SystemVerilog Assertions for
Clock-Domain-Crossing Data Paths

Don Mills
Microchip Technology
2355 W. Chandler Blvd.
Chandler, AZ 85224
don.mills@microchip.com
mills@lcdm-eng.com

Abstract - SystemVerilog Assertions include capabilities to track data signals that cross clock domains. However, there
can be a significant GOTCHA when using SVAssertions across clock domains verses the actual signal activity. Thisis
dueto the difference between event driven signal activity and SVAssertion cycle based monitoring. Depending on from/to
clock frequencies, the receiving side could receive and process the data while the sending side SVAssertion is still being
processed. By thetimethe SVAssertion transitionsto the new clock domain, the data could be gone. This paper will pro-
vide guidelinesfor using SVAssertionsfor Clock-Domain-Crossing (CDC) data paths.

1.0INTRODUCTION

The modeling of data paths crossing from one chbamiain to another clock domain is a common topicpfa-
pers and articles in the digital design world afgdgp. Many in-depth papers have been dedicateldetéechniques
and guidelines to manage the data path crossinig[Bl[4]. A brief review of the basics of Clock @nain Cross-
ing (CDC) will be presented in the following sectioFor in-depth details on CDC concepts and tephes, refer to
the papers just previously sited. To support Ci€re are Electronic Design Automation (EDA) togpecifically
directed towards CDC that provides features toyaeatlesigns for CDC data paths and associatedrdpsagtices.
These features include monitoring for synchronizersscalar data paths, checking if synchronizenevaelded to
data buses (a bad thing to do) and checking iflfeymized data paths converge at later pipe stag®iclock do-
main. Note this list is not all-inclusive. In atldh to EDA CDC tools, the SystemVerilog HardwaresPription
Language provides assertions which can be useddk tlata as it crosses clock domains. BecausBystemVeri-
log assertion simulation model is cycle-based wthike RTL simulation model is event driven, writiagsertions to
match the data as it crosses clock domains carlitike dricky. Assertions can be written that a&ap to be working
but then fail if clock frequencies vary. Care mbsttaken to generate assertions that can worilifeorner condi-
tions.

SystemVerilog assertions applied to clock domaossing has been highlighted as part of at leastpaper [5]
by Litterick, and is part of SV training classesaaseans to monitor data as it passes between dtookins. The
Litterick paper does show an example of using Sy¥&Erilog assertions but does not cover the varamrser con-
ditions. This paper will explain and diagram a coom approach for CDC assertions that is often asedshow
how and where it breaks down, followed by providam&ystemVerilog Assertions approach that will weokall
corner conditions.

2.0CDCBasIcs
Clock Domain Crossing (CDC) is defined as a sigrah a flip-flop clocked by one clock which is theaptured
by a flip-flop clocked by a different clock as showm Figure 1.



A_in B_in B_out

Al Bl

clk A

Clk_B

Figure 1- CDC Diagram between flip-flops1 andB1

Figure 1 shows sign@_in from theClk_A clock domain is captured by flip-fldpl in theClk_B clock domain.
Based on the clock relationship betweClk_A andClk_B , the capturing of signa_in by flip-flop B1 can
cause flip-flopB1 to go metastble. This metastable st occurs when signd_in is changing values within th
setup timeor the hold time window of fli-flop B1 as shown in Figures 2 and 3.

Setup time window

Clk2 |
DB_in L

Figure : — Metastable Diagram — Setup time violation

Hold time window

Clk2
DB_in |

Figure 3— Metastable Diagram — Hold time violation

Diagrams Figure 2 and FiguresBowsetup and hold time violations which will residtthe flip-flop going into a
metastable state. Ifraetastable result is lefinchecked, it can propagate incorrect state galumughout the cir-
cuit that comes after the flip-flopSee [] (Cummings 2008) section 2.1 for detadlsd explanationof this pheno-

menon.

The most common method usedmitigate metastability propagation is to add a secapefléip on the receiviny
side as shown in Figure 480metimes, a third or even a forth (or more) syomwtaing flip-flop is added to filter th:
metastable state. Statistical analysis ean Time Between Failure (MTBF) of the flilips used as synchronizi
combined with the end use of the prodshould be the baste determine if more than two f-flops are required.
The MTBF that is being considered here for analigsthe time is takes a f-flop in a metastable state to resolve
a known state of either high or low.



A_in Bl_in B2_in B_out
Al Bl B2

Ck A

Clk_B

Figure 4 —Flip-flopsB1 & B2 comprise a two stage Synchronizer

One of the design guidaks for synchronizer fl-flops such a1 andB2 in Figure 4 is thathe two flip-flops,
should be placed close togetltlerring layou. Functionally, there should not be asgmbinationalogic in the data
path between thB1 andB2, allowing for maximum metastability resolan time. Most compani (or libraries)
have predefined, laid-out synchronizeacros which are hand-instantiated in RTL. Theppse of th second flip-
flop (B2 in Figure 4)is to filter (or block)a metastable signal from the first stage flip-ffopm propagating to the
circuit that follows. This implies, of course, ththe metastability will resolve within the clock periadinus othel
timing items such aB1 propagation anB2 setup. As noted in the previous paragraptalysis of MTBFof these
synchronizer flip-flops is needed tetermine how many fl-flops are atually required. In mossituations, two
flip-flop synchronizers are sufficient.

