
SystemVerilog Constraints: Appreciating What You Forgot in School to Get Better Results 
 

Dave Rich 
Mentor, A Siemens Business 

Dave_Rich@mentor.com 
 
 

Abstract:  Constrained Random Verification (CRV) addresses the time-consuming task of writing individual di-
rected tests for complex systems. We sometimes say that CRV automates writing tests for quickly producing the test 
cases you can think of, or hitting the corner cases you didn’t.  

But the reality is, like with any computer programming language, your code executes exactly the way it is written, 
and has no concern for what you were thinking. In particular when coding constraints, this manifests as results that 
satisfy the constraints, but may not match what you intend. Crashes or conflicting constraint failures are usually easier 
to resolve because of their abrupt termination. However, without an abrupt termination, you may not notice anything 
wrong with the results until much later in the process; perhaps after you check your functional coverage reports. 

This paper looks at two of the most common issues when constraint solver results do not match your intent: 1) not 
understanding how Verilog expression evaluation rules apply to interpret the rules of basic algebra, and 2) not under-
standing the affect probability has on choosing solution values. These are subjects you may have learned (or slept 
through) in school long ago and need refreshing. This paper presents a background defining how SystemVerilog con-
straints work, and how these issues play into getting unwanted results. Also, it offers a few coding recommendations 
for improving your code to get better results along the way.  

 
Introduction  

In its simplest form, a constraint is nothing more than a Boolean expression with random variables where the solver 
is asked to find values that make the expression true. One simplistic way of thinking how a constraint solver works is 
that it repeatedly tries different values for the random variables until finding values making the expression true. Then 
those values are left as the result for the random variables. It’s actually much more complicated because we want the 
solver to quickly converge on a solution or tell us no solution is possible without wasting a lot of CPU resources. To 
understand this better, it helps to look at how one might go about solving constraints without a constraint solver. 
Assume we have two random variables X and Y that need to have the constraint X < Y. The code might look like what 
we have in Figure 1. 

This loop iterates an average of !"
"

 times before finding a set of values for the X and Y variables that satisfy the 
constraint. That is 16 possible value combinations for X and Y with only 6 valid solutions We could break this down 
into individual dependent steps shown in Figure 2 

But this rapidly gets complex with the addition of other constraints, like X[0] != Y[0]. Constraint solvers take all 
constraint expressions at once, figure out all the dependencies, and come up with solution sets for all random variables 

bit [1:0] X; // 0, 1, 2, 3 
bit [1:0] Y; 
do begin 
   X = $urandom; 
   Y = $urandom; 
end while (! (X<Y) ); 

Figure 1 – Brute force randomization 

begin 
  X = $urandom_range(0,2); 
  Y = $urandom_range(X+1,3); 
end 

Figure 2 – Constraint dependencies 



at once. In SystemVerilog, we would write this as a class, and the constraint solver would formally deduce that there 
are six possible solutions as listed in Figure 3. 

Verilog Expressions  

A fundamental principle that drove SystemVerilog’s development was the unification of language semantics so that 
rules for expression evaluation were identical across all facets of the language. This meant all of the old idiosyncrasies 
from Verilog’s weak type and expression evaluation rules got absorbed into SystemVerilog’s new constraint expres-
sions. 
 
One of the unique things that distinguishes the Verilog Hardware Description Language (HDL) from most other soft-
ware programming languages is its ability to declare variables of different bit-widths and have expressions of mixed 
bit-width operands, whereas most other programming languages only consider of byte or word sized operands. But 
most hardware engineers are not trained in software development and tend to favor many implicit rules and weak type 
systems. These rules mean many expressions silently truncate or pads to different bit widths without any notice of 
overflow or underflow. This type system radically different from another rival language, VHSIC-HDL (VHDL) which 
has an extremely strong type system. 
 
Since Verilog is used for synthesis into hardware, it does need precise definitions for generation of hardware without 
ambiguity or creating unnecessary extra logic. In addition to syntax, there are many transformational steps Verilog 
needs to follow when evaluating an expression. Suppose we had the code in Figure 4. 
 

