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Abstract—When developing a new system, it is important to 

confirm that the system conforms to documented requirements 

and supplies specific features. In verifying this, reliance on 

SystemVerilog Assertions (SVA), the assertion specification 

subset of the SystemVerilog (SV) language, has grown in recent 

years. There are many advantages to using SVA in design and 

verification: they are natively integrated into the language, 

they may be checked in both simulation and formal 

verification, and they are convenient for designers to use while 

coding. However, misuse of SVA and/or failure to express a 

requested behavior properly may lead to verification problems. 

This is not just a theoretical hazard; in recent Intel projects 

there have been numerous cases in which SVA assertions were 

written that either failed to match user intent, failed to be 

checked at all, or caused major performance degradation in 

simulation or formal verification.  Many of these cases could 

have been detected early by "linting", that is, performing 

preprocessing or compile-time checks to detect constructs that, 

while formally legal, might cause correctness or performance 

issues. We present here lint rules we helped develop to 

minimize the number of verification holes caused by common 

mistakes.  

Keywords- SystemVerilog, Assertions, Lint, Formal 

Verification, Simulation, Validation 

I. INTRODUCTION  

As an early adopter of SystemVerilog (SV) [6], Intel was 
one of the pioneering users of SystemVerliog Assertions 
(SVA) and has benefited from the advantages SVA offers in 
design and verification. To enable wider usage among 
designers and validators, Intel-internal usage was enhanced 
with the SVA Checker Library (a wrapper library, recently 
donated to Accellera) which further enables designers to 
efficiently include many commonly-used assertions in their 
RTL to aid in dynamic simulation and formal verification 
(FV). Overall, SVA has been critical to the effective and 
timely validation of many recent Intel projects.  

When SVA was first deployed with the wrapper library, 
it was thought that enclosing assertions in a library would 
prevent most potentially dangerous misuse. However, as 
increasing numbers of engineers integrated SVA into their 
design processes, it became apparent that in many real-life 
cases assertions were written that did not behave as the 
designer intended (see [7]). All too often these types of 
misuse led to many wasted hours of debugging, bad 
performance hits, or even “false positives”, where incorrect 

simulation values that should have been detected were 
missed and only caught by chance much later on in the 
design and validation flows. While the library prevented 
some types of language misuse, other cases needed a 
different solution. 

To help ensure the correctness of RTL code, most 
modern design projects throughout the industry use "linting", 
that is, preprocessing checks to detect constructs that are 
technically legal but may cause correctness or performance 
issues. By carefully examining and understanding escapees 
observed in real projects, we were able to develop a number 
of new lint rules for future projects.  While a number of 
commercial tools provide SV lint features, most do not 
supply rules for detailed coverage of subtle SVA usage 
issues. We found that by taking into consideration real errors 
found by real projects, we could identify additional, 
potentially very effective, rules for preventing the recurrence 
of such errors. 

The rules span a number categories, including assertions 
that do not correctly state the user’s intent, “void” assertions 
or ineffective coverage specifications that have no actual 
effect, and efficiency impacts on simulation or formal 
verification. Most of these do not represent truly illegal use 
of the language, and therefore all these lint rules should be 
waiveable, as they flag code which is standard-compliant and 
in rare cases can match user intent. But in each of these cases 
it is much more likely that the assertion code does not 
function as intended, and it is important to review it in order 
to reduce the danger of false positives, performance issues, 
coverage holes, and related issues.  

Ultimately, the integration of SVA has been a strong win 
for Intel. It has dramatically improved our validation 
environment as well as strengthened integration between 
validation and design. With careful linting as described in 
this paper, we hope to continue strengthening our validation 
coverage and making our SVA usage even more successful. 

In the examples of concurrent assertions given in this 
paper, the clock and reset are often omitted for the sake of 
clarity. In such cases it is assumed that the assertion belongs 
to a scope of some default clocking and default 
disable iff. 



II. LINT RULES 

The following table summarizes the major lint rules we have 

added based on project experience. The rules fall into three 

major categories: 

1. Wrong functionality:   This category covers 

cases where the logical conditions checked by 

the assertion probably don’t match user intent.   