Most EDA companies provide CDanalysis programs that check if synchronizers mngace as needed. Ai-
tionally, these analysis programs wilbnitor fol a number of other CDC-tydailure conditions based on CDC di
paths. These tools are necessary because of the diffitulppserve and analyze C issues manuallylt is impor-
tant to note that durinRTL simulation, CDC metastability ds not exist since there are no setup and time
timing constraintsn RTL models for synthes. These constraints are strictly gate-lemebehavioramodel condi-
tions. There are papethat provide techniques showing I to model a twastage synchronizdor RTL simulation
that randomly delays its output éither two or three clock cycl[1][5]. These techniques provi a way to model
the extra delay caused in thalkgorld by metastability occurring on the firdp-flop stage. Iran actual chip when
the first stage goes metastabled then settls, it will resolve to either a 1 or a O state. Thesalved stte will be
either to the old-original vak or the ne-updated value. When resolving to the oliinal value the first stage
will clock in the new value othe next cloc (clock 2). A third clock then clocks the new valot the second stag
flip-flop. In other words, ifstage 1 does not go mstable, it takes two clocKer the CDC datdo pass through the
two flip-flops. If stage 1 does go metastable, then it could take #tloeks to pass ttCDC data through thtwo
flip-flops, based on how stage 1 resolv These techniques can be scaled tdyafipsynchronizers that have mc
than two stages.

3.0SVASSERTIONSBASICS

SystemVerilog has two types of assertions: immediassertions and concurrent assertions. Both typassr-
tions are used to perform tests on a design wherbeeassertioiis called or executedWhen an assertion test
completed, a pass or fail statement from the desectin be executed. Assertions provide a mecimfar the con-
tinuous monitoring of signals and conditions acrall simulation regression tests. Tlsisction reviews bass of
SystemVerilog concurrent assertion€oncurrent assertions will be used fapnitoring signals across cloclo-
mains and through synchronizers.

3.1IMMEDIATE ASSERTION
Immediate assertiorexecute in zero simulation tir and can be used to monitor for illegal conditionstsas ar
unknown in the condition of an “if” statem([6]. While this is important, it is not the focus ofgtpape!

3.2 CONCURRENTASSERTIONS
Concurrent assertions use a clock or some othetitiep signal (referred to hereafter as the prgpelock) to
trigger the concurrergassertion evaluation. The primary difference betwenmediate and concurrent assertior



that concurrent assertions evaluate conditions te, whereas an immediate assertion tests (@tartfinish) at
the point in time when the assertion is callede $intax for a concurrent assertion directive is:

assert property ( property_expr ) [pass_statement ;][ else fail_statement 0]

The argument tassert  property is aproperty expressianA property expressiors comprised of a clock
specification and sequences of Boolean expressested over time, as well as property and sequepeeators.
The expressions are evaluated on the clock edgthpeariock specification. It is important to notdative to this
paper, that the value used per a clock edge isvdhge sampled in the preponed region of the tine@.stThe
sequence of Boolean expressions can be spreadnauple clock cycles by using thié# cycle delay operator
between each expression. This is a very simpligées of assertions. Other features and syntaativel to CDC
will be discussed in the following sections.

3.2.1PROPERTYIMPLICATION OPERATOR

Concurrent assertions are activated to start adheach clock cycle throughout simulation. Theserisns will
run concurrent with the design functionality. T@went enormous amounts of unneeded concurrentdhtbat are
“don’t cares” from consuming simulation time, con@unt assertions use the implication operator terdgne if its
sequences should be evaluated and consume simutasources. For example, an assertion with aeseg that
takes twelve clock cycles to execute could posdilalye twelve concurrent threads running at the démes each
thread starting on each subsequent clock cycle.

Consider a simple test to show thatg is followed by agrant . In Example 1, a property is coded to test this
simple sequence without using an implication omerafThebus_req_prop property triggers “to start” on each
cycle from cycleO through cyclel0. Only the thread that starts at cyédlgasses, the remaining threads fail and
could be counted in the total fail count for thegiation.

property  bus_req_prop;
@(posedge clk) req ##[1:5] grant;
endproperty:  bus_req_prop

assert property (bus_req_prop);
Example 1 — bus_req_prop code for Figure 5

01 2 3 45 6 7 8 910
req L_I] 1

grant I I

bus_req_prop { []/O\@ ORORORORORORO)

Figure 5 — Sequence and Property Pass/Fail foéhalhreads between Cydleand Cyclel0

In Figure 5, cyclel has neither a pass nor a fail because there ateemds ending at that point in time. Cygle
has both a pass and a fail due to two separatadfirending at that cycle. The thread that staatecycle 1
successfully completed at cyclewith a pass. The thread that started at cgcended immediately with a fail,
becauseeq is false at that cycle.

