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Abstract - SystemVerilog Assertions include capabilities to track data signals that cross clock domains.  However, there 
can be a significant GOTCHA when using SVAssertions across clock domains verses the actual signal activity.  This is 
due to the difference between event driven signal activity and SVAssertion cycle based monitoring.  Depending on from/to 
clock frequencies, the receiving side could receive and process the data while the sending side SVAssertion is still being 
processed.  By the time the SVAssertion transitions to the new clock domain, the data could be gone.  This paper will pro-
vide guidelines for using SVAssertions for Clock-Domain-Crossing (CDC) data paths. 

 
1.0 INTRODUCTION 

The modeling of data paths crossing from one clock domain to another clock domain is a common topic for pa-
pers and articles in the digital design world of today.  Many in-depth papers have been dedicated to the techniques 
and guidelines to manage the data path crossings [1][2][3][4]. A brief review of the basics of Clock Domain Cross-
ing (CDC) will be presented in the following section.  For in-depth details on CDC concepts and techniques, refer to 
the papers just previously sited.  To support CDC, there are Electronic Design Automation (EDA) tools specifically 
directed towards CDC that provides features to analyze designs for CDC data paths and associated design practices.  
These features include monitoring for synchronizers on scalar data paths, checking if synchronizers were added to 
data buses (a bad thing to do) and checking if synchronized data paths converge at later pipe stages in the clock do-
main.  Note this list is not all-inclusive. In addition to EDA CDC tools, the SystemVerilog Hardware Description 
Language provides assertions which can be used to track data as it crosses clock domains.  Because the SystemVeri-
log assertion simulation model is cycle-based while the RTL simulation model is event driven, writing assertions to 
match the data as it crosses clock domains can be a little tricky.  Assertions can be written that appear to be working 
but then fail if clock frequencies vary.  Care must be taken to generate assertions that can work for all corner condi-
tions. 

 
SystemVerilog assertions applied to clock domain crossing has been highlighted as part of at least one paper [5] 

by Litterick, and is part of SV training classes as a means to monitor data as it passes between clock domains.  The 
Litterick paper does show an example of using SystemVerilog assertions but does not cover the various corner con-
ditions.  This paper will explain and diagram a common approach for CDC assertions that is often used and show 
how and where it breaks down, followed by providing a SystemVerilog Assertions approach that will work for all 
corner conditions. 

 
2.0 CDC BASICS 

Clock Domain Crossing (CDC) is defined as a signal from a flip-flop clocked by one clock which is then captured 
by a flip-flop clocked by a different clock as shown in Figure 1.  
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Figure 1 – CDC Diagram between flip-flops A1 and B1 
 

Clk_A  clock domain is captured by flip-flop B1 in the Clk_B
Based on the clock relationship between Clk_A  and Clk_B , the capturing of signal B_in  

able.  This metastable state occurs when signal B_in  is changing values within this 
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Figure 2 – Metastable Diagram – Setup time violation 

 

 
Figure 3 – Metastable Diagram – Hold time violation 
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Figure 4 – Flip
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3.0 SVASSERTIONS BASICS 
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3.1 IMMEDIATE ASSERTION 

Immediate assertions execute in zero simulation time
unknown in the condition of an “if” statement

 
3.2   CONCURRENT ASSERTIONS 

Concurrent assertions use a clock or some other repetitive signal (referred to hereafter as the property clock) to 
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SystemVerilog has two types of assertions: immediate assertions and concurrent assertions.  Both types of asse
tions are used to perform tests on a design whenever the assertion is called or executed.  When an assertion test is 
completed, a pass or fail statement from the assertion can be executed.  Assertions provide a mechanism for
tinuous monitoring of signals and conditions across all simulation regression tests.  This section reviews basic

  Concurrent assertions will be used for monitoring signals across clock d

execute in zero simulation time and can be used to monitor for illegal conditions such as an 
unknown in the condition of an “if” statement [6].  While this is important, it is not the focus of this paper.

Concurrent assertions use a clock or some other repetitive signal (referred to hereafter as the property clock) to 
assertion evaluation.  The primary difference between immediate and concurrent assertions is 
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that concurrent assertions evaluate conditions over time, whereas an immediate assertion tests (start and finish) at 
the point in time when the assertion is called.  The syntax for a concurrent assertion directive is: 

  
assert property ( property_expr )  [pass_statement ; ] [ else  fail_statement ; ]  
 
The argument to assert  property  is a property expression.  A property expression is comprised of a clock 

specification and sequences of Boolean expressions tested over time, as well as property and sequence operators.  
The expressions are evaluated on the clock edge per the clock specification.  It is important to note relative to this 
paper, that the value used per a clock edge is the value sampled in the preponed region of the time step.  The 
sequence of Boolean expressions can be spread over multiple clock cycles by using the ##  cycle delay operator 
between each expression.  This is a very simplistic view of assertions.  Other features and syntax relative to CDC 
will be discussed in the following sections. 