2. Possibly ignored assertions:  These are 

assertions that always pass when checked, 

regardless of signal values, or cover a condition 

in a trivial way.  

3. Performance Hazards:  These assertions are 

legally stated and do match user intent, but can 

cause major performance degradation in a 

simulation or formal environment. 

 

A. Wrong Functionality 

1. Assertion active at both clock edges 

2. Sequence used as clocking event 

3. Complex Boolean expression used for clock 

4. Wrong argument type or size 

5. $stable(sig[index])) with variable index 

6. Non-sampled value in action message 

7. Property uses negated implication 

B. Possibly ignored assertions 

1. Short-circuitable function has assertion    

2. Action block with no system function 

3. Unbounded assertion always true due to weakness 

4. Implication (|->,|=>) in cover property 

5. Bad comparison to unknown 

6. Assertion with constant clock 

C. Performance Hazards 

1. Many instances of single assertion 

2. Assertion in loop not using index 

3. Large or distant time windows 

4. Unbounded time/repetition operator in antecedent  

5. Using cover sequence rather than cover property 

6. Applying $past to multiple terms of expression 

7. Antecedents with empty match 

 
The interesting cases we observed in Intel projects that 

inspired each type of lint rule are summarized in the 
following subsections. 

A. Wrong Functionality 

These rules check cases where the logical conditions 
checked by the assertion most likely do not match user 
intent.  In general, such cases arise from the complexity and 
flexibility of the SVA language: it is relatively easy to write 
expressions whose semantics do not match user intent. If 
these assertions go uncorrected, a dangerous verification gap 
may result. 

1) Assertion active at both clock edges 
This rule checks that an assertion always specifies a 

proper clock edge, as in @(posedge clk), rather than 
omitting the clock edge qualifier and operating 

unintentionally on both edges.  This might seem like a non-
problem or a minor performance issue:  if a logical condition 
needs to be checked, why is it bad to check it during some 
extra phases?  We need to keep in mind, however, that many 
SVA assertions are sequential, spanning multiple clock 
cycles and many time steps.  For example, one of our 
designers wrote an assertion similar to this: 

a1: assert property (@(clk) a|->b[*8]); 
 

Because there was no edge qualifier, the repetition 
operator counted 8 phases, which is 4 cycles, of the clock 
involved.  Actual user intent, however, was this: 

a2: assert property(@(posedge clk)a|->b[*8]); 
 

In this version, the repetition operator only counts 
positive clock edges, and thus counts 8 cycles. In other 
words, before this issue was detected, the assertion was 
checking its condition only half the time intended. 

2) Sequence used as clocking event 
This rule has implications similar to those of the one 

above, but covers a rarer situation: using a sequence as a 
main clocking event of an assertion.  SVA allows the use of a 
sequence as a clocking event. The timing issues, however, 
are tricky, since, for example, any delayed events will count 
occurrences of the sequence instead of clock cycles, which is 
very rarely what the user really wants. For example, in the 
following code, a3 checks that c occurs after 3 further 

occurrences of the clocking sequence a[*5], rather than 3 
clock cycles later as the user intended: 

sequence s; 

 @(posedge clk) a[*5]; 

endsequence 

a3:  assert property (@(s) b |-> ##3 c); 

This use of a sequence to clock a property is a very 
unusual corner of the language, and we have yet to see a case 
in project RTL where this feature is used correctly.   Thus it 
is fully reasonable to disallow it through lint rules. 

3) Complex Boolean expression used for clock 
This rule is inserted mainly to prevent glitch dangers.  In 

one user example, an assertion in a block with an enabled 
clock was clocked using an expression @(clk && en). 

a4: assert property (@(clk && en) p1); 

 While this seemed fine logically, en was vulnerable to 

glitching while clk was 1:  it could go from 0 to 1 for an 
instant during a time step, then back to 0 by the end of the 
time step.  This resulted in a bogus edge of the assertion 
clock, causing a sudden evaluation and failure that was very 
difficult to debug. Such enabled clocks should be specified 
using @(clk iff en), which is defined as being checked 

only when clk changes. 

