
SystemVerilog FrameWorksTM Scoreboard: An
Open Source Implementation Using UVM

Dr. Ambar Sarkar
Chief Verification Technologist

Paradigm Works, Inc.
Andover, MA, USA

ambar.sarkar@paradigm-works.com

1 ABSTRACT
Scoreboarding is a critical function required of a
verification environment. While much progress has
been made in standardizing verification environments
with the release of Accellera’s Universal Verification
Methodology(UVM)[1], no standardized scoreboarding
implementation is currently available. In this paper, we
describe an open source SystemVerilog scoreboarding
utility implemented using the UVM base class library.

Categories and Subject Descriptors
B.7.2 [Design Aids]: Hardware.Intergrated
Circuits.Design Aids - Verification.

General Terms
Algorithms, Standardization, Languages, Verification.

Keywords
Scoreboard, Open Source, SystemVerilog, UVM,
Verification Methodology, Verification Environment

2 INTRODUCTION
Scoreboarding is a fairly straightforward concept used
in functional verification environments.

Simply put, when an event of interest is anticipated by
the verification environment, details of that event are
posted to the scoreboard. Conversely, when an event of
interest is actually observed, it is checked against the
events already posted on the scoreboard. The mapping
of the posted to the checked events is called the
transfer function, which can range from the fairly
straightforward to the fairly complex. For example, for
every posted event, there may be multiple events that
are checked and vice versa.

A verification project typically requires the following
features from its scoreboarding implementation:

• In-order and out-of-order checking
• Timeout checking
• Hooks for error handling
• Support for complex transfer functions

Interestingly, the soon to be announced UVM 1.0
release[1] does not yet provide a generic
implementation of a scoreboard that supports these
features. While there is a base class called
uvm_scoreboard, it is left up to the user to implement
its entire functionality. Users will thus end up creating
home-grown versions of the scoreboard, and we feel a
generic scoreboarding class implementation is in order.

To address this need, we have contributed the
SystemVerilog FrameWorks™ Scoreboard(SVF
Scoreboard) package, an open source implementation,
to the UVM World website[2]. The contributed
package is implemented in SystemVerilog and supports
many of the features required of a typical scoreboard.
It has been derived from the OVM version [3], which
has seen more than 450 downloads by the OVM user
community at large. The UVM version is currently
being used by several of our own clients. In this article,
we discuss some of the features of the SVF scoreboard
functionality and show how the verification engineer
can quickly integrate scoreboarding into their
verification environment. We encourage the reader to
download and explore this contribution and welcome
feedback [5].

mailto:ambar.sarkar@paradigm-works.com�

3 SVF SCOREBOARD USE MODEL
In this section, we present two typical use models of
the SVF scoreboard: a simple and an advanced use
scenario. These are generic scenarios and can be
customized to any extent depending on the needs of the
project.

Figure 1 illustrates a simple use scenario, where an
instance of the SVF scoreboard can be pretty much
dropped into an existing environment. The SVF
scoreboard in Figure 2 is an instance of pw_scoreboard
class and is derived from the uvm_scoreboard class.
The uvm_scoreboard is an empty built-in base
component in UVM library. Transactions are posted to
the scoreboard as instances of classes derived from the
uvm_transaction class. Similarly, transactions are
checked by passing instances of classes derived from
uvm_transaction to the scoreboard. The actual
comparison takes place by calling the uvm_compare

method of the posted object with the instance of the
checked object as an argument.

In the simple use model, the transactions are being sent
from the driver, and expected to be transmitted as
driven in a simple in-order fashion through the design
under verification (DUV). A monitor sits on the
stimulus side, and publishes observed stimulus to its
analysis port. The analysis port is connected to the
scoreboard and the expected values get posts whenever
a transaction is observed. For its counterpart, another
monitor sits on the response side, which publishes the
observed transactions. When a DUV response is
published by this monitor, it gets checked against the
posted values in order.

Figure 2 shows an advanced use model of the SVF
Scoreboard. Here, the mapping between the posted
stimulus to the expected response is not so
straightforward and requires some manipulation of

 SVF Scoreboard

DUV responder

stimulus
monitor

response
monitor

driver

Figure 1. Simple Scoreboard Use Model

Predictor

(pw_predictor_checker)

Checker

(pw predictor checker)

SVF Scoreboard

(pw_scoreboard)

DUV
responder

stimulus
monitor

response
monitor

pkt driver

pkt Error
monitor

Figure 2. Advanced Scoreboard Use Model

both the stimulus and the response data to infer the
actual data being checked.

