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Abstract—This paper describes checkers – a SystemVerilog 

construct for packaging verification library entities and 

verification IP. An important example of a checker application is 

a checker-based verification library recently donated to 

Accellera. We provide a brief overview of checkers and their 

main applications, and describe new checker features expected to 

become part of the emerging SVA 2012 standard, the motivations 

behind them, and the challenges posed by their definition. We 

conclude with a consideration of other checker enhancements 

that fell beyond of the scope of SVA 2012. 

Keywords- SystemVerilog Assertions; assertion-based 

verification; RTL simulation; formal verification. 

I.  INTRODUCTION 

Assertion-based verification (ABV) [1] has proven itself to 
be an important means of RTL validation. To natively support 
ABV, SystemVerilog has a sublanguage for assertion 
specification, called SystemVerilog Assertions (SVA) [2]. One 
of the major challenges for ABV support is packaging several 
assertions and the auxiliary instrumental code required for 
assertion verification together. Such packaging is required in 
order to organize standard assertion libraries, such as OVL [3], 
and to organize modeling code for formal verification. Early 
versions of SystemVerilog provided some container types that 
might seem to serve this purpose, such as modules and 
interfaces. This packaging is still used for OVL. However, 
none of these options is sufficient for organizing truly flexible 
verification libraries and modeling code. SystemVerilog 2009 
[2] introduced checkers for this purpose. Checkers have 
numerous advantages over modules and interfaces: they are 
race-free, they allow sequences and properties as arguments, 
their invocation syntax is more intuitive and concise, they may 
be instantiated both inside and outside procedural code, they 
may infer their clock and reset contexts, they have free 
variables, etc. An important example of a checker application is 
a checker-based verification library recently donated to 
Accellera [4]. 

The work on the SVA 2012 standard has aimed to make 
checkers even more powerful by enriching their modeling 
capabilities, adding support for output ports, etc. These new 
features will make checkers better suited for writing large 
verification IP units and enable new uses for checkers. For 
example, checkers will be able to feed their assertion 
completion status to scan latches, thus opening the door for 
automatic assertion synthesis on chip; it will be possible to use 
checkers in testbenches as input stimuli generators that benefit 
from the checker randomization capability based on 

assumptions, etc. The introduction of new checker modeling 
constructs and the deprecation of general purpose always 
procedures in checkers make it possible to remove several 
annoying restrictions imposed on checker modeling in 
SystemVerilog 2009. For example, it should become possible 
to use continuous and blocking assignments to implement 
combinational logic, and the single assignment rule will be 
removed. 

However, extending checker capabilities has turned out to 
be a challenging task. Unlike modules, checkers as building 
blocks for verification IP must have stable race-free behavior in 
any instantiation context. This requires careful definition of 
sampling in different checker constructs. Another problem to 
be addressed is the definition of the simulation semantics of the 
new constructs in the presence of free variables.  

Time constraints prevent several important aspects of 
checkers from being addressed in this work. One such potential 
feature is checker instantiation in classes, which would enable, 
for example, implementing UVM [5] monitor classes as 
checkers. This would make it possible to reuse the same 
checkers at different levels of abstraction. Other issues include 
forcing in checkers and support of a variable number of 
checker ports. 

We begin our paper with a brief overview of checkers and 
discuss their main use cases belonging to verification libraries 
and modeling. We then describe the new checker features of 
SVA 2012 and analyze the main challenges in their definition. 
We conclude with a consideration of other checker 
enhancements that fell beyond the scope of SVA 2012. 

II. CHECKER OVERVIEW 

A. High level description of checker construct 

The checker construct is one of the major building blocks 
that make up a SystemVerilog design and verification 
environment. Checkers were designed and added to answer 
several needs: to encapsulate several assertions and their 
related modeling into bigger blocks having a well-defined 
functionality, to inherit context clock and enabling conditions, 
and to enable flexible argument types. This type of construct 
makes it possible to create powerful and general collections of 
higher-level checks that design and validation engineers can 
use without having to learn the full syntax of SVA, or that can 
be used to more concisely instantiate common cases of 
assertion checking.  
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SVA 2009 allowed checker formal ports to be defined only 
as inputs, and the checker modeling mechanism was limited to 
nonblocking assignments only. The following example 
illustrates checker usage:  

 checker follows(sequence first, 

  property second, 

  event clock = $inferred_clock, 

  untyped reset = $inferred_disable, 

  bit report_coverage = 1’b0); 