a5: assert property (@(clk iff en) p1); 

4) Wrong argument type or size 
Argument type or size seem like items clearly worth 

checking, but they can be difficult to check due to the 



flexibility offered by SVA. This is a case where more 
detailed information is known about a library checker than 
can be directly inferred from its syntax.  For example, one 
common misuse we have seen is a library invocation such as 
the following: 

 `ASSERTS_ONE_HOT(a6, sig1||sig2||sig3, …); 

 

This assertion was intended to check that there is 
precisely one high bit among sig1, sig2, and sig3.  But as 
written, this assertion merely looks at the one-bit value 
attained by ORing all the signals together, and checks that 
the bit is 1.  As a result, errors due to multiple signals being 1 
at the same time, the major intent of the assertion, could be 
missed. The second argument should have been a 
concatenated vector, as in 

  `ASSERTS_ONE_HOT(a7, {sig1, sig2, sig3} …); 

 

By making lint tools aware of our assertion library, this 
and similar cases are easy to detect.  In this particular case, 
we know that a ONE_HOT assertion does not make sense 
unless its data argument has more than one bit, so we can 
flag the erroneous case a6 above. Even without a checker 
library, a limited version of this lint rule can be implemented 
by looking at the use of system functions such as $onehot. 

5) $stable(sig[index]) with variable index 
This rule is an interesting, subtle case that was discovered 

by a user after many confused hours of debug. The problem 
was that sampled-value functions like $stable (which 
checks that a signal matches its previous value) look into the 
past of all their arguments, including array indices.  So if 
index just changed from 5 to 6, instead of comparing 

sig[6] to its previous value as the user intended, 

$stable(sig[index]) would compare the current value 

of sig[6] to the previous value of sig[5]. To prevent this, 
we needed to add a rule checking that the index of a vector 
signal used in a sampled-value function is an elaboration-
time constant or an automatic variable.  This applies to all 
the sampled-value functions, including $past, $stable, 

$changed, $rose, and $fell. While this rule might 
initially sound very limiting, in the majority of cases a simple 
rewrite with a generate block solves the problem.  For 
example:  

int q_pos; 

a8: assert property ($stable(sig[q_pos])); 

generate 

 for (genvar i = min; i < max; i++) begin    

  a9: assert property ( 

   (i == q_pos) |-> $stable(sig[i])); 

 end 

 endgenerate 

In the above code, suppose q_pos transitions from 0 to 1.  

When calculating stability, a8 will compare the current 

sig[1] to the previous sig[0], while a9 will compare the 
current sig[1] to the previous sig[1], since genvar i is 

not sampled. The latter case is much more likely to match 
user intent. 

6) Non-sampled value in action message 
This rule does not impact assertion correctness, but can 

save many wasted hours of debug time. The problem is that 
the way SVA is defined, most signals in assertions use values 
sampled at the beginning of the time step, while the action 
block, where messages are reported, uses current values 
when it is executed. So, in the following assertion, the value 
of sig used for evaluation will be from one cycle earlier than 
the value printed: 

 a10:  assert property (sig) else  
         $error("Bad: %d", sig); 

 

This can mislead the user during debug. The language offers 

a simple fix, in the $sampled function: 
 a11: assert property (sig) else 
         $error("Bad: %d",$sampled(sig)); 

 

Thus linting should check that concurrent assertions report 

sampled values when applicable. 

 

7) Property using negated implication 

    We have seen some designers create properties using 

negated implication operators, such as the following:  

 
    a18:  assert property (not (a |-> b)); 

 

    Using the DeMorgan-like laws that apply to formally 

rewriting SVA properties, this is equivalent to 

 
  a18:  assert property (a && !b); 

 

    Thus a18 actually means that a must be true every cycle, 

and must always occur with !b.  However, in the vast 

majority of these cases, the actual user intention was that if 

a occurs, it always results in !b: 

 
    a19:  assert property (a |-> !b); 

 

    We therefore have a lint rule to flag any cases of negated 

implication.    