As an example, consider a packet driver that sends in a
sequence of packet fragments. The predictor collects
the fragments being sent and posts the complete packet
data to the scoreboard once it has seen the end of the
packet. On the other side, the response monitor sees the
outgoing fragments and sends them to the checker.
When the checker finally assembles the entire packet, it
sends it to the scoreboard for comparison. However,
the checker also gets the input from the error monitor
and marks whether an error occurred so that the
affected data can be compared appropriately with the
posted value. This approach of separating the
prediction and checking transfer functions in a separate
component offers a powerful and generic methodology
for scoreboarding. The details of the predictor and
checker are described later in Section 4.

4 MULTI-STREAM POSTING AND
CHECKING

Self-checking verification environments often need to
support the notion of streams. Each stream identifies a
sequence of transactions that should appear at the
checking end in the same order as they are posted.
However, ordering between events does not matter
between events in independent streams. For example,
data being set from a host to two bulk endpoints may
be independent of each other; the host application may
not care if one of the endpoints gets some of its
transactions before the other. Also, depending on the
DUT, the number of streams concurrently active can be
fixed or can change dynamically.

The SVF scoreboard supports the notion of an arbitrary
number of streams (Figure 3) that can appear
dynamically. In-order checking is accomplished by

posting objects to the same stream. Out-of-order
checking is accomplished by posting objects to
different streams. Each stream is identified by a unique
number, and objects posted to a given stream are
expected to be checked in the same order as they are
posted. There is no implied order between objects
posted in different streams. Thus, objects can appear in
any order with respect to each other if they are posted
in separate streams.

5 REPORTING AND STATISTICS
The SVF scoreboard generates error messages when
mismatches occur. In addition, it also provides methods
to report the activity statistics of the scoreboard. For
example, it can report how many events have been
posted or checked so far, or how many events are left
unmatched. These statistics are available at any time
during the test execution, and an error can be generated
at the end of a test if elements remain unmatched.

6 ADVANCE TRANSFER FUNCTIONS
When data is transmitted from one interface to a
different kind of interface, a complex transfer function
may be required to represent the relationship between
one data type to another data type. Although the
transfer function will be very much design specific, it
can still be done in a consistent and systematic manner.
By providing hooks to allow design specific transfer
functions, the scoreboard can be highly reusable.

SVF scoreboard provides a pw_predictor_checker
class to handle various transfer function(s) between
data being transmitted and data being received. The
pw_predictor_checker class allows a user-defined
transformation of data to take place in a testbench
component that is distinct from and feeds the
pw_scoreboard. This allows the application specific

……

……

……..

post

post check

check

stream0

stream n

data 0i+1 data 0i data 00

data n0 data nj data nj+1

Figure 3. Multi-stream Posting and Checking

complex transfer logic to be encapsulated separately
from the generic scoreboarding functions.

Figure 4 respectively illustrates how the predictor and
checker objects implement complex transfer functions.
The predictor object may receive stimulus data from
multiple sources using its exports. Depending on the
application need, it then infers the appropriate data and
posts it to any of the connected scoreboard instances as
needed. On the other hand, the checker object,
analogously, receives observed response data from
multiple sources through its exports, and then, as the
application dictates, forwards the inferred response
data to the appropriate scoreboard for checking.

7 PROCEDURAL vs. TLM
INTERFACES

TLM ports are the recommended way to communicate
between components in a verification environment.

Using TLM ports promotes better reuse of the
components since it decouples the functionality of the
component from how it communicates with others.
Thus the same functionality can be easily ported across
multiple environments as long as TLM is used as the
basic mechanism for communication. The SVF
scoreboard supports TLM based communication
between the scoreboard and any other components in
the verification environment.