The behavior of the assertion diagramed in Figuie Bot practical due to assertion failures ocagrralmost
every cycle. More important is that failures are apnditions that are “don’t cares”. féq is not active, the
sequence should not be tested. To make asseusaide, the assertion property needs to be modeldidat it will
only test during expected event cycles and beddkng “don’t care” cycles. SystemVerilog propestimake this
possible by using the implication operator. Typicaassertions property expressions are specifigith an



implication operator. There are two implicationeogtors: overlapping-> and non-overlapping=>. An
implication operator tells the property not to exe the sequence expression following the impdoabperator
unless the condition before the operator is triee expression to the left of the implication operas called the
antecedent and the expression following the impboaoperator is called the consequent. The diffee between
the two implication operators is when the consettesting begins. An overlapping implication operabegins
testing the consequent in the same time step Heathtecedent passes true. The non-overlappinticatipn
operator delays one clock cycle between the anggttddsting true and the consequent test starting.

Thereg/grant  code in Example 1 should only test the sequenanvdy is true. For the clock cycles where
req is false, the assertion is a “don’t care” and seguence should not to be evaluated. In Examplhe2,
implication operator is used to prevent or guarel tbonsequent expression from testing whem is false. The
assertion does not fail; it simply does not run estdrns a vacuous success.

property  bus_req_prop;
@(posedge clk) req |-> ##[1:5] grant;
endproperty:  bus_req_prop

assert property (bus_req_prop);
Example 2 — bus_req_prop code with implication epmrfor Figure 6

01 2 3 4 5 6 7 8 9 10
req || 1

grant I

bus req prop [']——,

Figure 6 — Property Pass/Fail for all the threagtsvben Cyclé and Cyclel0 for code example 2.
(Vacuous Successes are not noted.)

Figure 6 shows that by utilizing an implication ogter, only one thread starts and completes. flsifpass” is
recorded for the simulation.

A number of papers have been written that focusymax and utilizing various features of Systemoeri
assertions [6][7][8][9]. Please refer to thesegrap(and others found in “google land”), in additim the IEEE
1800-2012 standard [10], for more details on th&oua ways to apply assertions to designs.

3.3 CONCURRENTASSERTIONS WITH MULTIPLE CLOCKS

The application of assertions for this paper isapply assertion testing with multiple clocks. ®ysVerilog
assertions provide a number of ways to transitietwben multiple clocks. This paper will focus twe bperators
##0, ##1, |-> and |=> to transition between clocks.

4 .0SVASSERTIONSTO MONITORCDC

SystemVerilog assertions have been promoted asaasrie monitor and verify data as it passes aalosk do-
mains. Figure 7 is used as template for discusSIDG along with the RTL code in Example 3.



A_in Bl_in B2_in B_out
Al Bl B2

Ck A

Clk_B

Figure 7 —Clock Domain Crossing of fl-flip A1 output to flipflop B1 input

always_ff @(posedge Clk_A)
Bl in<=Ain ;

always_ff @(posedge Clk_B)

begin
B2 in<=Bl1 in ;
B out<=B2 in ;
end

property CDC_propl;
@(posedge Clk _A) $rose(A_in) |[=> $rose(B1_in)
##1
@(posedge Clk_B) 1'b1 ##[2:3] $rose(B_out)
endproperty:  CDC_propl

assert property ( CDC_propl);
Example 3 -Simple RTL Code snippet and Property for FigL

This code snippet represents tdmanmonly used techque for RTL coding of CDC andsimplified SVAssertion
property to monitor CDG@or the design in Figure. This property only monitorf®r a rising edge cA_in . A full
model which monitordor any transition orA_in will be shown in a later sectiothe following steps descrit
each part ofCDC_propl:

1. @(posedge Clk_A) $rose( A_in) The antecedent waits for$ose transition onA_in.
When this condition itrue, the consequent of the implication operat@irmetesting

2. |=> $rose(B1_in) A nor-overlapping implication operator is used to mode tlock delay
through the flipflop. The output of the fli-flop is then tested for a rising edge in 1IClk_A domain.

3. ##1 As noted in section 3.3, this operator is usedandition to another clock sou.

4. @(posedge CIk_B) 1'b1 ##[2:3] $rose(B_out) UsingClk_B , wait two or three cloc
cyclesfor the output to show rising edge as the data passes through thesywohronizer (B1 and
B2). The output$rose(B_out ), will arrive in twoClk_B cycles if the first stag(flip-flip B1) does
not go metastable. Thrédk B cycles are needed if flip-fliB1 does go metastab

A_in is clocked into the flip-flopAl. The output ofAl becomes flip-flopB1 input labeledB1_in . B1_in
passes through the two synchroniz&$ andB2), resulting in output signd&_out .

The propertyCDC_propl will monitor for a rising edge (A_in followed by testing th&rose(B1_in)  after
the noneverlapping implication operai in theClk_A domain It is crucial to point out that ttr$rose(B1_in)



will not test true until one clock following flipdp Al going high. This is due to SystemVerilog assedio
sampling in the preponed region [10] of a time st@pat is, SystemVerilog assertions use the vafuesignal prior
to a clock changing the signal.

The property transitions to thelk_ B domain via thé##1 and waits the required 2 to 3 cycles while thealg
passes through the synchronizers. Two cycleseapgired in the following two cases: first, if tHest stage of the
synchronizer does not go metastable; secondddas go metastable and settles to the new data.valuree cycles
are needed when the first stage does go metasiathlsettles to the old-original data value.

Finally, the output of the synchronizers is tedtadhe transition oB_out using theSrose function. A more
complete model will manage transitioning of theuhpo high or low, and verify that result out issteame value
that was clocked in. The more complete model vélldiscussed in the next section.

