
SystemVerilog Checkers: Key Building Blocks for

Verification IP

Laurence Bisht, Dmitry Korchemny, Erik Seligman

Intel Corporation

{laurence.s.bisht@intel.com, dmitry.korchemny, erik.seligman}@intel.com

Abstract—This paper describes checkers – a SystemVerilog

construct for packaging verification library entities and

verification IP. An important example of a checker application is

a checker-based verification library recently donated to

Accellera. We provide a brief overview of checkers and their

main applications, and describe new checker features expected to

become part of the emerging SVA 2012 standard, the motivations

behind them, and the challenges posed by their definition. We

conclude with a consideration of other checker enhancements

that fell beyond of the scope of SVA 2012.

Keywords- SystemVerilog Assertions; assertion-based

verification; RTL simulation; formal verification.

I. INTRODUCTION

Assertion-based verification (ABV) [1] has proven itself to
be an important means of RTL validation. To natively support
ABV, SystemVerilog has a sublanguage for assertion
specification, called SystemVerilog Assertions (SVA) [2]. One
of the major challenges for ABV support is packaging several
assertions and the auxiliary instrumental code required for
assertion verification together. Such packaging is required in
order to organize standard assertion libraries, such as OVL [3],
and to organize modeling code for formal verification. Early
versions of SystemVerilog provided some container types that
might seem to serve this purpose, such as modules and
interfaces. This packaging is still used for OVL. However,
none of these options is sufficient for organizing truly flexible
verification libraries and modeling code. SystemVerilog 2009
[2] introduced checkers for this purpose. Checkers have
numerous advantages over modules and interfaces: they are
race-free, they allow sequences and properties as arguments,
their invocation syntax is more intuitive and concise, they may
be instantiated both inside and outside procedural code, they
may infer their clock and reset contexts, they have free
variables, etc. An important example of a checker application is
a checker-based verification library recently donated to
Accellera [4].

The work on the SVA 2012 standard has aimed to make
checkers even more powerful by enriching their modeling
capabilities, adding support for output ports, etc. These new
features will make checkers better suited for writing large
verification IP units and enable new uses for checkers. For
example, checkers will be able to feed their assertion
completion status to scan latches, thus opening the door for
automatic assertion synthesis on chip; it will be possible to use
checkers in testbenches as input stimuli generators that benefit
from the checker randomization capability based on

assumptions, etc. The introduction of new checker modeling
constructs and the deprecation of general purpose always
procedures in checkers make it possible to remove several
annoying restrictions imposed on checker modeling in
SystemVerilog 2009. For example, it should become possible
to use continuous and blocking assignments to implement
combinational logic, and the single assignment rule will be
removed.

However, extending checker capabilities has turned out to
be a challenging task. Unlike modules, checkers as building
blocks for verification IP must have stable race-free behavior in
any instantiation context. This requires careful definition of
sampling in different checker constructs. Another problem to
be addressed is the definition of the simulation semantics of the
new constructs in the presence of free variables.

Time constraints prevent several important aspects of
checkers from being addressed in this work. One such potential
feature is checker instantiation in classes, which would enable,
for example, implementing UVM [5] monitor classes as
checkers. This would make it possible to reuse the same
checkers at different levels of abstraction. Other issues include
forcing in checkers and support of a variable number of
checker ports.

We begin our paper with a brief overview of checkers and
discuss their main use cases belonging to verification libraries
and modeling. We then describe the new checker features of
SVA 2012 and analyze the main challenges in their definition.
We conclude with a consideration of other checker
enhancements that fell beyond the scope of SVA 2012.

