SystemVerilog Interfaces”, Verification Horizons - Volume 7, Issue 3 –
November, 2011

[9] Wayne Yun, Shihua Zhang, “Deploying Parameterized Interface with
UVM”, Proceedings of Design & Verification Conference, 2013

[10] John Cooley, “VHDL the new Latin”, EE Times, April 7, 2003

[11] “Two Kingdoms Factory.” Mentor Graphics Verification Academy.
https://verificationacademy.com/cookbook/connect/twokingdomsfactory

[12] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, “Design
Patterns, Elements of Reusable Object-Oriented Software” Addison-
Wesley Publishing Company, Reading Massachusetts, 1994.

https://verificationacademy.com/cookbook/connect/twokingdomsfactory