 
3.2.1 PROPERTY IMPLICATION OPERATOR 

Concurrent assertions are activated to start a thread each clock cycle throughout simulation. These assertions will 
run concurrent with the design functionality. To prevent enormous amounts of unneeded concurrent threads that are 
“don’t cares” from consuming simulation time, concurrent assertions use the implication operator to determine if its 
sequences should be evaluated and consume simulation resources.   For example, an assertion with a sequence that 
takes twelve clock cycles to execute could possibly have twelve concurrent threads running at the same time, each 
thread starting on each subsequent clock cycle.   

 
Consider a simple test to show that a req  is followed by a grant .  In Example 1, a property is coded to test this 

simple sequence without using an implication operator.  The bus_req_prop  property triggers “to start” on each 
cycle from cycle 0 through cycle 10.  Only the thread that starts at cycle 1 passes, the remaining threads fail and 
could be counted in the total fail count for the simulation.  

 
property  bus_req_prop; 
 @( posedge  clk) req ##[1:5] grant; 
endproperty: bus_req_prop 
 
assert  property  (bus_req_prop); 

Example 1 – bus_req_prop code for Figure 5 
 

 
Figure 5 – Sequence and Property Pass/Fail for all the threads between Cycle 0 and Cycle 10 

 
In Figure 5, cycle 1 has neither a pass nor a fail because there are no threads ending at that point in time.  Cycle 3 

has both a pass and a fail due to two separate threads ending at that cycle.  The thread that started at cycle 1 
successfully completed at cycle 3 with a pass.  The thread that started at cycle 3 ended immediately with a fail, 
because req  is false at that cycle. 

 
The behavior of the assertion diagramed in Figure 5 is not practical due to assertion failures occurring almost 

every cycle.  More important is that failures are on conditions that are “don’t cares”.  If req  is not active, the 
sequence should not be tested.  To make assertions usable, the assertion property needs to be modeled so that it will 
only test during expected event cycles and be idle during “don’t care” cycles.  SystemVerilog properties make this 
possible by using the implication operator.  Typically, assertions property expressions are specified with an 
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implication operator.  There are two implication operators: overlapping |->  and non-overlapping |=> .  An 
implication operator tells the property not to evaluate the sequence expression following the implication operator 
unless the condition before the operator is true.  The expression to the left of the implication operator is called the 
antecedent and the expression following the implication operator is called the consequent.  The difference between 
the two implication operators is when the consequent testing begins.  An overlapping implication operator begins 
testing the consequent in the same time step that the antecedent passes true.  The non-overlapping implication 
operator delays one clock cycle between the antecedent testing true and the consequent test starting. 

 
The req/grant  code in Example 1 should only test the sequence when req  is true.  For the clock cycles where 

req  is false, the assertion is a “don’t care” and the sequence should not to be evaluated.  In Example 2, the 
implication operator is used to prevent or guard the consequent expression from testing when req  is false.  The 
assertion does not fail; it simply does not run and returns a vacuous success.  

 

property  bus_req_prop; 
 @( posedge  clk) req |-> ##[1:5] grant; 
endproperty: bus_req_prop 
 
assert  property  (bus_req_prop); 

Example 2 – bus_req_prop code with implication operator for Figure 6 
 

 
Figure 6 – Property Pass/Fail for all the threads between Cycle 0 and Cycle 10 for code example 2.   

(Vacuous Successes are not noted.) 
 

Figure 6 shows that by utilizing an implication operator, only one thread starts and completes.  A single “pass” is 
recorded for the simulation.   

 
A number of papers have been written that focus on syntax and utilizing various features of SystemVerilog 

assertions [6][7][8][9].  Please refer to these papers (and others found in “google land”), in addition to the IEEE 
1800-2012 standard [10], for more details on the various ways to apply assertions to designs. 
 
3.3   CONCURRENT ASSERTIONS WITH MULTIPLE CLOCKS 

The application of assertions for this paper is to apply assertion testing with multiple clocks.  SystemVerilog 
assertions provide a number of ways to transition between multiple clocks.  This paper will focus on the operators 
##0, ##1, |-> and |=> to transition between clocks. 
 

4.0 SVASSERTIONS TO MONITOR CDC 
 
SystemVerilog assertions have been promoted as a means to monitor and verify data as it passes across clock do-

mains.  Figure 7 is used as template for discussing CDC along with the RTL code in Example 3. 
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Figure 7 – Clock Domain Crossing of flip

always_ff @(posedge
 B1_in <= A_in
 
always_ff @(posedge
 begin 
  B2_in <= B1_in
  B_out <= B2_in
 end 
 
property CDC_prop1
 @( posedge  Clk
 ##1 
 @( posedge  Clk_B
endproperty: CDC_prop1
 
assert property (

Example 3 – Simple RTL Code snippet and Property for Figure 7
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property to monitor CDC for the design in Figure 7
model which monitors for any transition on 
each part of  CDC_prop1 : 

 
1. @(posedge Clk_A) $rose(

When this condition is true, the consequent of the implication operator begins testing.
 