However, in certain cases, it may be necessary to
access the scoreboard directly without going through
the TLM ports/exports. A typical example is the case
where events are posted or checked using callbacks.
The SVF scoreboard provides post_sb_data() and
check_sb_data() for such purposes. These methods
can be called procedurally in the testbench. Although
we provide these procedural methods for flexibility, we
recommend that users utilize TLM interfaces in order
to promote code reuse.

pw_scoreboard A

Predictor

pw_scoreboard B

F(x)

Transfer Function

Multiple inputs using export
Post to multiple scoreboards

Multiple inputs using export

Checker

pw_scoreboard A

pw_scoreboard B

F(x)

Check against multiple scoreboards

Figure 4. Predictor and Checker Function

// The following shows how the base scoreboard related classes can be hooked up in a UVM testbench
class xbus_demo_env extends uvm_env;
 // Declare a scoreboard. Both input and output data are of type xbus_transfer
 pw_scoreboard #(xbus_transfer, xbus_transfer) pw_sb;

 // Declare a predictor. Number of input ports is ‘1’, number of output ports is ‘1’.
 // Input and output data types are both xbus_transfer
 pw_predictor_checker #(1,1,xbus_transfer,xbus_transfer) pw_predictor;
 // Declare a checker. Number of input ports is ‘1’, number of output ports is ‘1’.
 // Input and output data types are both xbus_transfer
 pw_predictor_checker #(1,1,xbus_transfer,xbus_transfer) pw_checker;
 …

 virtual function void build();
 super.build();
 ….
 // Instantiate the scoreboard
 pw_sb = pw_scoreboard #(xbus_transfer,xbus_transfer)::type_id::create(“pw_sb”,this);

// Instantiate the predictor and checker component
pw_predictor= pw_predictor_checker #(1,1,xbus_transfer,xbus_transfer)
 ::type_id::create(“pw_predictor”,this);

 pw_checker= pw_predictor_checker#(1,1,xbus_transfer,xbus_transfer)
 ::type_id::create(“pw_checker”,this);

 endfunction

function void connect();
 …
 // Connect the prediction side monitor to predictor
 xbus0.master[0].monitor.item_collected_port.connect(pw_predictor.inp_exports[0]);

 // Connect the checking side monitor to checker
 xbus0.slaves[0].monitor.pw_item_collected_port.connect(pw_checker.inp_exports[0]);

 // Connect the predictor and checker to the scoreboard
 pw_checker.sb_aports[0].connect(pw_sb.post_export);
 pw_predictor.sb_aports[0].connect(pw_sb.check_export);

endfunction

 function void report();
 …
 // Report any outstanding entries
 pw_sb.report_sb(
 1, // Checks outstanding elements and errors if any
 1 // Prints out outstanding elements;
);

endfunction

endclass

Figure 5. Hooking up the Scoreboard Components

8 EXAMPLE
Figure 5 shows the basic steps in hooking up the
scoreboard for a typical example as shown in Figure 6.
In this example, two pw_predictor_checker class instances
are created. The instance connected to the monitor at the
input side (left) of the DUT works as the predictor. The
predictor is responsible for converting the input data type
to the expected output data type. The instance connected to
the monitor at the output side (right) of the DUT works as
the checker. The checker is responsible for comparing the
observed output data with the expected data on the
scoreboard. The predictor connects to the pw_scoreboard’s
post_export and the checker connects to the check_export
of the scoreboard.

The pw_predictor_checker class provides a built-in
virtual method transfer() to handle different input and
output data type. By default, input and output data type
of the transfer() method are the same. Figure 7 shows
the default transfer() method. Actual transfer
functions may be quite complex and dependent upon
mirrored images of DUT state and multiple modes or
configurations.

Finally, at the end of the test, statistics such as the
number of posted and checked events are reported. If
any unmatched events are found, an error is generated.

As expected, the example above shows how the
scoreboard reporting method is called in the report()
phase of the simulation.

8.1 Advanced Usage Example: Posting
Scoreboard Data with Timeout Events

Figure 8 shows the user can set up timeout events
associated with the posting of transactions to
post_sb_data(). The basic approach is to define an
uvm_event that gets triggered upon timeout. If a posted
event is not matched before the event gets triggered,
the scoreboard reports a timeout error.

The code snippet shows how the monitor creates an
uvm_event via new and posts it to the scoreboard. This
event is associated solely with the specific transaction
being posted. Thus, each posted element can have its
own timeout, if needed. In this example, if the packet is
not matched or unintentionally dropped before 300
time units expire, the scoreboard will report an error
similar to this:
UVM_ERROR @ 1108:
uvm_test_top.pwr_demo_sve0.pw_sb[0] [] Timed
out on event : for transaction:a:1 p:2 r:10 l:
10 [16_b9_74_64_fc_cc_c9_b3_b4_fc] parity :
0x1e

 DUT

monitor

driver

predictor

 pw_scoreboard checker

monitor

responder

Figure 6. Example of A Typical Scoreboard Hook-up

// Transfer function that processes the arrived transaction. Also specifies the port id at which it arrived
virtual task transfer(T_INP trans, int port_id);

 uvm_report_message("pw_predictor_checker", $psprintf("SB: transfer: %d\n", port_id));