     

  default clocking @clock; endclocking 

  default disable iff reset; 

 

  a: assert property (first |=> second); 

  if (report_coverage) 

   c: cover property (first #=# second); 

 

 endchecker : follows 

 

 module m(logic rst, clk, en, ...); 

  default disable iff rst; 

    logic req, gnt; 

   

  always @(posedge clk) begin 

   req <= ...; 

   gnt <= ...; 

       if (en)  

     follows req_granted(req, gnt); 

   ... 

  end 

 endmodule : m 

 

Here the checker follows checks that first is followed 

by second. In a simple case, first and second are Boolean, 

but in the general case first may be any sequence, and 

second may be any property. The checker also has an optional 

coverage statement that registers all occurrences of first 

followed by second. This check is only performed when 

report_coverage is a non-zero elaboration time constant. 

The checker invocation in the module illustrates the 
checker’s ability to be instantiated in procedural code and to 
infer its clock and disable condition from its invocation context 
[6]. 

B. Checkers and other containers of SystemVerilog 

Though SystemVerilog offers a rich set of container 
objects, including modules, interfaces, programs, and 
properties, these containers are not satisfactory for representing 
the building blocks of verification libraries and formal 
verification IP:   

Modules: These are the main building blocks of 
SystemVerilog-based design. They are well suited for general 
modeling code, and can hierarchically instantiate submodules. 
But they have many limitations, including the lack of 
clock/reset inference from context, the lack of untyped or 
sequence/property inputs, sensitivity to input races, and the 
inability to be instantiated in procedural code.  

Interfaces:  These are designed to package a bundle of 
common inputs and outputs in a reusable way for multiple 
modules. They share the same limitations mentioned above for 

modules, and in addition are unsupported by many formal 
verification tools. 

Programs: These are more software-oriented containers, 
designed for packaging testbench code. They share the 
limitations of modules and interfaces.   

Properties: These are the containers originally supplied by the 
SVA portion of the SystemVerilog language. They provide 
advantages including clock and reset inference from the 
instantiation context, untyped input arguments, and support for 
instantiation in the form of concurrent assertions in any of the 
other containers described above, including their procedural 
code. However, they can neither package several assertions nor 
contain general modeling code, facts which severely limit their 
usefulness for building libraries or complex verification IP. 

Like most other containers in SystemVerilog, checkers may 
incorporate covergroups. This makes checkers well suited not 
only for correctness, but also for coverage checks. Checkers 
also have another important feature, free variables, not found 
in any of the above container types. Free variables are briefly 
described in the next section. 

C. Free Variables 

In a formal verification context, it is often desirable to 
utilize variables that are able to assume an arbitrary value, 
representing unpredictable input from the environment, 
possibly constrained with some temporal condition specified as 
an assumption. Free variables also simplify modeling, since 
like assertions they always use sampled values of non-free 
variables, and thus avoid race conditions. Another advantage of 
free variables is that unlike free inputs, they are randomized in 
simulation. This randomization respects constraints imposed on 
free variables by assignments and assumptions. Syntactically, 
free variables are distinguished from other checker variables by 
the qualifier rand. The following example

1
 shows how free 

variables may be used to define a clock non-deterministically, 
i.e., a clock that matches both 0101… and 1010… time 
sequences. 

 rand bit clk; 

 always_ff @$global_clock clk <= !clk; 

 

Refer to [7] for more information on checker free variables. 

D. Checkers and PSL vunits 

Besides SVA, PSL (Property Specification Language) [8] is 
another property specification language widely used in the 
industry. PSL also has a construct for packaging verification 
code, called vunit. It is instructive to compare SVA checkers to 
PSL vunits. 

Both checkers and vunits may incorporate assertion 
directives and modeling code. Here are the most important 
differences between the two: 

 Checkers may be either instantiated or bound to a 
device under test (DUT); vunits may only be bound. 
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 Checkers resolve names using their declaration 
context, vunits resolve names using their instantiation 
context. Note, however, that it is possible to pass to a 
checker the clock and reset context at its instantiation 
point. 

 Data declared in vunits override corresponding data in 
the design. Data declared in checkers have a different 
scope and do not directly interfere with the design data. 