II. CHECKER OVERVIEW

A. High level description of checker construct

The checker construct is one of the major building blocks
that make up a SystemVerilog design and verification
environment. Checkers were designed and added to answer
several needs: to encapsulate several assertions and their
related modeling into bigger blocks having a well-defined
functionality, to inherit context clock and enabling conditions,
and to enable flexible argument types. This type of construct
makes it possible to create powerful and general collections of
higher-level checks that design and validation engineers can
use without having to learn the full syntax of SVA, or that can
be used to more concisely instantiate common cases of
assertion checking.

mailto:erik.seligman%7d@intel.com

SVA 2009 allowed checker formal ports to be defined only
as inputs, and the checker modeling mechanism was limited to
nonblocking assignments only. The following example
illustrates checker usage:

 checker follows(sequence first,

 property second,

 event clock = $inferred_clock,

 untyped reset = $inferred_disable,

 bit report_coverage = 1’b0);

 default clocking @clock; endclocking

 default disable iff reset;

 a: assert property (first |=> second);

 if (report_coverage)

 c: cover property (first #=# second);

 endchecker : follows

 module m(logic rst, clk, en, ...);

 default disable iff rst;

 logic req, gnt;

 always @(posedge clk) begin

 req <= ...;

 gnt <= ...;

 if (en)

 follows req_granted(req, gnt);

 ...

 end

 endmodule : m

Here the checker follows checks that first is followed

by second. In a simple case, first and second are Boolean,

but in the general case first may be any sequence, and

second may be any property. The checker also has an optional

coverage statement that registers all occurrences of first

followed by second. This check is only performed when

report_coverage is a non-zero elaboration time constant.

The checker invocation in the module illustrates the
checker’s ability to be instantiated in procedural code and to
infer its clock and disable condition from its invocation context
[6].

B. Checkers and other containers of SystemVerilog

Though SystemVerilog offers a rich set of container
objects, including modules, interfaces, programs, and
properties, these containers are not satisfactory for representing
the building blocks of verification libraries and formal
verification IP:

Modules: These are the main building blocks of
SystemVerilog-based design. They are well suited for general
modeling code, and can hierarchically instantiate submodules.
But they have many limitations, including the lack of
clock/reset inference from context, the lack of untyped or
sequence/property inputs, sensitivity to input races, and the
inability to be instantiated in procedural code.

Interfaces: These are designed to package a bundle of
common inputs and outputs in a reusable way for multiple
modules. They share the same limitations mentioned above for

modules, and in addition are unsupported by many formal
verification tools.

Programs: These are more software-oriented containers,
designed for packaging testbench code. They share the
limitations of modules and interfaces.

Properties: These are the containers originally supplied by the
SVA portion of the SystemVerilog language. They provide
advantages including clock and reset inference from the
instantiation context, untyped input arguments, and support for
instantiation in the form of concurrent assertions in any of the
other containers described above, including their procedural
code. However, they can neither package several assertions nor
contain general modeling code, facts which severely limit their
usefulness for building libraries or complex verification IP.

Like most other containers in SystemVerilog, checkers may
incorporate covergroups. This makes checkers well suited not
only for correctness, but also for coverage checks. Checkers
also have another important feature, free variables, not found
in any of the above container types. Free variables are briefly
described in the next section.

C. Free Variables

In a formal verification context, it is often desirable to
utilize variables that are able to assume an arbitrary value,
representing unpredictable input from the environment,
possibly constrained with some temporal condition specified as
an assumption. Free variables also simplify modeling, since
like assertions they always use sampled values of non-free
variables, and thus avoid race conditions. Another advantage of
free variables is that unlike free inputs, they are randomized in
simulation. This randomization respects constraints imposed on
free variables by assignments and assumptions. Syntactically,
free variables are distinguished from other checker variables by
the qualifier rand. The following example

1
 shows how free

variables may be used to define a clock non-deterministically,
i.e., a clock that matches both 0101… and 1010… time
sequences.

 rand bit clk;

 always_ff @$global_clock clk <= !clk;

Refer to [7] for more information on checker free variables.

D. Checkers and PSL vunits

Besides SVA, PSL (Property Specification Language) [8] is
another property specification language widely used in the
industry. PSL also has a construct for packaging verification
code, called vunit. It is instructive to compare SVA checkers to
PSL vunits.