2.  |=> $rose(B1_in) A non
through the flip-flop. The output of the flip
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Clock Domain Crossing of flip-flip A1 output to flip-flop B1 input 
 
 

always_ff @(posedge  Clk_A) 
B1_in <= A_in ; 

always_ff @(posedge  Clk_B) 

B2_in <= B1_in ; 
B_out <= B2_in ; 

CDC_prop1 ; 
Clk _A) $rose(A_in) |=> $rose(B1_in)  

Clk_B ) 1'b1 ##[2:3] $rose(B_out) 
CDC_prop1  

assert property ( CDC_prop1 );   

Simple RTL Code snippet and Property for Figure 7 

commonly used technique for RTL coding of CDC and a simplified
for the design in Figure 7.  This property only monitors for a rising edge of 

for any transition on A_in  will be shown in a later section. The following steps describe 
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will not test true until one clock following flip-flop A1 going high.  This is due to SystemVerilog assertions 
sampling in the preponed region [10] of a time step.  That is, SystemVerilog assertions use the value of a signal prior 
to a clock changing the signal. 

 
The property transitions to the Clk_B  domain via the ##1  and waits the required 2 to 3 cycles while the signal 

passes through the synchronizers.  Two cycles are required in the following two cases: first, if the first stage of the 
synchronizer does not go metastable; second, if it does go metastable and settles to the new data value.  Three cycles 
are needed when the first stage does go metastable and settles to the old-original data value. 

 
Finally, the output of the synchronizers is tested for the transition of B_out using the $rose  function.   A more 

complete model will manage transitioning of the input to high or low, and verify that result out is the same value 
that was clocked in. The more complete model will be discussed in the next section. 
 

SystemVerilog Assertions has two ways of waiting for the 2 to 3 cycles needed for the two synchronizers.  The 
approach shown above uses the ##[2:3]  cycle range.  The property then delays the cycle min-max range time 
specified, while looking for the next condition to test true.  The other approach utilizes a [*2:3]  repetition.  This 
approach requires the test condition prior to the repetition to remain true throughout the delay cycles.  If the property 
uses a 1’b1  as in step 4 above, the “remain true” condition will hold true through the repetition.  From this 
perspective, both modes of delay provide the same result.  However, when testing for the change on the signal, the 
repetition does not work.  The recommendation of this paper will be to test for a change on the signal as the signal 
transitions from one clock domain to another. 

 
If the condition before the delay uses the CDC data value as shown in examples below, the cycle range will do a 

single data value sample during the time step prior to the cycle range starting, while the repetition will require that 
the data remains true throughout the cycle.  Due to the asynchronous nature of CDC data signals, the property 
cannot guarantee the number of cycles that the data will be present in order for the repetition operator to be 
successful.  This is a second reason to not use repetition for CDC properties. 

 
The property in code Example 3 may look right.  It covers all the transitions of the three flip-flops used for CDC.  

Unfortunately, this property does not work under all the various permutations of source/destination clock frequen-
cies.  If this property is used, it could give false negatives for CDC signals.  The problem is that RTL simulations 
use event driven simulators, causing actions to occur as events are scheduled.  Simulations of SystemVerilog Asser-
tions use cycle-based sampling and samples from the preponed region of the specified clock transaction.  Applying 
event- and cycle-based simulation to data crossing clock domains means the assertion monitoring involves two 
unique event driven clock regions and two unique cycle-based clock regions.  Ultimately, the issue simplifies to 
when the event driven signals cross from the source clock domain to the destination clock domain versus when the 
cycle-based assertions makes this same transition.  Adding to this complexity is the variation of to/from clock fre-
quencies.   

 
4.2 A MORE COMPLETE PROPERTY MODEL 

Before the discussion continues on how to model assertions across clock domains, consider a more complete 
property model.  The model must be able to test for either rising or falling conditions on the input and then test for 
this new value as the value transfers from the source flip-flop in the originating clock domain through synchronizers 
in the destination clock domain.   

 
  property CDC_prop1 ; 
    logic v_temp ; 
    @(posedge Clk_A ) ($changed( A_in ), v_temp  = A_in ) |=>  
                 ($changed( B1_in ) && ( B1_in  === v_temp )) 
    ##1 
    @(posedge Clk_B ) ($changed( B1_in ) && ( B1_in  === v_temp )) 
    ##[2:3]          ($changed( B_out ) && ( B_out  === v_temp )); 
  endproperty: CDC_prop1 