SystemVerilog Assertions has two ways of waitingtfte 2 to 3 cycles needed for the two synchrosizérhe
approach shown above uses ###2:3] cycle range. The property then delays the cydlenmax range time
specified, while looking for the next conditiontest true. The other approach utilizeg23] repetition. This
approach requires the test condition prior to #petition to remain true throughout the delay cyclé the property
uses al’bl as in step 4 above, the “remain true” conditiohl Wwold true through the repetition. From this
perspective, both modes of delay provide the saseltt However, when testing for the change orstheal, the
repetition does not work. The recommendation o praper will be to test for a change on the sigsathe signal
transitions from one clock domain to another.

If the condition before the delay uses the CDC d¢atae as shown in examples below, the cycle ravitjelo a
single data value sample during the time step padhe cycle range starting, while the repetitiaili require that
the data remains true throughout the cycle. Duthéoasynchronous nature of CDC data signals, thpepty
cannot guarantee the number of cycles that the wdkabe present in order for the repetition operato be
successful. This is a second reason to not ustitiep for CDC properties.

The property in code Example 3 may look rightcdters all the transitions of the three flip-flapsed for CDC.
Unfortunately, this property does not work undértia¢ various permutations of source/destinatimtklfrequen-
cies. |If this property is used, it could give &alsegatives for CDC signals. The problem is that Rimulations
use event driven simulators, causing actions tairoas events are scheduled. Simulations of Sysézitog Asser-
tions use cycle-based sampling and samples fromriy@oned region of the specified clock transactidpplying
event- and cycle-based simulation to data crosslogk domains means the assertion monitoring ire®Itwo
unigue event driven clock regions and two uniquelespased clock regionsUltimately, the issue simplifies to
when the event driven signals cross from the soclaek domain to the destination clock domain veratnen the
cycle-based assertions makes this same transi#alaling to this complexity is the variation of ta/fn clock fre-
guencies.

4.2 A MORE COMPLETE PROPERTYMODEL

Before the discussion continues on how to modetréiess across clock domains, consider a more ostepl
property model. The model must be able to teseiirer rising or falling conditions on the inputdathen test for
this new value as the value transfers from thecsoflip-flop in the originating clock domain thraugynchronizers
in the destination clock domain.

property CDC_prop1;

logic v_temp ;

@(posedge Clk_A) ($changed( A_in), v_temp = A_in)|=>

($changed( Bl in )&&( Bl.in === v_temp))

##1

@(posedge Clk_B) ($changed( Bl_in)&&( Bl_in === v_temp))
##[2:3] ($changed( B out)&&( B_out === v_temp));
endproperty: CDC_propl

Example 4 — Simple RTL Code snippet and Propentyigure 7



In Example 4, thé&changed function is used to test for changesArin and a local variable;_temp , is in-
troduced to the property to store the valuéoin when it changes values. This local variable edu® verify the
sampled changed value &f in when it appears in each of the flip-flop stagepats.

property CDC_prop1;

logic v_temp ;

@(posedge Clk_A) ($changed( A_in), v_temp = A_in)|=> 1bl
##1

@(posedge Clk_B) $changed( B1_in)

##[2:3] ($changed( B out)&&( B_out === v_temp));
endproperty: CDC_propl

Example 5 — Simple RTL Code snippet and Propentyigure 7

Example 5 is a variation of Example 4, as it usgzaas” place holder after the implication operatnd drops the
temp variable test in th€lk_B domain prior to waiting for th&#[2:3] cycle delay for the synchronizers. The
final output does the complete test of checkingafahange oB_out, and thaB_out is the correct value.

Example 6 is another variation which drops the klmepof B1_in  before the##[2:3] cycle delay and uses a
“pass” instead. The final test at the end of thepprty is all that is actually required. This eggch is NOT rec-
ommended because it will not be accurate undeoatier conditions when running gate level simula(GLS).

property CDC_prop2;

logic v_temp ;

@(posedge Clk_A) ($changed( A_in), v_temp = A_in)|=> 1bl
##1

@(posedge Clk_ B) 1bl

##[2:3] ($changed( B out)&&( B_out === v_temp));
endproperty: CDC_prop2

Example 6 — Property that only tests the beginaimg the end of a CDC transaction

The properties shown in Example 5 and 6 are uskxvite highlight the event versus cycle-based dloglprob-
lem with SystemVerilog assertions.

The following code is an extended model for FigareThis code has an option to simulate with eithéwro- or a
three-cycle delay through the synchronizers. Tlaeeesynchronizer models shown in papers [1] taatlomized
the two- or three-cycle delay, but that featunadsneeded for the tests used for this paper.