 

B. Possibly ignored assertions  

The cases in this section are similar to those above, 
except that rather than checking the wrong conditions, an 
assertion may appear to be valid without actually checking 
anything at all. Such cases are especially dangerous because 
they are likely to lead to "false positives", where the designer 
thinks some aspect of the design has been validated when in 
reality it has actually been ignored. 

1) Short-circuitable function has assertion 
This rule checks that the user-instantiated functions are in 

a place where the assertion is evaluated constantly.  
SystemVerilog's short-circuiting feature causes some terms 
of a Boolean expression to be ignored if the value is fully 
determined by earlier terms, so there are some code locations 
where an assertion will not always be evaluated.  For 
example, in a || expression, if the first term is 1, the overall 



value is 1, and any further terms are irrelevant. Consider the 
following snippet: 

function bit legal_state( 
    bit [0:3] current, bit valid); 
    a12: assert #0 (valid |-> current != '0); 
    legal_state = valid && $onehot(current); 
endfunction 

… 

if (status || legal_state(valid, state))  
… 

 

Looking at the if condition, since the main operator is a 
logical one, users usually order the arguments by complexity, 
seeing performance as an important factor. In the above 
example, each time status is equal to true, given that the 

logical or operator || implies short-circuiting, the assertion 

a12 will not get checked. This is a typical case that causes 
missed checks which are hard to identify.  

For the above example, there are simple solutions for 
forcing evaluation of the function: either replace the binary 
logical “or” operator with the binary bit-wise “or” operator 
|, which does not allow short-circuiting, or switch the order 
of the operator’s arguments (care must be taken in choosing 
an appropriate solution for the situation, however; for 
example, indiscriminate use of bitwise rather than logical 
operators can degrade performance).  To prevent situations 
where the user-instantiated functions will not be evaluated 
correctly due to short-circuiting, we added a rule that checks 
that assertions always exist on a path where short-circuiting 
will not affect their evaluation. 

 

2) Action block with no system function 
This rule checks a tricky class of user typos. When using 

assertion blocks, the user usually wants to display data 
regarding the assertion violation or to add an indication as to 
what went wrong. It is unlikely that the user will add a 
statement that does not contain a system function. This 
becomes a serious issue when the user uses assertions 
wrapped in macros, and forgets whether the macro is 
responsible for adding the semicolon. See the following 
example: 

`define MY_MUTEX(sig) \  
  assert #0($onehot0(sig)) 

 
 always @(posedge clk) begin 

 ... 
  `MY_MUTEX(fsm_1_state) 

  `MY_MUTEX(fsm_2_state);   

 end 

 
Due to the missing semicolon after the first assertion, the 

second assertion is treated as its action block, rather than as a 
normal assertion which is continuously checked. While this 
pitfall is easier to fall into when assertion macros are used, a 
similar situation is possible using standard SVA assertions. 
To prevent such cases, we require that each action block 
include a system function. 

3) Unbounded assertion always true due to weakness 

This rule checks for possibly vacuous assertions. Starting 
in the P1800-2009 standard of SystemVerilog, assertions 
were defined as weak by default, which means that they are 
considered true unless a finite simulation trace exists that can 
disprove them. In contrast, a strong assertion can be 
disproved through formal analysis on infinite traces. When 
checking a protocol, the user usually adds assertions to check 
its behavior, for example, that following a request it is 
guaranteed that a grant will arrive at some point. When using 
the open bound operators, the user must take care not to 
write an assertion that might be vacuous due to the definition 
of weakness.  A typical case is the following: 

    a13: assert property  
          (@clk req |-> ##[1:$] gnt); 

This assertion will pass even if no grant can ever arrive 
since the operator ## appears in a weak context: no finite 
trace can show that this is false.  A strong version of the 
property (using the SVA 2009 strong operator) can be 
disproven in formal verification by demonstrating that 
infinite traces exist where a req arrives and the system can 

then enter an infinite loop where a gnt never does: 

    a14: assert property  
          (@clk req |-> strong(##[1:$] gnt)); 

 

In simulation, care must also be taken to ensure that 
proper simulator options are used to report unbounded 
assertions still incomplete at the end of simulation.  These 
may be treated as passes or failures on a case-by-case basis. 