These peculiarities of checkers and vunits imply their main 
usability advantages and disadvantages. Checkers are better 
suited to serve as library units because of their ability to be 
instantiated. Vunits are rather clumsy for this purpose: they 
should be bound to shadow modules or interfaces as done in 
the PSL-based implementation of OVL [3]. 

On the other hand, it is easy to use vunits for writing formal 
verification IP: because vunits resolve names in the 
instantiation context, there is no need to pass all required 
design signals to a vunit as is required for checkers. Also, the 
ability of vunits to override allows seamless design pruning for 
verification needs. 

It is worth mentioning that checkers have well-defined 
simulation semantics, whereas the simulation semantics of 
vunits is implementation dependent. 

III. CHECKER USE CASE: VERIFICATION LIBRARIES AND IP 

The most important motivation for introducing checkers 
was to enable flexible, reusable verification library 
development. Verification libraries such as OVL [3] already 
existed prior to checkers, but had to make use of the available 
container types, accepting the disadvantages described in 
Section IIC above. Checkers have enabled the development of 
cleaner and more flexible libraries, such as the SVA Checker 
Library [4] recently donated to Accellera. The following table 
[9] describes some major differences between the two libraries 
in terms of the library requirements we identified from project 
usage: 

Library Requirement  OVL Issues SVA Checker 

Library Solution 

Extensibility:  
parameterizing library 

entities with 

sequences/properties.   

Not possible:  a 
module cannot take a 

sequence or property 

as input. 

Solved:  library entities 
may take sequences or 

properties as 

arguments.  

Inference:  infer clock 

and reset from context. 

Not possible:  no 

inference mechanism 

for modules. 

Solved:  checkers may 

infer clock and reset 
from their instantiation 

context. 

Locality:  entities 

instantiated as close as 
possible to target code. 

Limited:   modules 

cannot be instantiated 

in procedural code. 

Improved:   checkers 

may be instantiated 
inside or outside 

procedural code.     

Efficiency:  entity 

implementation should 

be as efficient as 
possible. 

Some problems: OVL 

entities are modules—

having many of them 
results in notable 

simulation cost.   

Improved:  checkers 

are more efficient than 

modules due to 
substitution semantics 

and specialization.   

Conciseness: entity 

invocation should be 

concise.  

Not possible: 
parameterized module 

instantiation is 

verbose. 

Solved:  checker 

parameterization is 

implicit and its 

arguments may be 
untyped. 

Determinism: result 

should be independent 

of input evaluation order 

Poor: races between 

data and clocks are 

possible 

Solved:  sampling 

prevents races 

Table 1:  OVL vs. SVA Checker Library 

See [9] and [10] for detailed discussion about verification 
libraries. 

Related to the problem of supplying verification libraries is 
the more general problem of verification IP. Reusable IP is 
becoming more and more important throughout the industry 
[11] [12] [13] [14] [15]. Due to the ability to customize and 
parameterize designs based on common IP, equally flexible 
verification libraries are increasingly desirable. We believe that 
checkers will become a key enabler for the development of 
these libraries in the coming years. 

IV. NEW CHECKER FEATURES TARGETED FOR SVA2012 

As we have seen, the checker construct in its current 
definition brings clear added value; however, users already see 
several limitations and have identified usability enhancements 
needed for making checkers even more powerful and using 
them in common practice. In this section, we will describe the 
major checker features targeted for SVA 2012.

2
 These features 

make checker modeling capabilities similar to those of modules 
and thus more familiar to design and validation engineers. 

A. Assignment statements 

In SVA 2009 the only assignment statements legal in 
checkers were non-blocking assignments (NBA). In addition to 
non-blocking assignments, SVA 2012 introduces other kinds of 
assignments that exist in modules: continuous and blocking 
assignments. There are, however several subtle differences 
between checker and module assignments: in checkers 
continuous assignments may not be procedural, blocking 
assignments may not be placed in an always_ff procedure, 
the right-hand side of non-blocking assignments in an 
always_ff procedure is sampled, and no assignment is legal 

in an initial procedure. The reason for these differences is 
explained in Section ‎G. 