Example 4 – Simple RTL Code snippet and Property for Figure 7 
 



In Example 4, the $changed  function is used to test for changes on A_in  and a local variable, v_temp , is in-
troduced to the property to store the value of A_in  when it changes values.  This local variable is used to verify the 
sampled changed value of A_in  when it appears in each of the flip-flop stage outputs. 

 
  property CDC_prop1 ; 
    logic v_temp ; 
    @(posedge Clk_A ) ($changed( A_in ), v_temp  = A_in ) |=> 1’b1  
    ##1 
    @(posedge Clk_B )  $changed( B1_in)  
    ##[2:3]          ($changed( B_out ) && ( B_out  === v_temp )); 
  endproperty: CDC_prop1  

Example 5 – Simple RTL Code snippet and Property for Figure 7 
 
Example 5 is a variation of Example 4, as it uses a “pass” place holder after the implication operator and drops the 

temp variable test in the Clk_B  domain prior to waiting for the ##[2:3]  cycle delay for the synchronizers.  The 
final output does the complete test of checking for a change of B_out,  and that B_out  is the correct value. 

 
Example 6 is another variation which drops the checking of B1_in before the ##[2:3]  cycle delay and uses a 
“pass” instead.  The final test at the end of the property is all that is actually required.  This approach is NOT rec-
ommended because it will not be accurate under all corner conditions when running gate level simulation (GLS). 
 

  property CDC_prop2 ; 
    logic v_temp ; 
    @(posedge Clk_A ) ($changed( A_in ), v_temp  = A_in ) |=> 1’b1  
    ##1 
    @(posedge Clk_B ) 1’b1  
    ##[2:3]       ($changed( B_out ) && ( B_out  === v_temp )); 
  endproperty: CDC_prop2  

Example 6 – Property that only tests the beginning and the end of a CDC transaction 
 
The properties shown in Example 5 and 6 are used below to highlight the event versus cycle-based clocking prob-

lem with SystemVerilog assertions.   
 
The following code is an extended model for Figure 7.  This code has an option to simulate with either a two- or a 

three-cycle delay through the synchronizers.  There are synchronizer models shown in papers [1] that randomized 
the two- or three-cycle delay, but that feature is not needed for the tests used for this paper. 

 
  always_ff @(posedge Clk_A ) 
    B1_in  <= A_in ; 
 
  always_comb // add extra FF cycle delay if dly is true 
    if ( dly ) B2_in  = B1_dly ; 
    else     B2_in  = B1_out ; 
   
  always_ff @(posedge Clk_B ) 
    begin 
      B1_out  <= B1_in ; 
      B1_dly  <= B1_out ; 
       
      B_out   <= B2_in ; //from the always_comb block above 
    end 
 
  property CDC_prop1 ; 



    logic v_temp ; 
    @(posedge Clk_A ) ($changed(
    ##1 
    @(posedge Clk_B ) $changed(
                   
  endproperty: CDC_prop1
 
  property CDC_prop2 ;
    logic v_temp ; 
    @(posedge Clk_A ) ($changed(
    ##1 
    @(posedge Clk_B ) 
          
  endproperty: CDC_prop2
 
  apCDC_prop1 : assert property (
  apCDC_prop2 : assert property (

Example 7 
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CDC_prop2  is different, it will be noted 

 

Figure 8 – Passing Assertions using Example 7 code.  Two 
 
In Figure 8, the assertion passes and all is well!  
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Example 7 – Primary body of code used for simulation tests 
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in the following screen shots.  The following 
because the results for both properties are identical.  In cases where 

 
Clk_B  rising edge 

wave view of CDC_prop1 
The lower panel dis-

component of the assertion in a tree form on the left.  Each line of this panel represents a test or a transi-
where test results of individual 

, the assertion starts (purple dot), $changed 
he non-overlapping im-

where a true (1) is tested.  This is 
domain.  Note the time for the columns are highlighted with a different col-



or denoting a different clock domain.  The test for 
This is then followed by two clock delays at 
cycle range so $changed(B_out)  
conditions pass true, the assertion passes.

 
The arrows map the lower panel to the wave window.  

Clk_ A domain.  The three tan arrows show the assertion samples in the 
ple, there was no delay applied to the synchronizers
cycles.  Adding an additional stage delay to model metastability does not change the results for this case.
the two Clk_A  samples occurred prior to 
next example.   

 
 

Figure 9 – Assertion fails using Example 7 code.  Only one 
 
The same assertion that passed in Figure 8 now fails 

the Clk_B  domain until a second clock in 
Clk_A clock domain following non-overlapping im
main, the actual data signal has moved on the Clk_B domain at time 
B1_in .  The property CDC_prop1  fails at time 
the sampling at time 29ns  and at time 
53ns.)  What happened is the event simulation mode moves on to the new clock domain across the CDC
assertion stays in the old clock domain until all the property conditions have been satisfied.

a different clock domain.  The test for $changed(B1_in) tests true in column 
This is then followed by two clock delays at 62ns  and 86ns .  Column 86ns  represent 2 cycles of t

 and (B_out === v_temp) are tested (green dots).  
he assertion passes. 