always_ff @(posedge Clk_A)
Bl in <= A in;
always_comb // add extra FF cycle delay if dly is true
if ( dly ) B2_in = Bl _dly ;
else B2 _in = Bl _out;
always_ff @(posedge Clk_B)
begin
Bl out <= Bl in;
Bl dly <= Bl out;
B_out <= B2_in ; //[from the always_comb block above
end
property CDC_prop1;




logic v_temp ;
@(posedge Clk_A) ($changed( A_in), v_temp = A_in)|=> 1'bl
##1
@(posedge Clk_B ) $changed( B1_in ) ##[2:3]
($changed( B_out)&& ( B_out === v_temp));
endproperty: CDC_propl

property CDC_prop2;

logic v_temp ;
@(posedge Clk_A) ($changed( A_in), v_temp = A_in)|=> 1bl
##1
@(posedge Clk_ B) 1'bl ##2:3]
($changed( B_out) &&( B _out === v_temp));
endproperty: CDC_prop2
apCDC_prop1l : assert property ( CDC_propl);
apCDC_prop2 : assert property ( CDC_prop2);

Example 7— Primary body of code used for simulation tests

Consider theclock frequency variatiol for Clk_A and Clk_B in the following screen shc¢. The following
figures will only displayCDC_propl because the results for both properties are iddntidn cases whel
CDC _prop2 isdifferent, it will be notecshown.

[ _(CDC_propl 1§ posedge Ol A)
Schanged(A_in)
@ (LY assign)
L
1
Beell)
L

$changed(Bl_in)

aee(2)
$changed(B_out)
oL

Ut ==y LOMD

Figure 8 — Passing Assertionsing Example 7 code. TvCIlk_A rising edges before@lk_B rising edge

In Figure 8 the assertion passes and all is weThe upper panel in Figure 8 iswaave view ofCDC_propl
showing it's starting and endimpints and the signals associated the assertion propertyhe lower panel s-
plays eacltomponent of the assertion in a tree form on tfie Each line of this panel represents a test aiai-
tion. The vertical columns on the right hand sii¢he panel represent time poiwhere test results of individu
conditions of the property are noteth the first column at tim25ns, the assertion starts (purple d&changed
(A_in) tests true (green dot) and thv_temp is assigned a value (blue square.) Ne, riol-overlapping im-
plication operator transition the property to thexinime step column of5ns where a true (1) is test. This is
followed by the transition to thélk_B domain. Note the time for the columns are higtikghwith a different cl-



or denotinga different clock domain. The test f$changed(B1_in) tests true inrcolumn38ns (green dot).
This is then followed by two clock delays62ns and86ns. Column86ns represent 2 cycles che ##[2:3]
cycle range séchanged(B_out) and(B_out === v_temp) are tested (green dotsgince both of those
conditions pass truehe assertion pass

The arrows map the lower panel to the wave windThe two blue arrows show the assertion samplekai
Clk_ A domain. The three tan arrows show the asses@nples in thClk_B domain. In thissimulation exam-
ple, there was ndelay applied to the synchroniz, i.e, the data passed through the synchronizetwo clock
cycles. Adding an additionatage delay to model metastability does not chaéimgeesults for this ca« Note that
the twoClk_A samples occurred prior anyClk_B rising edges. This is significant! Thisrist be the case in tt
next example.

— CDC_propl
B—#I /top/blk/apCDC_propl
2 ftop/blk/Clk_A
£ fop/blk/A_in
L4 fop/blk/Clk_B
-4 fop/blk/B1_in
& /top/blk/B_out

Local Vars
v_temp = 1'h1

e @(posedge Clk_B)
- $changed(B1_in)
#[2:3]
$changed(B_out)

B 66

- B_out===v_temp

Figure 9 -Assertion fails using Example 7 code. Only Clk_A rising edge before @lk_B rising edge

The same assertion that passe#igure 8 now failsin Figure 9. The asserti@mampling does not cross over il
the Clk_B domain until a second clock CIk_A has occurred. This is dube property requirin@ test in the
Clk_A clock domain following nomverlapping inplication operator.While the property is stuck in the Clk_/o-
main, the actual data sigrnies moved on the Clk_B domain at ti25ns. The next Clk_B at tim29ns samples
B1l_ in . The propertyCDC_propl fails at time53ns because there was no change on the valB_in between
the sampling at tim@9ns and at time53ns in the Clk_B domain. B_i n is sampled high at bo29ns and
53ns.) What happened fee event simulation mode moves on to the new cttskain across the CI, while the
assertion stays in the old clock domaintil all the property conditions have been $igiis This example failed



almost immediately, where&@DC_prop2 for the same simulatiotioes not fail until the end of ttClk_B part of
the property as shown in Figure 10.

$changed(B_out)

B_out===v_temp

Figure 10 -Assertion fails using Example 7 code. Only Clk_A rising edge before @lk_B rising edge

CDC _prop?2 fails because there is no changeB_out between samples at tid@1ns and125ns (red dots.)
Note that at columri0lns which is cycle 2 cthe##[2:3] cycle range$changed(B_out) tests false (red
dot). Columnl25ns is cycle 3 of the##[2:3] cycle range and sinckchanged(B_out) again tests false (re
dot), the property fails. BotB8DC_propl andCDC_prop2 fail, but CDC_prop2 failure cbes nc show up until
cycles later in the assertion due to no intermediasts of the signal as it transitions throughdiasign This prop-
erty should have shown a pass at tifies .