B. Always procedures 

In SVA 2009 the only always procedure allowed in 
checkers was the general-purpose always procedure. This 

procedure allowed a single timing control statement and non-
blocking assignments as the only modeling statements. 
Therefore, this procedure in checkers essentially played the 
role of an always_ff procedure. For this reason the general-

purpose always procedure will be deprecated in SVA 2012, and 
the always_ff procedure will be introduced instead. SVA 

2012 will also allow always_comb and always_latch 

procedures to model combinational and latched logic as it is 
done in modules. 

                                                           
2  SVA 2012 has not been officially approved as of the time of writing 

this paper. Therefore, though we believe the information to be accurate, there 
is no guarantee that all the features will become part of SVA 2012 in the form 

they are described in this paper. 



C. Procedural control statements 

In SVA 2009 there were two different coding styles in 
modules and checkers: in modules, continuous assignments and 
procedural control statements were used, whereas in checkers 
functions and let statements were used instead. To allow in 
checkers the RTL coding style used in modules, SVA 2012 will 
make procedural control statements and looping statements 
legal in checkers. For example, SVA 2009 required the 
following coding style to compute the new value of a variable 
window in a checker:  

 function bit next_window (bit win);  

  if (reset || win && end_event) return 1'b0;  

  if (!win && start_event) return 1'b1;  

  return win;  

 endfunction  

 always @clock 

  window <= next_window(window); 

 

SVA 2012 allows rewriting this in a more conventional 
way: 

 always_ff @clock begin  

  if (reset || win && end_event) 

   window <= 1'b0;  

  if (!win && start_event) window <= 1'b1;  

 end  

D. Cancellation of single assignment rule 

SVA 2009 enforced a Single Assignment Rule (SAR): it 
was illegal to use the same bit of a checker variable in several 
assignment-like contexts. SAR was required in order to prevent 
assignment races in checkers. Because of the deprecation of the 
general-purpose always procedure in checkers, the explicit 

SAR became redundant: the interprocess single assignment is 
imposed implicitly by special always procedures: 
always_comb, always_latch and always_ff; multiple 

assignment to the same variable in the same process has well 
defined semantics. For this reason, SAR will be cancelled in 
SVA 2012. 

E. New sampling rules 

SVA 2009 defined all checker arguments to be sampled in 
the Preponed region, i.e., at the beginning of the simulation 
time step. This is problematic when a checker is used to wrap 
deferred assertions that check current values of signals. For 
example, in the following assertion 

assert #0 (a); 

the variable a is not sampled. However, if the same assertion 
was contained in a checker, its expression was sampled: 

 checker check1(x); assert #0 (x); endchecker 

 … 

 check1 c(a); 

 

The ugly workaround was to const cast all the actual 
arguments of a checker instance. However, this workaround 
does not work to infer the reset value. The following example 
illustrates the problem: 

 checker check3(a, rst = $inferred_disable); 

  a1: assert #0 (rst || $onehot0(a)); 

 endchecker : check3 

 

 module m(...); 

  default disable iff reset; 

  always_comb begin 

   x = ...;  

   y = ...; 

  // x and y are not sampled, reset is sampled 

   check3 c3(const'({x, y}));  

  end 

 endmodule 

 

A nastier problem occurred when a clock was passed to a 
checker as a signal and not as an event: 

 checker check2(logic clk, a); 

  assert property (@clk a); 

 endchecker 

 

Sampling of the clock signal clk resulted in a non-intuitive 
(and ill-defined) behavior of the assertion. 

Therefore, in SVA 2012 checker arguments will not be 
sampled. Instead, to make checkers behave deterministically, 
all expressions in always_ff procedures except free variables 

and variables in the event control (see Section ‎V.C) will be 
sampled to enforce variable sampling in NBA. Consider the 
following example: 

 always_ff @clk a <= b; 

 

In modules, if b changes before clk, a is assigned the new 

value of b instead of the old one. In well-formed RTL this 
situation does not happen. This situation is not acceptable in 
checkers because a checker may use instrumental code which 
does not have to be well-formed RTL, and may even relate to 
testbench variables. Therefore, in a checker b must be sampled. 

F. Output ports 

SVA 2012 will introduce output ports in checkers. The 
types of output ports may be the same as the types of input 
ports, except for untyped, sequence, or property. Output 

ports may have optional initializers. Introduction of output 
ports will significantly extend checker applicability and 
modularity. The main use cases for checker output ports are 
described below. 