The first step when evaluating an expression is figuring out the order of operators in the form of precedence rules. 
When we see  

(𝐴 + 𝐵 ≫ 𝐶 < 𝐷) 
precedence rules group the operators as  

,(𝐴 + 𝐵) ≫ 𝐶- < 𝐷) 
 

The next step is context determination. This tells us which operands within an expression influence the implicit casting 
of other operands. Expressions are either self-determined, meaning they do not have outside influences, or they are 
context-determined when some outside part of the expression has influence over it. Context affects the resulting types 
when mixing different bit-widths, signed and unsigned types, and real and integer types. The Language Reference 
Manual (LRM) specifies these steps in a number of tables which have been consolidated into one in Figure 5 for this 
example.  

class A; 
  rand bit [1:0] X; 
  rand bit [1:0] Y; 
  constraint C1 { X < Y;} 
endclass : A 

X Y 
0 1 
0 2 
0 3 
1 2 
1 3 
2 3 

 
Figure 3 – SystemVerilog Class with random variables 

bit [2:0] A = 4;  // 3 bits 
bit [3:0] B = 14; // 4 bits 
int C = 1;  
bit [3:0] D = 8; // 4 bits 
if( A + B >> C < D )... 

Figure 4–Steps in evaluating an expression 



According to these rules, we recognize that operands A, B, and D from Figure 4 get sized to the maximum length, 4 
bits—so A gets padded with one 0 bit. The size of C is self-determined and has no influence on the rest of the expres-
sion. The result of 4’d4 + 4’d14 is 4’d2 because of the overflow truncation. It is not 5’d18 as most would expect. That 
makes the overall result of 4’d2 < 4’d8 to be true, 1’b1. To make the expression deal with the overflow, some operand 
or sub-expression must be cast to 5 bits (e.g. 5’(A + B) >> C < D ). 
 
Constraint Expressions 

Now let’s take a look at the same expression used in a random constraint expression. For simplicity of the code in 
Figure 6, only the variables A and B are declared rand. Variables C and D are converted into literal constants. 

As we saw in the previous section, 4 and 14 are perfectly valid values for A and B that make the expression result 
true, satisfying the constraint. The constraint must be written to deal with overflow properly by casting to the appro-
priate width to handle the overflow. Any one of the casts shown in Figure 7 handle the overflow properly giving us 
the solutions we expect. 

Another common mistake arises when using the array reduction methods, like sum(). These methods get expanded 
to iterate over each element in an unpacked array. But the problem is that by default the result is the same bit-width 
as each element type. If you have  

 
The built-in sum method gets expanded to  

 
The concatenation operator serves to show the result is self-determined (review the table in Figure 5), and only 1-bit 
wide since each array element is only 1-bit wide. The reduction methods have an in-line extension capability using 
the with() clause allowing you to substitute a different expression for each element. By casting each element to a 
larger width, the result no longer overflows.  

 

rand bit bits[6]; 
constraint c {bits.sum() == 3; } 
 

{ (bits[0]+bits[1]+bits[2]+bits[3]+bits[4]+bits[5]) } == 3 

 
Operators i op j i op j result length Context Precedence  
+ - Max(Length(i),Length(j)) operands get sized to 

Max before operation 
Higher 
 
 
 
 
 
Lower 

<< >> Length(i) j is self-determined 
< <= > >=  1 bit operands get sized to 

Max before operation 
{} L(i)+L(J) All operands are 

self-determined 
 Figure 5 – Context and bit-length determination 

 

constraint c { A + B       >> 32’d1 < 5’d8; } 
constraint c { int’(A + B) >> 32’d1 < 4’d8; } 
constraint c { 5’(A) + B   >> 32’d1 < 4’d8; } 
 

class tx; 
  rand bit [2:0] A; 
  rand bit [3:0] B; 
  constraint C1{ A + B >> 32’d1 < 4’d8; } 
endclass : tx 

Figure 6 –Class  constraint  

constraint c {bits.sum() with (int'(item)) == 3; } 

Figure 7 – Possible corrections 



 
 
Signed Expressions 

A signed operand only affects how that operand gets padded to a larger width (sign extension) or its magnitude for 
the comparison of relational operators. It has no effect on how the value is stored or truncated. One of the most 
confusing rules when mixing signed and unsigned operands is that all operands in the context must be signed for the 
result to be signed, and that introduction of an unsigned type halts propagation of sign extension.  

In Figure 8, even though A and B both get extended to 32 bits before the addition (From the LRM, literals (14) are 
implicitly a 32-bit signed operands), A does not get sign extended.  This is because B is unsigned, and the rest of the 
expression is treated as unsigned. A becomes 32’d7 and the result of the expression becomes 32’d21 < 
32’d14, which is a false 1’b0.  The need for mixing signed and unsigned operands is rare. Try to use all one type 
or the other, or make sure you cast the unsigned operands to signed (signed’(B)). 
 
But the most common mistakes when using signed operands is forgetting that they could have negative values and 
that comparing signed to unsigned operands becomes all unsigned. In Figure 9, -1 is a valid value that could be chosen 
for max_address. 