The observation between Figure 8 that passes apdds 9and 10 that fail is the sourdestinatiol clock fre-
qguency differences and where thestinatiorsampling edge line ugelative to the source clock ed. To fix prop-
erty so it tracks the CDC data flow properly, the@property must be modified not test inClk_A domain after
the implication operatorAppendix C showa number of variations that were tested \ifithetest variations listed
in Appendix B. If the input-tautput of fli;-flop A1 (Figure 7)needs to be tested with an assertion, then a ge|
asserin should be used. Do not test the i-to-output ofAl in the same assertion that is used to test thepddi
across the clock domains.



property CDC_prop1;
logic v_temp ;
@ (posedge Clk_A) ($changed( A_in), v_temp = A_in)|->
##1 // this is not needed
@ (posedge Clk_B ) $changed( B1_in ) ##[2:3]
($changed( B out)&&( B_out === v_temp));
endproperty: CDC_propl

property CDC_prop2;
logic v_temp ;
@ (posedge Clk_A) ($changed( A_in), v_temp = A_in)|->
##1 // this is not needed
@(posedge Clk_B) 1'bl ##[2:3]
($changed( B out)&&( B_out === v_temp));
endproperty: CDC_prop2

Example 8 — Properties that will work for CDC

property CDC_prop1;
logic v_temp ;
@ (posedge Clk_A) ($changed( A_in), v_temp = A_in)|=>
@ (posedge Clk_B) $changed( B1_in ) ##[2:3]
($changed( B out)&&( B_out === v_temp));
endproperty: CDC_propl

property CDC_prop2;
logic v_temp ;
@ (posedge Clk_A) ($changed( A_in), v_temp = A_in)|=>
@(posedge Clk_B) 1'bl ##[2:3]
($changed( B out)&&( B_out === v_temp));
endproperty: CDC_prop2

Example 9 — Different way to code Properties thatkwfor CDC




— CDC _propl

B/ /top/blk/apCDC_propl
-4 rop/blk/Clk_A
i-£  ftop/bIk/A_in

=P Ntop/blk/Clk_B

{4 ftop/blk/B1_in
i~“u. ftop/blk/B_out
oA ActiveCount

Schanged(A _in)

s assign)

7 Schanged(B_out)
- &b

B_outm==v_temp

Figure 11 -Same stimulus used for Figure 9. Now the AssepiEsses using the new prop model.

In Figure 11, the first column of the lower paneltime 25ns, the assertion starts (purple dc$changed
(A_in) tests true (green dot) and thv_temp is assigned a value (blue square.) Neie still in the 25ns d-
umn,the overlapping implication operator and the ##hsition the property to ttClk_B domain. The property
is immediately testing fdBchanged(B1_in ) which tests true in colum29ns (green dot). This is then followe
by two clock delays ab3ns and 77ns. Column77ns represent 2 cycles of th&#[2:3] cycle range so
$changed(B_out) and(B_out === v_temp) are tested (green dots). Since both of those tiondipas:
true, the assertion passes.

4.3V ARIATIONS OFCDC OPERATORS

Both types of implication opemats (|-> & |=> ) can be used to traverse between clock domaimlitidnally,
both ##0 and##1 operatorscan also be used. The only time there will befeerdince in functionalitjpetween
overlapping and nooverlapping or thé#0 and##1 will be whenthe destination clock lines up perfectly with -
source clock. Refer to the IEEE 18R012 standard [10] for a detailed explanation ¢f toncep This is a sub-
ject for another paper.

4.4MODELING FORBOTH RLT AND GLS

Examples 8 & 9 shows the variatic of the two models used for this map Appendix C shows the full mode
that was used. It is critical to note that o€CDC_propl in either Examfe 8 or 9 will work properl for GLS. The
difference between RTL and GLB8operty modeling is an occurrencd# a destination clock Ippening just after a
source clock. In RTL, the simuiah will transition to the destination clock domain. BuGhS, this “close” dsti-
nation clock would be occurrirduring the cloc-q delay of the source flip-flop. Thtise data smpling in the des-
tination clock domain is one clock later in GLS tharRmL.



To fully make CDC_propl compatible for both RTL &&HS, an additional variable delay is required.e Haldi-
tional delay is highlighted in Example 10.

CDC_prop1;
v_temp ;
@ (posedge CIk_A ) ($changed(
@(posedge Clk_B)
##[0:1] $changed(
##[2:3] ($changed(
endproperty: CDC_propl
Example 10 — Property that will work for CDC witbbth RTL and GLS

property
logic

A in), v_temp = A.in)|>

Bl in)
B out ) &&( B_out

v_temp));

The code in Example 10 works for signals crossiognfone clock domain to another with the final eaheing
verified in the destination clock domain.

If the verification intent is to monitor the a datath from source clock domain to a destinatioclkcldomain and
then loop back to the source clock domain, theraisertion just adds an additional CDC transitiages as shown
in Example 11.

property CDC_prop1;
logic v_temp ;
@(posedge Clk_A) ($changed( A_in), v_temp = A_in)
|->
@(posedge Clk_B)
##[0:1] ($changed( Bl in)&& ( Bl_.in === v_temp))
##[2:3] 1/ wait for synchronizers
##0
@(posedge Clk_A)
##[0:1] ($changed( B out)&&( B_out === v_temp))
##[2:3] ($changed( A out)&&( A out === v_temp));
endproperty: CDC_propl

Example 11 — Property that will work for CDC witbbth RTL and GLS

The code in Example 11 works for signals crossingifone clock domain to another and then backdastiurce
clock domain. There is often a more content e litopback path but the above code will providsaating point
for anyone applying SystemVerilog assertions tthhsu€DC loop back data path.