Both checkers and vunits may incorporate assertion
directives and modeling code. Here are the most important
differences between the two:

 Checkers may be either instantiated or bound to a
device under test (DUT); vunits may only be bound.

1 The example uses the checker procedure syntax as defined in the

emerging standard (SVA 2012).

 Checkers resolve names using their declaration
context, vunits resolve names using their instantiation
context. Note, however, that it is possible to pass to a
checker the clock and reset context at its instantiation
point.

 Data declared in vunits override corresponding data in
the design. Data declared in checkers have a different
scope and do not directly interfere with the design data.

These peculiarities of checkers and vunits imply their main
usability advantages and disadvantages. Checkers are better
suited to serve as library units because of their ability to be
instantiated. Vunits are rather clumsy for this purpose: they
should be bound to shadow modules or interfaces as done in
the PSL-based implementation of OVL [3].

On the other hand, it is easy to use vunits for writing formal
verification IP: because vunits resolve names in the
instantiation context, there is no need to pass all required
design signals to a vunit as is required for checkers. Also, the
ability of vunits to override allows seamless design pruning for
verification needs.

It is worth mentioning that checkers have well-defined
simulation semantics, whereas the simulation semantics of
vunits is implementation dependent.

III. CHECKER USE CASE: VERIFICATION LIBRARIES AND IP

The most important motivation for introducing checkers
was to enable flexible, reusable verification library
development. Verification libraries such as OVL [3] already
existed prior to checkers, but had to make use of the available
container types, accepting the disadvantages described in
Section IIC above. Checkers have enabled the development of
cleaner and more flexible libraries, such as the SVA Checker
Library [4] recently donated to Accellera. The following table
[9] describes some major differences between the two libraries
in terms of the library requirements we identified from project
usage:

Library Requirement OVL Issues SVA Checker

Library Solution

Extensibility:
parameterizing library

entities with

sequences/properties.

Not possible: a
module cannot take a

sequence or property

as input.

Solved: library entities
may take sequences or

properties as

arguments.

Inference: infer clock

and reset from context.

Not possible: no

inference mechanism

for modules.

Solved: checkers may

infer clock and reset
from their instantiation

context.

Locality: entities

instantiated as close as
possible to target code.

Limited: modules

cannot be instantiated

in procedural code.

Improved: checkers

may be instantiated
inside or outside

procedural code.

Efficiency: entity

implementation should

be as efficient as
possible.

Some problems: OVL

entities are modules—

having many of them
results in notable

simulation cost.

Improved: checkers

are more efficient than

modules due to
substitution semantics

and specialization.

Conciseness: entity

invocation should be

concise.

Not possible:
parameterized module

instantiation is

verbose.

Solved: checker

parameterization is

implicit and its

arguments may be
untyped.

Determinism: result

should be independent

of input evaluation order

Poor: races between

data and clocks are

possible

Solved: sampling

prevents races

Table 1: OVL vs. SVA Checker Library

See [9] and [10] for detailed discussion about verification
libraries.

Related to the problem of supplying verification libraries is
the more general problem of verification IP. Reusable IP is
becoming more and more important throughout the industry
[11] [12] [13] [14] [15]. Due to the ability to customize and
parameterize designs based on common IP, equally flexible
verification libraries are increasingly desirable. We believe that
checkers will become a key enabler for the development of
these libraries in the coming years.

IV. NEW CHECKER FEATURES TARGETED FOR SVA2012

As we have seen, the checker construct in its current
definition brings clear added value; however, users already see
several limitations and have identified usability enhancements
needed for making checkers even more powerful and using
them in common practice. In this section, we will describe the
major checker features targeted for SVA 2012.

2
 These features

make checker modeling capabilities similar to those of modules
and thus more familiar to design and validation engineers.

A. Assignment statements

In SVA 2009 the only assignment statements legal in
checkers were non-blocking assignments (NBA). In addition to
non-blocking assignments, SVA 2012 introduces other kinds of
assignments that exist in modules: continuous and blocking
assignments. There are, however several subtle differences
between checker and module assignments: in checkers
continuous assignments may not be procedural, blocking
assignments may not be placed in an always_ff procedure,
the right-hand side of non-blocking assignments in an
always_ff procedure is sampled, and no assignment is legal

in an initial procedure. The reason for these differences is
explained in Section ‎G.