This issue is further complicated by the fact that before 
the P1800-2009 standard ([4]), the strength and weakness of 
properties in the language was not defined in a useful way, 
and properties such as the one in a13 were strong. In the past 
year we have seen code like this treated both as weak and 
strong by different FV tools. Thus during linting it is 
especially important to flag weak properties spanning 
unbounded time windows which may be usefully handled by 
some tools and treated as trivially true by others. 

4) Implication in cover property 
This rule checks for possibly vacuous coverage 

properties. The implication operators are commonly used to 
define assertions stating that an antecedent implies a 
consequent. The result of the implication is either true or 
false. A common mistake users make is to use the 
implication in a cover property expression when the 
intent is to cover the case when the antecedent is true and the 
consequent follows.  However, with these operators, if there 
is no match of the antecedent, the implication evaluation 
returns true by definition, creating a coverage report that is 
not useful.  In general this stems from the basic Boolean 
logic rule that if A->B, and A is false, then the implication is 
trivially true. Some tools may solve this by omitting such 
vacuous coverage, but this is not required by the language 
and so cannot be relied upon in all cases. 

Consider the following example: 

property next_state(state, clk); 
     (@clk (state==REQ) |=> (state==SEND)); 

endproperty 



 

a15: assert property (next_state(st, clk)); 
c15: cover property (next_state(st, clk)); 

 
The user wrote an assertion for a specific state in an FSM 

along with a cover property. The assertion will fulfill the 
intention, but the cover property will collect coverage each 
time st is not equal to REQ, likely resulting in trivial reports 
that all tests cover this case. A much more useful cover point, 
probably what the user intended, would have been: 

  c16: cover property (@clk  

      (state==REQ)##1 (state==SEND)); 
 

To prevent cases such as that described above, we 
disallow use of implication in cover properties. 

5) Bad  comparison to unknown 

   This rule involves assertions containing X values and used 

incorrectly in expressions.  For example: 

 
  a17: assert property (@clk !(a == 1’bx)); 

 

      The intention of the user is clear, but this is a constantly 

true assertion that will never fail. To properly compare 4-

valued logic values, the === (triple equals sign) operator 

must be used.  While this situation is not unique to SVA, we 

have found that this mistake is much more likely in practice 

to appear in assertions. Thus we defined a lint rule reporting 

any case of comparison to X or Z using the == operator. 

 

 

6) Assertion with constant clock 
We were surprised to see some RTL code in our projects 

where assertions were clocked by a constant. 

    parameter ALWAYS_ON = 1; 

    a20:  assert property  

(@(ALWAYS_ON) (a || b) ); 

 

Here the users have made a basic misinterpretation of the 

language, thinking that a constant 1 will ensure that the 

assertion will always be active. However, since assertions 

are triggered at the edge of their relevant clock, this actually 

had the opposite effect, permanently deactivating the 

assertion. The correct solution would have been to use an 

immediate assertion, since these are unclocked and thus are 

inherently active at every time step their inputs change: 
     

    a21:  assert #0 (a||b); 

 

To prevent such errors, we defined a new lint rule to detect 

constant clocks in assertions. 

 

C. Performance hazards 

Assertion performance essentially depends on the way 
the assertion is written. Performance of two equivalent 
assertions may be absolutely different both in simulation and 
in formal verification. For example, the assertion 

a22: assert property (a |=> b); 

introduces minimal simulation overhead, whereas the 
equivalent

1
 assertion 

a23: assert property (##[*]a |=> b); 

may slow down the simulation [1]. 

The situation with assertion performance is complicated 
by the fact that often simulation and formal verification have 
different and even contradictory requirements for assertion 
performance. This issue is discussed in detail in [2] (see also 
the comparison of different simulation algorithms there). For 
example, for many formal verification tools the performance 
of assertions a22 and a23 is exactly the same. It is worth 
noting that the requirements for assertion efficiency in 
emulation are usually more similar to those imposed by 
formal verification than to those imposed by simulation [2]. 

In this section we discuss lint rules related to 
performance hazards. Some rules are relevant only for 
simulation or formal verification; others are universal. While 
there is nothing logically incorrect about these cases, their 
cumulative performance costs may have a significant 
negative impact on project success. 