1) Feeding checker status into RTL 

If a checker is synthesized on the chip, it is required to feed 
its status into RTL. This capability exists in OVL [3], and SVA 
2012 will make it possible in checkers too, as shown in the 
following example: 

checker mutex(input sig, 

      event clk = $inferred_clock, 

      output logic res); 

 a1: assert property (@clk $onehot0(sig)) 

   res = 1'b1 else res = 1'b0; 

endchecker 

 

module m(logic clock, …); 

 logic read, write, scan; 

 always @(posedge clock) begin 

  read <= …; write <= …; 

  mutex check_mutex( 

   {read, write},, scan); 



  //… 

 end 

endmodule 

 

2) Modular assertion modeling 

It is desirable to construct complex checkers in a modular 
way by combining several subcheckers. If a subchecker does 
assertion modeling, it needs output ports to return the modeling 
results, as shown in the following example. 

 checker check_fsm ( 

  // Concrete state 
  logic [1:0] state, 

  event clk = $inferred_clock); 

  // Abstract state 

  logic [1:0] astate; 

  model_fsm c1(state, clk, astate); 

  check_assertions c2(state, astate, clk); 

 endchecker 

  

 checker model_fsm (input logic [1:0] state, 

  event clk, 

 output logic [1:0] astate = IDLE);  

  always @clk 

   case (state) 

    IDLE: astate <= …; 

    // … 

    default: astate <= ERR; 

  endcase 

 endchecker 

 

 checker check_assertions ( 

  state, astate, event clk); 

  default clocking @clk; endclocking 

  a1: assert property (astate == IDLE 

    <-> state inside {IDLE1, IDLE2}); 

  //… 

 endchecker 

 

In this example the top level checker check_fsm verifies 
the correctness of a finite state machine (FSM). It gets a 
concrete state from RTL and builds an abstract state machine 
and then verifies that the concrete FSM complies with this 
abstract FSM. The output port feature allows splitting this 
checker into two subcheckers: model_fsm that computes the 

abstract state and returns it via the output port astate, and 

check_assertions that checks compliance of the concrete 
state to the abstract one. 

3) Implementing testbench environment with checkers 

The mechanism of free variables and checker output ports 
make it possible to use checkers as testbench environments. 
The main advantages of these checker-based testbench 
environments are their high level of abstraction and their ability 
to be used in both simulation and formal verification. The 
classical testbench environments normally cannot be used in 
formal verification. The following example illustrates this 
concept. 

 checker env(event clk, 

          output logic out1, out2);  

  rand bit a, b; 

  m: assume property (@clk $onehot0({a, b})); 

  assign out1 = a; 

  assign out2 = b; 

 endchecker : env 

  

 module m(input logic in1, in2, clock, 

        output …); 

  … 

 endmodule : m 

 

 module top();  

  logic clock, n1, n2; 

  … 

  m m1(n1, n2, clock, …); 

  evn env1(posedge clock, n1, n2); 

 endmodule : top 

 

In this example the checker env, in simulation, generates 

random mutually exclusive inputs for module m at each tick of 
the clock. In formal verification, it constrains module inputs to 
be mutually exclusive. 

G. Types of checker ports 

Most limitations imposed on checker port types in SVA 
2009 will be removed in SVA 2012. For example, in SVA 
2012 it will be possible to declare checker arguments of real 
types or as dynamic arrays. The latter capability may provide a 
workaround for passing a variable number of arguments to a 
checker, as shown in the following example. 

checker one_of (val, int values[]); 

 a: assert #0 (val inside {values}); 

endchecker : one_of 

 

module m(…); 

 logic[2:0] state; 

 … 

 one_of state_legal(state, 

            '{IDLE, ACTIVE, WAIT}); 

 … 

endmodule : m 

 

In this example the legal states of an FSM are passed to the 
checker one_of using a dynamic array. 

V. MAIN CHALLENGES IN CHECKER DEFINITION 

The new checker capabilities of SVA 2012 are similar to 
well-known features that have existed in modules for many 
years. However, introducing them in checkers was challenging 
because of the following checker peculiarities: 

 Free variables 

 Procedural instantiation 

 Rewriting semantics for checker instantiation. 

Below we describe the challenges of defining new checker 
constructs. 

A. Checker NBA and always_ff procedures 

SVA 2009 allowed only simple always procedures in 
checkers having an event control.