B. Always procedures

In SVA 2009 the only always procedure allowed in
checkers was the general-purpose always procedure. This

procedure allowed a single timing control statement and non-
blocking assignments as the only modeling statements.
Therefore, this procedure in checkers essentially played the
role of an always_ff procedure. For this reason the general-

purpose always procedure will be deprecated in SVA 2012, and
the always_ff procedure will be introduced instead. SVA

2012 will also allow always_comb and always_latch

procedures to model combinational and latched logic as it is
done in modules.

2 SVA 2012 has not been officially approved as of the time of writing

this paper. Therefore, though we believe the information to be accurate, there
is no guarantee that all the features will become part of SVA 2012 in the form

they are described in this paper.

C. Procedural control statements

In SVA 2009 there were two different coding styles in
modules and checkers: in modules, continuous assignments and
procedural control statements were used, whereas in checkers
functions and let statements were used instead. To allow in
checkers the RTL coding style used in modules, SVA 2012 will
make procedural control statements and looping statements
legal in checkers. For example, SVA 2009 required the
following coding style to compute the new value of a variable
window in a checker:

 function bit next_window (bit win);

 if (reset || win && end_event) return 1'b0;

 if (!win && start_event) return 1'b1;

 return win;

 endfunction

 always @clock

 window <= next_window(window);

SVA 2012 allows rewriting this in a more conventional
way:

 always_ff @clock begin

 if (reset || win && end_event)

 window <= 1'b0;

 if (!win && start_event) window <= 1'b1;

 end

D. Cancellation of single assignment rule

SVA 2009 enforced a Single Assignment Rule (SAR): it
was illegal to use the same bit of a checker variable in several
assignment-like contexts. SAR was required in order to prevent
assignment races in checkers. Because of the deprecation of the
general-purpose always procedure in checkers, the explicit

SAR became redundant: the interprocess single assignment is
imposed implicitly by special always procedures:
always_comb, always_latch and always_ff; multiple

assignment to the same variable in the same process has well
defined semantics. For this reason, SAR will be cancelled in
SVA 2012.

E. New sampling rules

SVA 2009 defined all checker arguments to be sampled in
the Preponed region, i.e., at the beginning of the simulation
time step. This is problematic when a checker is used to wrap
deferred assertions that check current values of signals. For
example, in the following assertion

assert #0 (a);

the variable a is not sampled. However, if the same assertion
was contained in a checker, its expression was sampled:

 checker check1(x); assert #0 (x); endchecker

 …

 check1 c(a);

The ugly workaround was to const cast all the actual
arguments of a checker instance. However, this workaround
does not work to infer the reset value. The following example
illustrates the problem:

 checker check3(a, rst = $inferred_disable);

 a1: assert #0 (rst || $onehot0(a));

 endchecker : check3

 module m(...);

 default disable iff reset;

 always_comb begin

 x = ...;

 y = ...;

 // x and y are not sampled, reset is sampled

 check3 c3(const'({x, y}));

 end

 endmodule

A nastier problem occurred when a clock was passed to a
checker as a signal and not as an event:

 checker check2(logic clk, a);

 assert property (@clk a);

 endchecker

Sampling of the clock signal clk resulted in a non-intuitive
(and ill-defined) behavior of the assertion.

Therefore, in SVA 2012 checker arguments will not be
sampled. Instead, to make checkers behave deterministically,
all expressions in always_ff procedures except free variables

and variables in the event control (see Section ‎V.C) will be
sampled to enforce variable sampling in NBA. Consider the
following example:

 always_ff @clk a <= b;

In modules, if b changes before clk, a is assigned the new

value of b instead of the old one. In well-formed RTL this
situation does not happen. This situation is not acceptable in
checkers because a checker may use instrumental code which
does not have to be well-formed RTL, and may even relate to
testbench variables. Therefore, in a checker b must be sampled.