1) Many instances of single assertion 
The justification for this rule seems pretty obvious, but it 

is amazing how often it is violated in user code. The rule 
states that one should avoid writing many assertions for 
individual signal bits when it is possible to write one 
assertion for the entire signal. For example, if one wants to 
make sure that two vectors a and b have equal values, it is 

sufficient to check that a == b instead of checking in a 

procedural or in a generate loop that each bit of a is equal to 

the corresponding bit of b.  In the following code, while a24 

and a25 are logically equivalent (assuming that a and b are 
128-bit vectors), it is very likely that the version in the 
generate loop is much less efficient for simulation: 

   generate for (i = 0; i < 128; i++) begin 

  a24:  assert #0 (a[i] == b[i]); 

 end 

 endgenerate 

a25: assert #0 (a==b); 

2) Assertion in loop not using index 
This rule addresses the situation where an assertion is in a 

loop, but the actual expression being checked does not 
involve the index of the loop.   Thus, the loop is actually 
irrelevant to the assertion, and it could easily have been 
placed outside it, significantly reducing the number of 
executions.  Instead of executing once per clock tick (for 
concurrent assertions) or when variables in their expression 
change (for deferred or immediate assertions), such 
assertions execute for each iteration of the loop. This means 
that many of the executions are wasted, with repeated 
execution of the same assertion on the same values. For 
example: 

                                                            
1 Strictly speaking, these two assertions are not equivalent because they 
have different attempts, but logically they check exactly the same thing. 



 for (i = 0; i < 128; i++) begin 

  a26: assert #0 (a == 1); 

 end 

There is a slight complication here: to be fully general, 
this rule should take into account that an assertion may be 
using a loop index indirectly – i.e., it may contain a variable 
which depends on the loop index.  However, in the common 
case it may be sufficient simply to examine the assertion 
expression, flag the assertion in lint if it does not use the 
index, and let the designer waive if necessary. 

3) Large or distant time windows 
Large or distant time or repetition windows in sequences, 

and $past functions with a large cycle count are inefficient 
both in simulation and in formal verification. For example, 
all sequences and expressions similar to the following should 
be avoided: a[*2:1000], a[*999:1000], ##[2:1000], 

##[999:1000], $past(a, 1000). In formal verification 
and in emulation it is usually much more efficient to use 
unbounded time or repetition windows in this case, e.g. 
a[*2:$]. 

4) Unbounded time or repetition window in antecedent 
Unbounded time and repetition windows in an assertion 

antecedent may be costly in simulation, as in this example: 

 a27: assert property (a[*1:$] |=> b); 

Most simulators will launch a new checking thread for 
this property every time a is active. This can lead to an 
inefficient explosion of threads. Thus any case of an 
unbounded time window in an assertion antecedent should be 
reported. 

This rule forbids using unbounded repetition windows at 
the beginning or end of the antecedent, and unbounded time 
windows at any place in the antecedent. Unbounded 
repetition windows in the middle of the antecedent, though 
possibly presenting some performance risk, are actually quite 
common, as shown in the following example: 

a28: assert property ( 

  req ##1 gnt[->1] |=> done); 

Here it is checked that the done signal is asserted after 
the request has been granted. There is an implicit unbounded 
repetition in the antecedent, as gnt[->1] is equivalent to 

!gnt[*] ##1 gnt. This assertion is generally efficient 
when the system is behaving in a reasonable way, i.e., when 
a request is granted within several clock cycles. 

5) Using cover sequence rather than cover property 
SVA defines two versions of the concurrent cover 

statement: cover sequence and cover property. The 

cover sequence statement must report every match of the 

sequence for each attempt, while the cover property 
statement is only required to report one match per attempt. 
An attempt occurs whenever the sequence being covered 
begins evaluation. The cover sequence statement is very 

rarely needed in practice, and in many cases is extremely 
inefficient in simulation. For example, assume the reset 
signal falls once, and we have the following two cover 
points: 

c29: cover sequence ($fell(rst) ##[*] b); 

c30: cover property ($fell(rst) ##[*] b); 

Cover c29 will be active continuously after the fall of rst, 

reporting a coverage success every time b is true.  Cover c30 

will report a success the first time b is true, and afterwards 
cause no further overhead in simulation.  