3
 Aside from assertions, such 
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control at all, but the semantics of such procedures was non-intuitive. In the 

emerging standard use of always procedures in checkers is deprecated, and 

 



procedures could only have NBA statements. These NBA 
statements were executed in the Re-NBA region [2].  One of 
the main reasons to execute these assignments in the Re-NBA 
region was to allow having a sequence triggered method in 
the right-hand side (RHS) of the assignment. Indeed, the value 
of a sequence triggered method is only set in the Observed 
region, and an attempt to sample its value in the NBA region, 
as in modules, would result in the triggered value being 
identically false. This behavior of checker NBA will be 
preserved in SVA 2012. 

B. Continuous assignments 

Defining continuous assignments turned out to be a 
challenging task. Consider what happens if an RHS of a 
continuous assignment contains a free variable: 

 default clocking @clk; endclocking 

 rand bit r; bit a, b; 

 m1: assume property (@clk r == b); 

 assign a = r; 

 

The free variable r gets the sampled value of b from the 

assumption m1. Therefore, the new value of a equals the old 

value of b. The only way to preserve the combinational 
behavior of a continuous assignment is to make its RHS 
sampled, and to sample checker variables in all contexts, 
including deferred assertions! This behavior is undesirable, as 
explained in Section ‎IV.E. To break this vicious circle it was 
decided to disallow free checker variables in an RHS of a 
continuous assignment and thus to keep a conventional 
definition of a continuous assignment. There were two options: 
to perform continuous assignments in the Active region set, as 
in modules, or in the Reactive region set, as in programs. The 
latter option was selected for considerations of consistency and 
efficiency: 

 Since checker NBA are performed in the Re-NBA 
region (see Section ‎A), it is more consistent and 
efficient to perform continuous assignments in the 
Reactive region set. 

 With the introduction of output ports (see 
Section ‎IV.F), checkers may act as signal generators, 
playing the role of a testbench. Since SystemVerilog 
testbench constructs (programs) are executed in the 
Reactive region set, checker assignments should follow 
this rule. 

The issue remains: what to do with checker free variables? 
The SVA 2012 solution merely rules them out instead of 
addressing the problem! However, some provision has been 
made for the future. Currently, the target of a continuous 
assignment cannot be a free variable. Such assignment may be 
introduced in the future, and this assignment would allow free 
variables in the RHS as well. This definition would require all 
non-free variables in the RHS to be sampled. Such a definition 
will be consistent with the rest of the language: the free 
variables are not sampled, but they depend on sampled values 
of non-free variables. 

                                                                                                      
always_ff is intended to be used instead. In addition, always_comb and 

always_latch procedures have been introduced. 

C. Procedural control and looping statements. Sampling 

Defining simulation semantics for continuous assignments 
paved the way for the introduction of always_comb and 

always_latch: all statements in always_comb and 

always_latch are executed in the Reactive region set.
4
 A 

problem arises with the introduction of procedural control and 
looping statements: should the control expressions be sampled 
or not? On the one hand, expressions in procedural statements 
should not be sampled: 

 always_comb if (a) x = b; else x = c; 

 

should be equivalent to 

 always_comb x = a ? b : c; 

 

On the other hand, if NBA are in a scope of a conditional 
statement, the condition should be sampled: 

 always_ff if (a) x <= b; 

 

should be equivalent to 

 always_ff x <= a ? b : x; 

 

It follows that the variable sampling should depend not on 
the statement, but rather on the procedure: in always_ff 

procedures variables should be sampled, whereas in 
always_comb and always_latch they should not. 

However, there are additional complications for 
always_ff procedures.  Consider the following example: 

 always_ff @clk begin 

  b = a; c = b; ... 

 end 

 

Since variables in an always_ff procedure are sampled, the 
behavior of the blocking assignments above is non-intuitive: 
they are actually nonblocking because of the sampling of their 
RHS. To cope with this problem, blocking assignments have 
been made illegal always_ff procedures in checkers. 

Another complication is caused by variables in an event 
control. Consider the following example: 

 always_ff @(posedge clk or posedge rst)begin 

  if (rst) ...; ... 

 end 

 

To make reset work as expected, the variable rst should not 
be sampled. The following rule has therefore been added: 
variables used in event control are not sampled. 