The arrows map the lower panel to the wave window.  The two blue arrows show the assertion samples in the 
A domain.  The three tan arrows show the assertion samples in the Clk_B  domain.  In this 

delay applied to the synchronizers, i.e., the data passed through the synchronizers in 
stage delay to model metastability does not change the results for this case.

samples occurred prior to any Clk_B  rising edges.  This is significant! This is not be the case in the 

Assertion fails using Example 7 code.  Only one Clk_A  rising edge before a Clk_B

Figure 8 now fails in Figure 9.  The assertion sampling does not cross over into 
domain until a second clock in Clk_A has occurred.  This is due the property requiring 

overlapping implication operator.  While the property is stuck in the Clk_A d
has moved on the Clk_B domain at time 25ns .  The next Clk_B at time 

fails at time 53ns  because there was no change on the value of 
and at time 53ns  in the Clk_B  domain.  (B_i n is sampled high at both 

the event simulation mode moves on to the new clock domain across the CDC
n until all the property conditions have been satisfied.  

column 38ns  (green dot).  
represent 2 cycles of the ##[2:3]  

  Since both of those 

The two blue arrows show the assertion samples in the 
domain.  In this simulation exam-

, the data passed through the synchronizers in two clock 
stage delay to model metastability does not change the results for this case.  Note that 

not be the case in the 

 
Clk_B  rising edge 

sampling does not cross over into 
the property requiring a test in the 

While the property is stuck in the Clk_A do-
.  The next Clk_B at time 29ns  samples 

because there was no change on the value of B_in  between 
n is sampled high at both 29ns  and 

the event simulation mode moves on to the new clock domain across the CDC, while the 
  This example failed 



almost immediately, whereas CDC_prop2
the property as shown in Figure 10. 

 
 

Figure 10 – Assertion fails using Example 7 code.  Only one 
 
CDC_prop2  fails because there is no change on 

Note that at column 101ns  which is cycle 2 of
dot).  Column 125ns  is cycle 3 of the 
dot), the property fails.   Both CDC_prop1
cycles later in the assertion due to no intermediate tests of the signal as it transitions through the design.
erty should have shown a pass at time 77ns

 
The observation between Figure 8 that passes and Figures 9 

quency differences and where the destination 
erty so it tracks the CDC data flow properly, the CDC property must be modified to
the implication operator.  Appendix C shows 
in Appendix B.  If the input-to-output of flip
assertion should be used.  Do not test the input
across the clock domains.   
  

CDC_prop2  for the same simulation does not fail until the end of the 

Assertion fails using Example 7 code.  Only one Clk_A  rising edge before a Clk_B

fails because there is no change on B_out  between samples at time 101ns  and 
which is cycle 2 of the ##[2:3] cycle range, $changed(B_out)

is cycle 3 of the ##[2:3] cycle range and since $changed(B_out) again tests false (red 
CDC_prop1  and CDC_prop2  fail, but CDC_prop2  failure does not

cycles later in the assertion due to no intermediate tests of the signal as it transitions through the design.
77ns . 

The observation between Figure 8 that passes and Figures 9 and 10 that fail is the source/destination
destination sampling edge line up relative to the source clock edges

erty so it tracks the CDC data flow properly, the CDC property must be modified to not test in Clk_A
Appendix C shows a number of variations that were tested with all the 

output of flip-flop A1 (Figure 7) needs to be tested with an assertion, then a separate 
on should be used.  Do not test the input-to-output of A1 in the same assertion that is used to test the data path 

does not fail until the end of the Clk_B  part of 

 
Clk_B  rising edge 

and 125ns  (red dots.)  
$changed(B_out)  tests false (red 

again tests false (red 
oes not show up until 

cycles later in the assertion due to no intermediate tests of the signal as it transitions through the design.  This prop-

/destination clock fre-
relative to the source clock edges.  To fix prop-

Clk_A  domain after 
all the test variations listed 

needs to be tested with an assertion, then a separate 
in the same assertion that is used to test the data path 



 
 

  property CDC_prop1 ; 
    logic v_temp ; 
    @(posedge Clk_A ) ($changed( A_in ), v_temp  = A_in ) |->  
    ##1  // this is not needed 
    @(posedge Clk_B ) $changed( B1_in ) ##[2:3]  
          ($changed( B_out ) && ( B_out  === v_temp )); 
  endproperty: CDC_prop1  
 
  property CDC_prop2 ; 
    logic v_temp ; 
    @(posedge Clk_A ) ($changed( A_in ), v_temp  = A_in ) |->  
    ##1  // this is not needed 
    @(posedge Clk_B ) 1’b1  ##[2:3]  
           ($changed( B_out ) && ( B_out  === v_temp )); 
  endproperty: CDC_prop2  