6) Applying $past to every argument of an expression 

The sampled value function $past imposes performance 
overhead in both simulation and formal verification. This 
rule flags cases of redundant $past usage: instead of 

applying $past to all arguments of an expression, it is more 
efficient to apply it to the expression result. For example, 
instead of $past(a) * $past(b) == $past(c) one 

should write $past(a * b == c). 

7) Antecedents with empty match 
Properties with antecedents that admit an empty match 

are redundant and often do not correctly reflect user intent.  
In addition, they will be triggered every time step, which 
causes inefficiency. For example (see [2]), a[*] |-> p is 

equivalent to a[+] |-> p, and a[*] |=> p is equivalent 

to p. Therefore, all assertions with antecedents that admit an 
empty match should be reported. 

III. NON-LINT TECHNIQUES AND FUTURE ADDITIONS 

It is important to point out that we have not solved all 
SVA usage problems: some require different or more 
complex procedures than linting to detect, and others are 
more easily addressable through tool or language extensions.  
In this section we show examples of issues that fall into these 
categories. 

A. Unsupported SVA 2009 constructs 

We observed, in numerous cases, use of constructs that, 
while legally in the language, are unsupported by some of 
our EDA tools.  For example, the following code makes use 
of a global clocking future value function, a nice feature in 
SVA 2009 that makes it possible to look ahead one tick of 
the fastest clock: 

a31: assert property ( 

  a |-> $rising_gclk(b)); 

We need to find a way to enable our RTL to take 
advantage of these features when useful, since our main 
simulation and formal tools do support them, but to be able 
to turn them off when compiling for a flow that does not 
support them. 

Our solution is based on leveraging our common 
assertion library. Assertions that use such constructs are 
required to protect them with an `ifdef flag: if 
SVA_LIB_SVA2005 is defined, we replace the assertion 
code with a constant 1. We lose the checking of that 
assertion in such cases, but are able to smoothly compile the 
model for non-2009-supporting tools. 



B. Rules requiring formal engines 

Some rules are too complex to be implemented in 
preprocessing, or may be more easily implemented with 
support from a formal verification engine. 

An example is the performance hazard of liveness 
assertions in formal verification, which we detect in the front 
end of our formal property verification tool rather than 
during linting.  From the point of view of formal verification, 
all assertions can be classified as either safety or liveness
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properties [3]. A counterexample of a safety property is 
always finite. All other properties are liveness properties. 
Checking liveness properties in formal verification is much 
more expensive than checking safety properties [8]. It 
sometimes happens that people write liveness assertions 
without intending to. This rule flags all liveness assertions to 
make sure they are intentional. Consider the following 
assertions: 

a31: assert property( 

  $fell(rst)|->s_eventually a); 

a32: assert property ( 
  @clk not(write ##1 read)); 

Both assertions a31 and a32 are liveness. Assertion a31 

states that a will eventually be true, and its liveness is 

inherent. The likely intent of assertion a32 is to state that 

read cannot follow write directly. However, assertion a32 

also checks that after each write the clock ticks at least 
once. This check is usually not intended, but it makes formal 
verification of a32 much more costly. The proper way to 
write this assertion is not strong(write ##1 read). 

C. Glitch sensitivity for deferred assertions 

As originally defined in SVA 2005, immediate assertions 
in procedural code were vulnerable to glitch issues, whereby 
a temporary signal value during relaxation could result in an 
assertion failure even though the settled signal values at the 
end of the time step would be legal. To solve this problem, 
SVA 2009 introduced deferred assertions, whose evaluation 
would be deferred until after model activity. Unfortunately, 
in the 2009 definition deferred assertions could still cause 
glitches due to iteration with new values set by the testbench;  
once the testbench changed signal values, there could be 
further model activity. Thus we have been working to 
introduce a new construct in the 2012 iteration of the 
standard: final assertions.  Final assertions will mature after 
all model and testbench activity is complete, and thus not be 
vulnerable to glitches.  