But in the relational comparison to the unsigned address that value would become an unsigned positive 
32’hFFFFFFFF resulting in unexpected large values for address. It is always safer to use an explicit range using 
the inside operator as shown in Figure 10. 

Probabilities and Statistics 

Going back to Figure 3 with the constraint X<Y, we saw that there are 6 solutions the constraint solver can choose 
from. Although each solution has an even probability of being chosen, the probability of a particular value being 
chosen for a random variable is uneven. The table in Figure 11 shows the probabilities of the three possible values 
available to be chosen for Y and Y. 

Y==3 X==2 or 1 or 0  3/6 = 50% 

Y==2 X==1 or 0  2/6 = 33% 

Y==1 X==0  1/6 = 16% 

X==0 Y==3 or 2 or 1  3/6 = 50% 

X==1  Y==3 or 2  2/6 = 33% 

X==2 Y==3  1/6 = 16% 

Figure 11 –Probability of selecting a value 

bit signed [2:0] A = -1;   
bit [3:0] B = 14; 
A + B < 14 

Figure 8 – Mixing signed and unsigned operands 

rand int max_address; 
rand bit [11:0] address; 
constraint c { max_address < 10; 
               address < max_address; } 
 Figure 9 – Allows negative values 

rand int max_address; 
rand bit [11:0] address; 
constraint c { max_address inside {[0:10]}; 
               address < max_address; } 
 Figure 10 – Bounded range constraint 



We can add a construct that changes the approach to how the solver chooses values. Figure 12 instructs the solver to 

choose a value for X evenly over all the possible values for X in the solution set. It does not change the total number 
of solutions. Now all three value choices for X will each have a 33% chance of being selected. Realize this affects the 
probabilities for the three value choices for Y, which now becomes slightly harder to calculate. The probably of 
choosing Y==1 is 

1
3 ∗

1
3 = 11% 

and choosing Y==3 is 
1
3 ∗

1
3 +

1
3 ∗

1
2 +

1
3 ∗

1
1 = 61% 

 
It is not possible with most constraints to get uniform value distributions for all random variables unless their solution 
spaces are independent of each other. For a small solution set like the one generated for Figure 12 this might not be an 
issue, but for larger solution sets, getting particular values becomes much harder. The seemingly simple example 

shown in Figure 13 has 232+1 (~4 billion) possible solutions. But only 1 in 232 solutions allows ctrl to have the value 
1—practically never! Adding a solve ctrl before data construct lets ctrl have a uniform distribution, but the 
probability of data==0 is now 50%. If we do not want that to happen, we can add a distribution constraint as Figure 
14 shows. 
 

 
Many people expect distributions to come out exactly the way they specify. But the probability of getting exactly the 
specified distribution is low until you approach an infinite number of randomizations. If you flip a coin 10 times, there 
is only a 25% chance of getting exactly 5 heads and 5 tails, ,!56 -/2

!5.  
 
If you do need a specific distribution in a determinate number of randomizations, the randc construct comes in handy 
because it randomly cycles through all possible values evenly before repeating a value. The example in Figure 15 sets 
up an exact 50/50 distribution over the course of 100 randomizations.  

class A; 
    rand bit ctrl; 
    rand bit [31:0] data; 
    constraint C0 {ctrl -> data == 0;} 
endclass : A 

Figure 13 – Unobtainable solutions  

class A; 
  rand bit [1:0] X; 
  rand bit [1:0] Y; 
  constraint C1 { X < Y; solve X before Y;} 
endclass : A 

Figure 12 – Choose variable value selection order 

class A; 
    rand bit ctrl; 
    rand bit [31:0] data; 
    constraint C0 {ctrl -> data == 0; 
    ctrl dist {1:=10, 0:=90;} 
endclass : A 

Figure 14 – Correcting distribution 



 
 
Conclusion 

To summarize, I’ve shown some simple examples of how Verilog expression evaluation rules affect the solution space 
of your SystemVerilog constraints, sometimes giving you unexpected, but valid results. I’ve also shown examples of 
getting valid results, but how probabilities work preventing you from seeing all the expected valid results. Analyzing 
these situations requires that you go back to review your Verilog, Algebra and Statistics textbooks to appreciate all 
the factors involved in producing solution sets from your constraints.  
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typedef enum {HEADS,TAILS} coin_t; 
class C; 
    rand coin_t toss; 
    randc int scale; 
    constraint c { 
       scale inside {[0:99]}; 
 (scale < 50) -> toss == HEADS; 
 (scale >=50) -> toss == TAILS; } 
endclass : C 

Figure 15– Fixed distribution 