 Example 8 – Properties that will work for CDC 
 
 
 

  property CDC_prop1 ; 
    logic v_temp ; 
    @(posedge Clk_A ) ($changed( A_in ), v_temp  = A_in ) |=>  
    @(posedge Clk_B )  $changed( B1_in ) ##[2:3]  
           ($changed( B_out ) && ( B_out  === v_temp )); 
  endproperty: CDC_prop1  
 
  property CDC_prop2 ; 
    logic v_temp ; 
    @(posedge Clk_A ) ($changed( A_in ), v_temp  = A_in ) |=> 
    @(posedge Clk_B ) 1’b1  ##[2:3]  
           ($changed( B_out ) && ( B_out  === v_temp )); 
  endproperty: CDC_prop2  

Example 9 – Different way to code Properties that work for CDC  



Figure 11 – Same stimulus used for Figure 9.  Now the Assertion passes using the new property
 
In Figure 11, the first column of the lower panel at time 

(A_in)  tests true (green dot) and then 
umn, the overlapping implication operator and the ##1 transition the property to the 
is immediately testing for $changed(B1_in
by two clock delays at 53ns  and 77
$changed(B_out)  and (B_out === v_temp)
true, the assertion passes. 
 
4.3 VARIATIONS OF CDC OPERATORS 

Both types of implication operators ( 
both ##0  and ##1  operators can also be used.  The only time there will be a difference in functionality 
overlapping and non-overlapping or the 
source clock.  Refer to the IEEE 1800-
ject for another paper. 

 
4.4 MODELING FOR BOTH RLT AND GLS

Examples 8 & 9 shows the variations
that was used.  It is critical to note that only 
difference between RTL and GLS property
source clock.  In RTL, the simulation will
nation clock would be occurring during the clock
tination clock domain is one clock later in GLS than in RTL.

Same stimulus used for Figure 9.  Now the Assertion passes using the new property

In Figure 11, the first column of the lower panel at time 25ns , the assertion starts (purple dot), 
tests true (green dot) and then v_temp  is assigned a value (blue square.)  Next, while still in the 25ns co

the overlapping implication operator and the ##1 transition the property to the Clk_B  domain.  
$changed(B1_in ) which tests true in column 29ns  (green dot).  This is then followed 

77ns .  Column 77ns  represent 2 cycles of the ##[2:3]
(B_out === v_temp) are tested (green dots).  Since both of those conditions pass 

ors ( |->  & |=>  ) can be used to traverse between clock domains.  Additionally, 
can also be used.  The only time there will be a difference in functionality 

overlapping or the ##0  and ##1  will be when the destination clock lines up perfectly with the 
-2012 standard [10] for a detailed explanation of this concept.

GLS 
ons of the two models used for this paper.  Appendix C shows the full models 

that was used.  It is critical to note that only CDC_prop1  in either Example 8 or 9 will work properly
property modeling is an occurrence of a destination clock ha

ion will  transition to the destination clock domain.  But in GLS, this “close” de
during the clock-q delay of the source flip-flop.  Thus the data sa

tion clock domain is one clock later in GLS than in RTL. 

 
Same stimulus used for Figure 9.  Now the Assertion passes using the new property model. 

, the assertion starts (purple dot), $changed 
while still in the 25ns col-

domain.  The property 
(green dot).  This is then followed 

##[2:3]  cycle range so 
are tested (green dots).  Since both of those conditions pass 

) can be used to traverse between clock domains.  Additionally, 
can also be used.  The only time there will be a difference in functionality between 

the destination clock lines up perfectly with the 
2012 standard [10] for a detailed explanation of this concept.  This is a sub-

er.  Appendix C shows the full models 
le 8 or 9 will work properly for GLS.  The 

of a destination clock happening just after a 
transition to the destination clock domain.  But in GLS, this “close” desti-

the data sampling in the des-



To fully make CDC_prop1 compatible for both RTL and GLS, an additional variable delay is required.  The addi-
tional delay is highlighted in Example 10. 

 
  property CDC_prop1 ; 
    logic v_temp ; 
    @(posedge Clk_A ) ($changed( A_in ), v_temp  = A_in ) |->  
    @(posedge Clk_B )  
         ##[0:1]  $changed( B1_in )  
         ##[2:3] ($changed( B_out ) && ( B_out  === v_temp )); 
  endproperty: CDC_prop1  

 Example 10 – Property that will work for CDC with both RTL and GLS 
 

The code in Example 10 works for signals crossing from one clock domain to another with the final value being 
verified in the destination clock domain.   