5.0CONCLUSIONS

There are many papers published that discuss CDiCfel papers focus on assertions for CDC. Itasyeto
write assertions that only work some of the time@®C data paths. The objective of this paper iggsresent a
solution that will work when applying assertionsab CDC data paths regardless of source/destmatiock fre-
guency or clock edge relationships. Using the ertigs presented in Examples 10 & 11 as modelsytamss can
be written that work for both RTL and GLS. Thessetions are not trivial and require testing axitosensure
correctness.

REFERENCES
[1] Clifford E. Cummings, Clock Domain Crossing (CDC) Design & Verificatiorchniques Using SystemVeriJo§NUG 2008, Boston,
MA
[2] Clifford E. Cummings, Synthesis and Scripting Techniques for DesigningiMsynchronous Clock Desigh$SNUG 2001, San Jose, CA
[3] Frank Herman Behrens, Walter Soto Encinas Jut@ock Domain Crossing Check Based on Assertionage Gtudy in IP Desigh
www.lbd.dcc.ufmg.br/colecoes/wcas/2011/0017.pdf
[4] Shubhyant ChaturvediStaic Analysis of Asynchronous Clock Domain Crag$iDATE 2012
[5] Mark Litterick, "Pragmatic Simulation-Based Verification of Clockrain Crossing Signals and Jitter using SystemMgwissertions
DVCon 2006
[6] Don Mills, “Being Assertive With Your X (SystemVerilog Assestior Dummies) SNUG 2004



Don Mills, “If Chained Implications Weren't so Hard, They'dEBesy, SNUG 2009

Don Mills, Stu Sutherland Assertions are for Design Engineers Td®NUG 2006

Clifford E. Cummings, SystemVerilog Assertions, Design Tricks and SVA Bies’, SNUG 2009

“1800-2012 IEEE Standard for System Verilog: Urdfidardware Design, Specification and Verificaticanguage’; IEEE,
Pascataway, New Jersey. Copyright 2013. ISBN: 97881-8110-3 (PDF), 978-0-7381-8111-0 (print).

Don Mills, Clifford E. CummingsSynchronous Resets? Asynchronous Resets? |eonfssed! How will | ever know which to use?
SNUG 2002, San Jose, CA

Don Mills, Clifford E. Cummings, Steve Gols8Asynchronous & Synchronous Reset Design TechnigBRast Deux' SNUG 2003,
Boston, MA



APPENDIXA
Additional screen shots of the assertions usedhisrpaper are shown below. These screen shotg Ahon
transitioning from low to high and then later frdmgh to low. Both transitions test successfully both properties

in both panels. The delay through the synchrosizerthe first panel is 2 clock cycles and the géta the syn-
chronizers in the second panel is three clock sycle

— CDC_propl
&4 Jjtop/blk/apCDC_propl
Lt fropsblk/clk_a

Jtop/blk/A_in
Jtopfblk/Clk_B
ftop/blk/B1_in
Jtop/blk/B_out
ActiveCount.

CDC_prop2

&4 /top/blk/apCDC_prop2 -No Data-
i ftop/blk/Clk_A -No Data-
i-£ jtop/blk/A in -No Data-

4 /top/blk/Clk_B -No Data-

i-#a ftop/blk/B_out No Data-
B4 ActiveCount -No Data-

— CDC_propl
&4 ftop/blk/apCDC_propl
it ftop/blk/Clk_A
L& top/blk/A_in
-4 Jtop/blk/Clk_B
~#  ftop/blk/B1_in
-4 top/blk/B_out
4 ActiveCount
— CDC prop2
&4 (top/blk/apCDC_prop2
-4 [top/blk/Clk_A
& ftop/blk/a_in
£ ftop/blk/Clk_B
4. [top/blk/B_out
B4 ActiveCount




APPENDIXB
Full code used for tests for this paper with thadbproperties.

module blk
(input var logic A_in, Clk_A, CIk_B,
output var logic B_out);

logic Bl in ;

logic Bl out ;

logic Bl dly ;

logic B2 in ;

enum bit {FALSE, TRUE} temp;
bit dly ;

initial

if ($value$plusargs (" dly=%b ", dly ))
$display(" dy= ", dly);

else
$error (" Error: no value for dly input ");

always_ff @(posedge Clk_A)
Bl in <= A in;

always_comb

if ( dly ) B2_in = Bil_dly ;
else B2 _in = Bl _out;
always_ff @(posedge Clk_B)
begin

Bl out <= Bl in ;
Bl dly <= B1 out;

B_out <= B2.in;
end

property CDC_prop1;

logic v_temp ;

@ (posedge Clk_A) ($changed( A_in), v_temp = A_in)|=>

##1

@ (posedge Clk_B ) $changed( B1_in)

##[2:3] ($changed( B out)&&( B out === v_temp));

endproperty: CDC_propl

property CDC_prop2;

logic v_temp ;

@ (posedge Clk_A) ($changed( A_in),v_temp = A in)|=>

##1

@(posedge Clk_B) TRUE

##[2:3] ($changed( B out)&&( B out === v_temp));
endproperty: CDC_prop2

apCDC_propl : assert property ( CDC _propl);

apCDC_prop2 : assert property ( CDC _prop2);

endmodule: blk




Top level model

module top;
logic A_in;
logic Clk_A;
logic Clk_B;
logic B_out;

blk blk (.*);
testbench TB (.*);

endmodule:top

The following four code blocks are the four testedito test the code blk above.

changing the clock periods for CIk_A and CIk_B.