F. Output ports

SVA 2012 will introduce output ports in checkers. The
types of output ports may be the same as the types of input
ports, except for untyped, sequence, or property. Output

ports may have optional initializers. Introduction of output
ports will significantly extend checker applicability and
modularity. The main use cases for checker output ports are
described below.

1) Feeding checker status into RTL

If a checker is synthesized on the chip, it is required to feed
its status into RTL. This capability exists in OVL [3], and SVA
2012 will make it possible in checkers too, as shown in the
following example:

checker mutex(input sig,

 event clk = $inferred_clock,

 output logic res);

 a1: assert property (@clk $onehot0(sig))

 res = 1'b1 else res = 1'b0;

endchecker

module m(logic clock, …);

 logic read, write, scan;

 always @(posedge clock) begin

 read <= …; write <= …;

 mutex check_mutex(

 {read, write},, scan);

 //…

 end

endmodule

2) Modular assertion modeling

It is desirable to construct complex checkers in a modular
way by combining several subcheckers. If a subchecker does
assertion modeling, it needs output ports to return the modeling
results, as shown in the following example.

 checker check_fsm (

 // Concrete state
 logic [1:0] state,

 event clk = $inferred_clock);

 // Abstract state

 logic [1:0] astate;

 model_fsm c1(state, clk, astate);

 check_assertions c2(state, astate, clk);

 endchecker

 checker model_fsm (input logic [1:0] state,

 event clk,

 output logic [1:0] astate = IDLE);

 always @clk

 case (state)

 IDLE: astate <= …;

 // …

 default: astate <= ERR;

 endcase

 endchecker

 checker check_assertions (

 state, astate, event clk);

 default clocking @clk; endclocking

 a1: assert property (astate == IDLE

 <-> state inside {IDLE1, IDLE2});

 //…

 endchecker

In this example the top level checker check_fsm verifies
the correctness of a finite state machine (FSM). It gets a
concrete state from RTL and builds an abstract state machine
and then verifies that the concrete FSM complies with this
abstract FSM. The output port feature allows splitting this
checker into two subcheckers: model_fsm that computes the

abstract state and returns it via the output port astate, and

check_assertions that checks compliance of the concrete
state to the abstract one.

3) Implementing testbench environment with checkers

The mechanism of free variables and checker output ports
make it possible to use checkers as testbench environments.
The main advantages of these checker-based testbench
environments are their high level of abstraction and their ability
to be used in both simulation and formal verification. The
classical testbench environments normally cannot be used in
formal verification. The following example illustrates this
concept.

 checker env(event clk,

 output logic out1, out2);

 rand bit a, b;

 m: assume property (@clk $onehot0({a, b}));

 assign out1 = a;

 assign out2 = b;

 endchecker : env

 module m(input logic in1, in2, clock,

 output …);

 …

 endmodule : m

 module top();

 logic clock, n1, n2;

 …

 m m1(n1, n2, clock, …);

 evn env1(posedge clock, n1, n2);

 endmodule : top

In this example the checker env, in simulation, generates

random mutually exclusive inputs for module m at each tick of
the clock. In formal verification, it constrains module inputs to
be mutually exclusive.

G. Types of checker ports

Most limitations imposed on checker port types in SVA
2009 will be removed in SVA 2012. For example, in SVA
2012 it will be possible to declare checker arguments of real
types or as dynamic arrays. The latter capability may provide a
workaround for passing a variable number of arguments to a
checker, as shown in the following example.

checker one_of (val, int values[]);

 a: assert #0 (val inside {values});

endchecker : one_of

module m(…);

 logic[2:0] state;

 …

 one_of state_legal(state,

 '{IDLE, ACTIVE, WAIT});

 …

endmodule : m

In this example the legal states of an FSM are passed to the
checker one_of using a dynamic array.