 
If the verification intent is to monitor the a data path from source clock domain to a destination clock domain and 

then loop back to the source clock domain, then the assertion just adds an additional CDC transition stage as shown 
in Example 11. 

 
  property CDC_prop1 ; 
    logic v_temp ; 
    @(posedge Clk_A ) ($changed( A_in ), v_temp  = A_in )  
  |->  
    @(posedge Clk_B )  
         ##[0:1]  ($changed( B1_in ) && ( B1_in  === v_temp ))  
         ##[2:3]  // wait for synchronizers  
  ##0 
    @(posedge Clk_A )  
         ##[0:1] ($changed( B_out ) && ( B_out  === v_temp )) 
         ##[2:3] ($changed( A_out ) && ( A_out  === v_temp )); 
  endproperty: CDC_prop1  

 Example 11 – Property that will work for CDC with both RTL and GLS 
 

The code in Example 11 works for signals crossing from one clock domain to another and then back to the source 
clock domain.   There is often a more content to this loopback path but the above code will provide a starting point 
for anyone applying SystemVerilog assertions to such a CDC loop back data path. 

 

5.0 CONCLUSIONS 
There are many papers published that discuss CDC, but few papers focus on assertions for CDC.  It is easy to 

write assertions that only work some of the time for CDC data paths.  The objective of this paper was to present a 
solution that will work when applying assertions to all CDC data paths regardless of source/destination clock fre-
quency or clock edge relationships.  Using the properties presented in Examples 10 & 11 as models, assertions can 
be written that work for both RTL and GLS.  These assertions are not trivial and require testing across to ensure 
correctness. 
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APPENDIX A 

Additional screen shots of the assertions used for this paper are shown below.  These screen shots show A_i n 
transitioning from low to high and then later from high to low.  Both transitions test successfully for both properties 
in both panels.  The delay through the synchronizers in the first panel is 2 clock cycles and the delay for the syn-
chronizers in the second panel is three clock cycles.   

 

 
 
 

 
 
 
 
 



APPENDIX B 
Full code used for tests for this paper with the “bad” properties. 

module blk  
  (input  var logic A_in, Clk_A, Clk_B,  
   output var logic B_out ); 
 
  logic B1_in ; 
  logic B1_out ; 
  logic B1_dly ; 
  logic B2_in ; 
  enum  bit {FALSE, TRUE} temp ; 
  bit   dly ; 
 
  initial 
    if ($value$plusargs (" dly=%b ", dly )) 
      $display(" dly =  ", dly ); 
    else 
      $error (" Error: no value for dly input "); 
   
  always_ff @(posedge Clk_A ) 
    B1_in  <= A_in ; 
 
  always_comb 
    if ( dly ) B2_in  = B1_dly ; 
    else     B2_in  = B1_out ; 
   
  always_ff @(posedge Clk_B ) 
    begin 
      B1_out  <= B1_in ; 
      B1_dly  <= B1_out ; 
       
      B_out   <= B2_in ; 
    end 
 
  property CDC_prop1 ; 
    logic v_temp ; 
    @(posedge Clk_A ) ($changed( A_in ), v_temp  = A_in ) |=>  
    ##1 
    @(posedge Clk_B ) $changed( B1_in )  
    ##[2:3]       ($changed( B_out ) && ( B_out  === v_temp )); 
  endproperty: CDC_prop1  
 
  property CDC_prop2 ; 
    logic v_temp ; 
    @(posedge Clk_A ) ($changed( A_in ), v_temp = A_in ) |=>  
    ##1 
    @(posedge Clk_B ) TRUE   
    ##[2:3]      ($changed( B_out ) && ( B_out  === v_temp )); 
  endproperty: CDC_prop2  
 
  apCDC_prop1 : assert property ( CDC_prop1 );   
  apCDC_prop2 : assert property ( CDC_prop2 );   
endmodule: blk  



Top level model 
 

module top; 
  logic A_in; 
  logic Clk_A; 
  logic Clk_B; 
  logic B_out; 
 
  blk blk (.*); 
 
  testbench TB (.*); 
   
endmodule:top 

 
 
 
 

The following four code blocks are the four tests used to test the code blk above.  These tests differ primarily by 
changing the clock periods for Clk_A and Clk_B. 
 
     

//test1 
module testbench  
  (output var bit Clk_A, 
   output var bit Clk_B, 
   output var bit A_in); 
 
  localparam int A = 5; 
  localparam int B = 12; 
 
   initial begin 
     Clk_A <= 0; 
     Clk_B <= 0; 
     fork 
       forever #A Clk_A = ~Clk_A; 
       #(A/2) forever #B Clk_B = ~Clk_B; 
     join_none 
   end 
 
   initial begin 
                $assertoff; 
                A_in = 0; 
     #(A * 2)   $asserton; 
     #(A+(A/2)) A_in = 1; 
     #(A * 5)  A_in = 0;  
  end 
   
endmodule:testbench 

 
 
 
 
 
 
 
 
 



 
 
 
 
 