D. Poor X/Z behavior for bit-vector functions 

Bit-vector functions are not well suited for checking 4-
valued data. For example, $onehot(v) returns 1 even if 

several bits of the vector v are X or Z, which is usually not 
the intended behavior. To address this, we currently use 
solutions such as adding a check that all bits have a known 
value: $onehot(v)&& !$isunknown(v). To deal with this 
problem, the emerging standard provides a new system 

                                                            
2 By liveness we do not understand the pure liveness as defined in [ 3], but 
all properties that are non-safety. 

function, $countbits, that generalizes the existing bit-
vector functions and takes 4-valued data into account.   
While we have been considering a lint rule to check that bit-
vector functions are always used in conjunction with 
$isunknown, language change will enable a more robust 
solution. 

E. System task $asserton not waking up always procedures 

SVA has a mechanism for disabling/enabling assertion 
execution using the functions $assertoff/$assertkill 

and $asserton. However, $asserton does not affect the 

sensitivity list of the always procedures always_comb, 

always_latch, and always @*. Consider the following 
example: 

always_comb begin … assert #0 (a); …; end 

If assertions were previously disabled and then became 
enabled with $asserton, the assertion above would be 

checked for the first time when the value of a changes, and 

not when the assertion becomes enabled. If a was and 
remained low at the time of assertion enabling, the assertion 
will not fire.  We have been investigating tool extensions to 
handle this special case, forcing such assertions to be 
triggered after an $asserton. 

F. System task $asserton/kill not performing as necessary 

to handle multiple power planes 

For the purposes of power control, assertions should be 
switched on and off during simulation. The language allows 
switching assertions on and off in a specific hierarchy, but in 
some cases this capability is not sufficient. Imagine that it is 
required to switch off all the assertions in the hierarchy 

top.block1 except those in the sub-hierarchy 

top.block1.subblock2. An attempt to kill all the 

assertions in top.block1 and then to reenable them in 

top.block1.subblock2 results in killing all active 

attempts of assertions in top.block1.subblock2. The 
workaround for this situation is to enable and disable 
assertions individually. In the emerging standard it is planned 
to introduce block-level assertion locking and unlocking. 
This will make it possible to lock assertions in the sub-block, 
kill them in the outer block, and then unlock the assertions in 
the sub-hierarchy without affecting their execution there. 

G. Performance hazard due to global clocking 

Assertions governed by the global clock are usually 
efficient in formal verification. However, in the presence of 
many clock domains, the global clock should be the finest-
grained event among all the clocking events. As a result, 
assertions governed by the global clock may significantly 
slow down simulation. It is therefore recommended to enable 
such assertions only when checking blocks belonging to one 
or a few clock domains. To address this issue for the full 
chip, the emerging standard allows different definitions of 
the global clock for different design hierarchies. 

IV. RESULTS AND CONCLUSION  

Overall, the use of SVA has been a very effective 
technique in our design and validation environments.  
Simulation failures are much more easily debugged when a 



nearby assertion can help point to the root cause of a 
problem, and our formal verification environments are built 
using SVA. One recent project reported that 20% of all pre-
silicon RTL logic bugs were found with the aid of assertions, 
while only 2% of the bugs were actually due to incorrect 
assertions. The 20% is an underestimate; many bugs are 
found by assertions in early models that the designer has not 
yet checked into the database. In addition, some of our flows, 
such as emulation, have moved to assertions as their primary 
error-checking method. 

Naturally, any instance of an incorrect assertion demands 
attention. We have been gradually implementing the rules 
presented in this paper in response to discovering the actual 
issues in production on our major CPU projects. As a result 
we have been continually improving our confidence in our 
SVA assertion checking.  While disturbing, the corner cases 
presented here have been very rare, and do not negate the 
overall benefits of SVA.   

Ultimately, the integration of SVA has been a strong win 
for Intel. It has dramatically improved our validation 
environment as well as strengthened integration between 
validation and design. With careful linting as described in 
this paper, we hope to continue strengthening our validation 
coverage and making our SVA usage even more successful. 
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