VI. CHECKER FEATURES YET TO BE ADDRESSED 

There are several important features still to be addressed: 
checkers in functions and tasks, checkers in classes, forcing in 
checkers, and checkers with a variable number of arguments. In 
this section we discuss these features and their usability. 
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A. Checkers in functions and tasks 

Checkers currently cannot be instantiated in functions and 
tasks. This prevents generic usage of checkers as building 
blocks of verification libraries. For example, assume that there 
is a library checker checking mutual exclusiveness between 
two signals 

 checker mutex(logic a, b); 

  assert #0 ($onehot0({a, b}); 

 endchecker 

 

This checker may be used in modules (interfaces, etc.), but 
not in functions or tasks. If this check is required in a function 
or task, the assertion has to be instantiated there directly or 
wrapped into a macro. 

The main issue preventing the introduction of checker 
instantiation in functions or tasks are statements that can appear 
in checkers, but not in functions or tasks. For practical needs it 
would be possible to limit the constructs allowed in a checker 
instantiated in the context of a function or task. However, a 
solution needs to be found for generate constructs which are 
essential for library checkers. 

B. Checkers in classes 

Checking execution correctness is an important part of 
UVM methodology [5]. In UVM, correctness checking is 
performed by special classes called monitors. However, classes 
do not have optimal infrastructure for correctness checking: 
most importantly, class methods cannot instantiate concurrent 
assertions. Checkers have everything needed for assertion 
checking, but they cannot be instantiated in classes. Therefore, 
it would be helpful to allow checkers to be class members, and 
to start their assertion checking at the time of class 
construction. This feature would make it possible to reuse the 
same checker in different contexts, both RTL and transaction 
level.

5
 

C. Forcing in checkers 

For the purposes of formal verification it is important to 
prune parts of the block under verification: to disconnect some 
logic or to hardwire it to some specific value. Pruning currently 
is done either using tool-specific directives or by manually 
changing a copy of a block. Both approaches have major 
drawbacks: pruning directives are non-standard and are not 
supported by simulators; changing the block manually requires 
effort and is error-prone. 

Allowing forcing in checkers would solve this problem, as 
shown in the following example: 

 module m(...); 

  logic a; 

  assign a = ...; 

  // ... 

 endmodule : m 

 

 checker c; 

  initial force top.m1.a; 

 endchecker 

                                                           
5
 Transaction-level modeling also requires defining features for transaction-

level assertions, see [16]. 

 

 module top; 

  // ... 

  m m1(...); c c1(...); 

 endmodule 

 

D. Variable number of checker arguments 

The number of checker arguments must be fixed, even 
though some arguments can have default values. To build 
flexible library checkers it would be useful to allow a variable 
number of checker arguments. As an example, consider a 
checker verifying that signal sequences seq_1, seq_2, …, 

seq_n come in a specific order. Currently one has to define 
different checkers for different numbers of sequences. It would 
be more natural to have one checker that admits a variable 
number of arguments. This capability can be partially 
implemented in SVA 2012 using dynamic arrays as explained 
in Section ‎IV.G. However, dynamic arrays cannot contain, for 
example, sequence arguments, so that the case described in this 
section cannot be implemented in SVA  2012. 

VII. CONCLUSION 

The new checker constructs introduced in 2009 close some 
key gaps in the SystemVerilog standard. We have described 
numerous features of checkers that are well-suited for building 
flexible, maintainable verification libraries: 

 Instantiation in module or procedural code 

 Packaging of properties and modeling code 

 Typed or untyped inputs that can be variables, 
events, sequences, or properties 

 Context inference for clocks and resets 

 Substitution semantics for flexibility and 
efficiency 

 Insensitivity to races 

Since SVA 2009 was issued, the design community has 
found additional improvements to be desirable. The upcoming 
2012 revision of the standard will introduce features including 
more general procedures, relaxation of the single-assignment 
rule, non-sampled checker inputs, output arguments, etc. In 
future revisions of the language we hope to add additional 
features such as signal forcing, and to extend checkers to other 
SystemVerilog constructs such as functions, tasks, and classes. 

Based on our experience supporting the validation of a 
variety of Intel CPUs and SoCs, we believe that the checker 
construct will play a key role in future simulation and formal 
verification environments. As their usage in the validation 
community continues to grow, we expect to further refine the 
definition of these new, integral building blocks of our 
verification infrastructure. 
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