//test2 
module testbench 
  (output var bit Clk_A, 
   output var bit Clk_B, 
   output var bit A_in); 
 
  localparam int A = 5; 
  localparam int B = 12; 
 
   initial begin 
     Clk_A <= 0; 
     Clk_B <= 1; 
     fork 
                  forever #A Clk_A = ~Clk_A; 
      #A          forever #B Clk_B = ~Clk_B; 
     join_none 
   end 
 
   initial begin 
                $assertoff; 
                A_in = 0; 
     #(A * 2)   $asserton; 
     #(A+(A/2)) A_in = 1; 
     #(A * 5)  A_in = 0;  
  end 
   
endmodule:testbench 

 
 

  



 
 

//test3 
module testbench  
  (output var bit Clk_A, 
   output var bit Clk_B, 
   output var bit A_in); 
 
  localparam int A = 24; 
  localparam int B = 5; 
 
   initial begin 
     Clk_A <= 0; 
     Clk_B <= 0; 
     fork 
       forever #A Clk_A = ~Clk_A; 
       #(A/2) forever #B Clk_B = ~Clk_B; 
     join_none 
   end 
 
   initial begin 
                A_in = 0; 
     #(A * 2); 
     #(A+(A/2)) A_in = 1; 
     #(A * 10)  A_in = 0;  
  end 
   
endmodule:testbench 

 
  



 

//test4 
module testbench 
  (output var bit Clk_A, 
   output var bit Clk_B, 
   output var bit A_in); 
 
  localparam int A = 24; 
  localparam int B = 5; 
 
   initial begin 
     Clk_A <= 0; 
     Clk_B <= 0; 
     fork 
                  forever #A Clk_A = ~Clk_A; 
       #(A/2 + A) forever #B Clk_B = ~Clk_B; 
     join_none 
   end 
 
   initial begin 
                A_in = 0; 
     #(A * 2); 
     #(A+(A/2)) A_in = 1; 
     #(A * 10)  A_in = 0;  
  end 
  endmodule:testbench  

 
 

  



APPENDIX C 
This section includes notes for the different property variations used when testing for this paper. 

 
 
 
     

passes 
  property CDC_prop1; 
    logic v_temp; 
    @(posedge Clk_A) ($changed(A_in), v_temp = A_in ) |->  
    ##1 
    @(posedge Clk_B) $changed(B1_in) ##[2:3]  
                    ($changed(B_out) && (B_out === v_temp)); 
  endproperty:CDC_prop1 
 
 
passes 
  property CDC_prop1; 
    logic v_temp; 
    @(posedge Clk_A) ($changed(A_in), v_temp = A_in ) |->  
    @(posedge Clk_B)  $changed(B1_in) ##[2:3]  
                     ($changed(B_out) && (B_out ===  v_temp)); 
  endproperty:CDC_prop1 
 
 
passes 
  property CDC_prop1; 
    logic v_temp; 
    @(posedge Clk_A) ($changed(A_in), v_temp = A_in ) |=>  
    @(posedge Clk_B)  $changed(B1_in) ##[2:3]  
                     ($changed(B_out) && (B_out ===  v_temp)); 
  endproperty:CDC_prop1 
 
*************************************************** ************* 
 
fails 
  property CDC_prop1; 
    logic v_temp; 
    @(posedge Clk_A) ($changed(A_in), v_temp = A_in ) |=> TRUE 
    ##1 
    @(posedge Clk_B)  $changed(B1_in) ##[2:3]  
                     ($changed(B_out) && (B_out ===  v_temp)); 
  endproperty:CDC_prop1 
 
(run0: dly=0 
 Run1: dly=1) 
 
//            prop1      prop 2 
// test 1 -  
//   run0     pass       pass 
//   run1     pass       pass 
//                                    
// test 2 -  
//   run0     fail       fail 



//   run1     fail       pass 
//                                    
// test 3 -  
//   run0     fail       fail 
//   run1     fail       fail 
//                                    
// test 4 -  
//   run0     fail       fail 
//   run1     fail       fail 
  
 
*************************************************** ************** 
 
fails 
  property CDC_prop1; 
    logic v_temp; 
    @(posedge Clk_A) ($changed(A_in), v_temp = A_in ) |=>  
                     ($changed(B1_in) && (B1_in ===  v_temp)) 
    ##1 
    @(posedge Clk_B)  $changed(B1_in) ##[2:3]  
                     ($changed(B_out) && (B_out ===  v_temp)); 
  endproperty:CDC_prop1 
 
(run0: dly=0 
 Run1: dly=1) 
 
//            prop1      prop 2 
// test 1 -  
//   run0     pass       pass 
//   run1     pass       pass 
//                                    
// test 2 -  
//   run0     fail       fail 
//   run1     fail       pass 
//                                    
// test 3 -  
//   run0     fail       fail 
//   run1     fail       fail 
//                                    
// test 4 -  
//   run0     fail       fail 
//   run1     fail       fail 
 