 // Implement specific transfer logic

 // Push it to the SB
 uvm_report_message("pw_predictor_checker:", $psprintf("%d porti_id", port_id));

 sb_aports[port_id % NUM_SB].write(trans);

endtask // transfer

 Figure 7. Default Transfer Function

8.2 Advanced Usage Example: Posting and
Checking with Support for Dropping
Packets

In many networking applications, some amount of
packet losses is tolerated. For example, under heavy
load conditions, some packets may be dropped due to
buffer overruns, as long as they are dropped within
specified limits and depending on traffic and other
parameters. These scenarios are quite hard to verify,
since it is hard to predict which packets can be allowed
to be dropped and when it is allowable. The alternative
to use directed tests is often sub-optimal, since one
may miss a lot of corner cases that may be exposed
under such heavy traffic.

Some of the typical techniques to address packet
dropping used by engineers are:

a. Marking individual posted packets as droppable

and add additional checking logic to ignore such
packet

b. Specifying a window and a limit of droppable
packets. The checking logic allows some degree
of mismatch to occur within certain window of
time.

c. Checking the state of the DUT at the
 precise time when the event is observed and
infer if the expected packet was likely to be
dropped and the observed packet may be
something else that follows.

Figure 9 shows how one can use c. above. By inheriting
from the class pw_scoreboard, user code can override the
get_canDrop() method to determine whether a sb_entry is
droppable at the time it is checked.

class xbus_pw_scoreboard #(type T_POSTED=uvm_transaction,
 type T_CHECKED=uvm_transaction)
 extends pw_scoreboard #(T_POSTED, T_CHECKED);

 // This function returns a event that triggers a timeout event. The scoreboard will
 // generate an error if tjis event is triggered before a match is found
 virtual function uvm_event get_timeout(uvm_transaction posted);
 uvm_event xbus_to_ev;
 xbus_to_ev = new("XBUS_PW_TO");
 fork
 #300;
 xbus_to_ev.trigger();
 join _none
 endfunction
endclass

Figure 8. Generating Failure on Matching Timeout

class acme_pw_scoreboard extends pw_scoreboard;
 `uvm_component_utils_begin(acme_pw_scoreboard)
 …
 // Allow packets to be dropped before 200ns of simulation time
 virtual function int get_canDrop(uvm_transaction posted);
 if ($time < 200ns) begin
 uvm_report_info("", "In overloaded get_canDrop, about to return 1.");
 return 1;
 end else begin
 uvm_report_info("", "In overloaded get_canDrop, about to return 0.");
 return 0;
 end
 endfunction
endclass : acme_pw_scoreboard

Figure 9. Implementing Packet Drop.

9 SUMMARY
SVF Scoreboard is a useful package for the practicing
verification engineer. It supports the scoreboarding
needs of a typical verification project, can be easily
extended, and can be quickly integrated into a new or
an existing UVM environment. Feel free to download
and use it in your current project, and send any
feedback to [5].

10 REFERENCES
[1] Accellera Verification Intellectual Property
Technical Subcommittee
http://www.accellera.org/activities/vip

[2] UVM World Contribution site:
http://www.uvmworld.org/contributions.php

[3] OVM World Contribution site:
http://www.ovmworld.org/contributions.php

[4] SVF Scoreboard Utility directly URL:
http://tinyurl.com/pw-uvm-scoreboard

[5] SVF Scoreboard Feedback/Issue reporting -
https://sourceforge.net/apps/mantisbt/pwsvf

http://www.accellera.org/activities/vip�
http://www.uvmworld.org/contributions.php�
http://www.ovmworld.org/contributions.php�
http://tinyurl.com/pw-uvm-scoreboard�
https://sourceforge.net/apps/mantisbt/pwsvf�

	1 ABSTRACT
	2 INTRODUCTION
	SVF SCOREBOARD USE MODEL
	4 MULTI-STREAM POSTING AND CHECKING
	5 REPORTING AND STATISTICS
	6 ADVANCE TRANSFER FUNCTIONS
	7 PROCEDURAL vs. TLM INTERFACES
	8 EXAMPLE
	8.1 Advanced Usage Example: Posting Scoreboard Data with Timeout Events
	Advanced Usage Example: Posting and Checking with Support for Dropping Packets

	9 SUMMARY
	10 REFERENCES