V. MAIN CHALLENGES IN CHECKER DEFINITION

The new checker capabilities of SVA 2012 are similar to
well-known features that have existed in modules for many
years. However, introducing them in checkers was challenging
because of the following checker peculiarities:

 Free variables

 Procedural instantiation

 Rewriting semantics for checker instantiation.

Below we describe the challenges of defining new checker
constructs.

A. Checker NBA and always_ff procedures

SVA 2009 allowed only simple always procedures in
checkers having an event control.

3
 Aside from assertions, such

3
 Strictly speaking, it was possible for an always procedure not to have any

control at all, but the semantics of such procedures was non-intuitive. In the

emerging standard use of always procedures in checkers is deprecated, and

procedures could only have NBA statements. These NBA
statements were executed in the Re-NBA region [2]. One of
the main reasons to execute these assignments in the Re-NBA
region was to allow having a sequence triggered method in
the right-hand side (RHS) of the assignment. Indeed, the value
of a sequence triggered method is only set in the Observed
region, and an attempt to sample its value in the NBA region,
as in modules, would result in the triggered value being
identically false. This behavior of checker NBA will be
preserved in SVA 2012.

B. Continuous assignments

Defining continuous assignments turned out to be a
challenging task. Consider what happens if an RHS of a
continuous assignment contains a free variable:

 default clocking @clk; endclocking

 rand bit r; bit a, b;

 m1: assume property (@clk r == b);

 assign a = r;

The free variable r gets the sampled value of b from the

assumption m1. Therefore, the new value of a equals the old

value of b. The only way to preserve the combinational
behavior of a continuous assignment is to make its RHS
sampled, and to sample checker variables in all contexts,
including deferred assertions! This behavior is undesirable, as
explained in Section ‎IV.E. To break this vicious circle it was
decided to disallow free checker variables in an RHS of a
continuous assignment and thus to keep a conventional
definition of a continuous assignment. There were two options:
to perform continuous assignments in the Active region set, as
in modules, or in the Reactive region set, as in programs. The
latter option was selected for considerations of consistency and
efficiency:

 Since checker NBA are performed in the Re-NBA
region (see Section ‎A), it is more consistent and
efficient to perform continuous assignments in the
Reactive region set.

 With the introduction of output ports (see
Section ‎IV.F), checkers may act as signal generators,
playing the role of a testbench. Since SystemVerilog
testbench constructs (programs) are executed in the
Reactive region set, checker assignments should follow
this rule.

The issue remains: what to do with checker free variables?
The SVA 2012 solution merely rules them out instead of
addressing the problem! However, some provision has been
made for the future. Currently, the target of a continuous
assignment cannot be a free variable. Such assignment may be
introduced in the future, and this assignment would allow free
variables in the RHS as well. This definition would require all
non-free variables in the RHS to be sampled. Such a definition
will be consistent with the rest of the language: the free
variables are not sampled, but they depend on sampled values
of non-free variables.

always_ff is intended to be used instead. In addition, always_comb and

always_latch procedures have been introduced.

C. Procedural control and looping statements. Sampling

Defining simulation semantics for continuous assignments
paved the way for the introduction of always_comb and

always_latch: all statements in always_comb and

always_latch are executed in the Reactive region set.
4
 A

problem arises with the introduction of procedural control and
looping statements: should the control expressions be sampled
or not? On the one hand, expressions in procedural statements
should not be sampled:

 always_comb if (a) x = b; else x = c;

should be equivalent to

 always_comb x = a ? b : c;

On the other hand, if NBA are in a scope of a conditional
statement, the condition should be sampled:

 always_ff if (a) x <= b;

should be equivalent to

 always_ff x <= a ? b : x;

It follows that the variable sampling should depend not on
the statement, but rather on the procedure: in always_ff

procedures variables should be sampled, whereas in
always_comb and always_latch they should not.

However, there are additional complications for
always_ff procedures. Consider the following example:

 always_ff @clk begin

 b = a; c = b; ...

 end

Since variables in an always_ff procedure are sampled, the
behavior of the blocking assignments above is non-intuitive:
they are actually nonblocking because of the sampling of their
RHS. To cope with this problem, blocking assignments have
been made illegal always_ff procedures in checkers.