These tests diffararily by

/ltestl

module testbench
(output var bit Clk_A,
output var bit Clk_B,
output var bit A_in);

localparam int A = 5;
localparam int B = 12;

initial begin
Clk_A<=0;
Clk_B <=0;
fork
forever #A Clk_A = ~CIk_A,;
#(A/2) forever #B Clk_B = ~CIk_B;
join_none
end

initial begin
$assertoff;
A in=0;
#(A *2) $asserton;
#(A+(A/2)) A_in = 1;
#(A*5) A_in=0;
end

endmodule:testbench




/ltest2

module testbench
(output var bit Clk_A,
output var bit Clk_B,
output var bit A_in);

localparam int A = 5;
localparam int B = 12;

initial begin
Clk_A<=0;
Clk_ B <=1;
fork
forever #A Clk_A = ~Clk_A,;
#A forever #B Clk_B = ~Clk_B;
join_none
end

initial begin
$assertoff;
A in=0;
#(A *2) $asserton;
#(A+(A/2)) A_in = 1;
#(A*5) A_in=0;
end

endmodule:testbench




/ltest3

module testbench
(output var bit Clk_A,
output var bit Clk_B,
output var bit A_in);

localparam int A = 24;
localparam int B = 5;

initial begin
Clk_A<=0;
Clk_B <=0;
fork
forever #A Clk_A = ~CIk_A,;
#(A/2) forever #B Clk_B = ~CIk_B;
join_none
end

initial begin
A in=0;
#(A * 2);
#(A+(A/2)) A_in = 1;
#(A*10) A_in=0;
end

endmodule:testbench




Iltest4

module testbench
(output var bit Clk_A,
output var bit Clk_B,
output var bit A_in);

localparam int A = 24;
localparam int B = 5;

initial begin
Clk_A<=0;
Clk_B <=0;
fork
forever #A Clk_A = ~Clk_A;
#(A/2 + A) forever #B Clk_B = ~Clk_B;
join_none
end

initial begin
A in=0;
#(A * 2);
#(A+(A/2)) A_in=1;
#(A*10) A_in=0;
end
endmodule:testbench




APPENDIXC
This section includes notes for the different propeariations used when testing for this paper.

passes
property CDC_prop1,;
logic v_temp;
@(posedge Clk_A) ($changed(A_in), v_temp = A_in
##1
@(posedge Clk_B) $changed(B1_in) ##[2:3]
($changed(B_out) && (B_out ===
endproperty:CDC_propl

passes
property CDC_prop1,;
logic v_temp;
@(posedge Clk_A) ($changed(A_in), v_temp = A_in
@(posedge Clk_B) $changed(B1_in) ##[2:3]
($changed(B_out) && (B_out ===
endproperty:CDC_propl

passes
property CDC_prop1,;
logic v_temp;
@(posedge Clk_A) ($changed(A_in), v_temp = A_in
@(posedge Clk_B) $changed(B1_in) ##[2:3]
($changed(B_out) && (B_out ===
endproperty:CDC_propl

kkkkkkkkkkkkkhkkkhkkkkhkkkhkkkhhkkkhkkkkhkkkhkkkhhkkkhkkkkk

fails
property CDC_prop1,;
logic v_temp;
@(posedge Clk_A) ($changed(A_in), v_temp = A_in
##1
@(posedge Clk_B) $changed(B1_in) ##[2:3]
($changed(B_out) && (B_out ===
endproperty:CDC_propl

(runO: dly=0
Run1l: dly=1)

I propl prop 2
/l test 1 -

/I run0 pass pass
/I runl pass pass
1

/l test 2 -

/[ run0 fall fail

) |->

v_temp));

) I=>

v_temp));

kkkkkhkkkkhkkkk

) |=> TRUE

v_temp));




/I runl fail
Il

/l test 3 -

/I run0 fail
/I runl fail
Il

/l test 4 -

/I run0 fail
/I runl fail

pass

fail
fail

fail
fail

kkkkkkkkkkkkkhkkkhkkkkhkkkkhkkkhhkkkhhkkkhkkkhkkkhkkkkhkkkkk

fails

property CDC_prop1,;

logic v_temp;

@(posedge Clk_A) ($changed(A_in), v_temp = A_in
($changed(B1_in) && (B1_in ===

##1

@(posedge Clk_B) $changed(B1_in) ##[2:3]
($changed(B_out) && (B_out ===
endproperty:CDC_propl

(runO: dly=0
Run1l: dly=1)

1 propl
/l test 1 -

/I run0 pass
/I runl pass
1

/l test 2 -

/I run0 fail
/I runl fail
Il

/l test 3 -

/I run0 fail
/I runl fail
Il

/l test 4 -

/I run0 fail

/I runl falil

prop 2
pass

pass

fail
pass

fail
fail

fail
fail

Kkkkkkkkkkkkkkk

) |=>
v_temp))

v_temp));