Another complication is caused by variables in an event
control. Consider the following example:

 always_ff @(posedge clk or posedge rst)begin

 if (rst) ...; ...

 end

To make reset work as expected, the variable rst should not
be sampled. The following rule has therefore been added:
variables used in event control are not sampled.

VI. CHECKER FEATURES YET TO BE ADDRESSED

There are several important features still to be addressed:
checkers in functions and tasks, checkers in classes, forcing in
checkers, and checkers with a variable number of arguments. In
this section we discuss these features and their usability.

4
 Except for concurrent assertions, which preserve their regular semantics.

A. Checkers in functions and tasks

Checkers currently cannot be instantiated in functions and
tasks. This prevents generic usage of checkers as building
blocks of verification libraries. For example, assume that there
is a library checker checking mutual exclusiveness between
two signals

 checker mutex(logic a, b);

 assert #0 ($onehot0({a, b});

 endchecker

This checker may be used in modules (interfaces, etc.), but
not in functions or tasks. If this check is required in a function
or task, the assertion has to be instantiated there directly or
wrapped into a macro.

The main issue preventing the introduction of checker
instantiation in functions or tasks are statements that can appear
in checkers, but not in functions or tasks. For practical needs it
would be possible to limit the constructs allowed in a checker
instantiated in the context of a function or task. However, a
solution needs to be found for generate constructs which are
essential for library checkers.

B. Checkers in classes

Checking execution correctness is an important part of
UVM methodology [5]. In UVM, correctness checking is
performed by special classes called monitors. However, classes
do not have optimal infrastructure for correctness checking:
most importantly, class methods cannot instantiate concurrent
assertions. Checkers have everything needed for assertion
checking, but they cannot be instantiated in classes. Therefore,
it would be helpful to allow checkers to be class members, and
to start their assertion checking at the time of class
construction. This feature would make it possible to reuse the
same checker in different contexts, both RTL and transaction
level.

5

C. Forcing in checkers

For the purposes of formal verification it is important to
prune parts of the block under verification: to disconnect some
logic or to hardwire it to some specific value. Pruning currently
is done either using tool-specific directives or by manually
changing a copy of a block. Both approaches have major
drawbacks: pruning directives are non-standard and are not
supported by simulators; changing the block manually requires
effort and is error-prone.

Allowing forcing in checkers would solve this problem, as
shown in the following example:

 module m(...);

 logic a;

 assign a = ...;

 // ...

 endmodule : m

 checker c;

 initial force top.m1.a;

 endchecker

5
 Transaction-level modeling also requires defining features for transaction-

level assertions, see [16].

 module top;

 // ...

 m m1(...); c c1(...);

 endmodule

D. Variable number of checker arguments

The number of checker arguments must be fixed, even
though some arguments can have default values. To build
flexible library checkers it would be useful to allow a variable
number of checker arguments. As an example, consider a
checker verifying that signal sequences seq_1, seq_2, …,

seq_n come in a specific order. Currently one has to define
different checkers for different numbers of sequences. It would
be more natural to have one checker that admits a variable
number of arguments. This capability can be partially
implemented in SVA 2012 using dynamic arrays as explained
in Section ‎IV.G. However, dynamic arrays cannot contain, for
example, sequence arguments, so that the case described in this
section cannot be implemented in SVA 2012.

VII. CONCLUSION

The new checker constructs introduced in 2009 close some
key gaps in the SystemVerilog standard. We have described
numerous features of checkers that are well-suited for building
flexible, maintainable verification libraries:

 Instantiation in module or procedural code

 Packaging of properties and modeling code

 Typed or untyped inputs that can be variables,
events, sequences, or properties

 Context inference for clocks and resets

 Substitution semantics for flexibility and
efficiency

 Insensitivity to races

Since SVA 2009 was issued, the design community has
found additional improvements to be desirable. The upcoming
2012 revision of the standard will introduce features including
more general procedures, relaxation of the single-assignment
rule, non-sampled checker inputs, output arguments, etc. In
future revisions of the language we hope to add additional
features such as signal forcing, and to extend checkers to other
SystemVerilog constructs such as functions, tasks, and classes.

Based on our experience supporting the validation of a
variety of Intel CPUs and SoCs, we believe that the checker
construct will play a key role in future simulation and formal
verification environments. As their usage in the validation
community continues to grow, we expect to further refine the
definition of these new, integral building blocks of our
verification infrastructure.

ACKNOWLEDGMENT

The authors would like to thank Paul Inbar for reviewing
this paper.

REFERENCES

[1] Ping Yeung, "Four Pillars of Assertion-based Verification," in Euro

DesignCon, 2004.

[2] "IEEE Standard for SystemVerilog - Unified Hardware Design,

Specification, and Verification," IEEE STD 1800-2009, 2009.

[3] "Accellera Standard Open Verification Library (OVL) V2.5," Accellera,
2010.

[4] Eduard Cerny, Surrendra Dudani, and Dmitry Korchemny. (2010) SVA

Checker Library. [Online].
http://www.accellera.org/apps/org/workgroup/ovl/download.php/3512/S

VACheckerLibrary_101006dk.pptx

[5] Universal Verification Methodology. [Online]. http://uvmworld.org/

[6] Eduard Cerny, Surrendra Dudani, Dmitry Korchemny, and Lisa Piper,

"Verification case studies: evolution from SVA 2005 to SVA 2009," in
DVCon, 2009.

[7] Eduard Cerny, Surrendra Dudani, John Havlicek, and Dmitry

Korchemny, The Power of Assertions in SystemVerilog.: Springer, 2010.

[8] "IEEE Standard for Property Specification Language (PSL) ," IEEE

1850-2005 , 2005.

[9] Doron Bustan, Dmitry Korchemny, Erik Seligman, and Jin Yang,
"SystemVerilog Assertions: Past, Present and Future," IEEE Design and

Test of Computers, no. To appear, 2012.

[10] Eduard Cerny, Surrendra Dudani, and Dmitry Korchemny, "IEEE 1800-
2009 SystemVerilog: Assertion-based Checker Libraries," in DVCon,

2010.

[11] Adrian J. Isles, Jeremy Sonander, and Mike Turpin, "AMBA
Compliance Checking," in DesignCon, 2005.

[12] OCP web page. [Online]. http://www.ocpip.org

[13] AMBA Open Specifications. [Online].
http://www.arm.com/products/system-ip/amba/amba-open-

specifications.php

[14] Andrea Fedeli, Matteo Moriotti, Umberto Rossi, and Franco Toto.

(2004, February) "Addressing IP Reuse With Formal Verification and

Assertion Based Verification”, Design and Reuse. [Online].

http://www.design-reuse.com/articles/9511/addressing-ip-reuse-with-
formal-ver

[15] Robert Adler, Sava Krstic, Erik Seligman, and Jin Yang, "CompMon:

Ensuring Rigorous Protocol Specification and IP Compliance," in
DVCon, 2011.

[16] Wolfgang Ecker, Volkan Esen, Thomas Steininger, and Michael Velten,

"Requirements and Concepts for Transaction Level Assertions," in
IESS, 2007.

http://www.accellera.org/apps/org/workgroup/ovl/download.php/3512/SVACheckerLibrary_101006dk.pptx
http://www.accellera.org/apps/org/workgroup/ovl/download.php/3512/SVACheckerLibrary_101006dk.pptx
http://uvmworld.org/
http://www.ocpip.org/
http://www.arm.com/products/system-ip/amba/amba-open-specifications.php
http://www.arm.com/products/system-ip/amba/amba-open-specifications.php
http://www.design-reuse.com/articles/9511/addressing-ip-reuse-with-formal-ver
http://www.design-reuse.com/articles/9511/addressing-ip-reuse-with-formal-ver

