

 SystemVerilog Assertion Linting:

Closing Potentially Critical Verification Holes

Laurence S. Bisht, Dmitry Korchemny, Erik Seligman

Intel Corporation

{laurence.s.bisht, dmitry.korchemny, erik.seligman}@intel.com

Abstract—When developing a new system, it is important to

confirm that the system conforms to documented requirements

and supplies specific features. In verifying this, reliance on

SystemVerilog Assertions (SVA), the assertion specification

subset of the SystemVerilog (SV) language, has grown in recent

years. There are many advantages to using SVA in design and

verification: they are natively integrated into the language,

they may be checked in both simulation and formal

verification, and they are convenient for designers to use while

coding. However, misuse of SVA and/or failure to express a

requested behavior properly may lead to verification problems.

This is not just a theoretical hazard; in recent Intel projects

there have been numerous cases in which SVA assertions were

written that either failed to match user intent, failed to be

checked at all, or caused major performance degradation in

simulation or formal verification. Many of these cases could

have been detected early by "linting", that is, performing

preprocessing or compile-time checks to detect constructs that,

while formally legal, might cause correctness or performance

issues. We present here lint rules we helped develop to

minimize the number of verification holes caused by common

mistakes.

Keywords- SystemVerilog, Assertions, Lint, Formal

Verification, Simulation, Validation

I. INTRODUCTION

As an early adopter of SystemVerilog (SV) [6], Intel was
one of the pioneering users of SystemVerliog Assertions
(SVA) and has benefited from the advantages SVA offers in
design and verification. To enable wider usage among
designers and validators, Intel-internal usage was enhanced
with the SVA Checker Library (a wrapper library, recently
donated to Accellera) which further enables designers to
efficiently include many commonly-used assertions in their
RTL to aid in dynamic simulation and formal verification
(FV). Overall, SVA has been critical to the effective and
timely validation of many recent Intel projects.

When SVA was first deployed with the wrapper library,
it was thought that enclosing assertions in a library would
prevent most potentially dangerous misuse. However, as
increasing numbers of engineers integrated SVA into their
design processes, it became apparent that in many real-life
cases assertions were written that did not behave as the
designer intended (see [7]). All too often these types of
misuse led to many wasted hours of debugging, bad
performance hits, or even “false positives”, where incorrect

simulation values that should have been detected were
missed and only caught by chance much later on in the
design and validation flows. While the library prevented
some types of language misuse, other cases needed a
different solution.

To help ensure the correctness of RTL code, most
modern design projects throughout the industry use "linting",
that is, preprocessing checks to detect constructs that are
technically legal but may cause correctness or performance
issues. By carefully examining and understanding escapees
observed in real projects, we were able to develop a number
of new lint rules for future projects. While a number of
commercial tools provide SV lint features, most do not
supply rules for detailed coverage of subtle SVA usage
issues. We found that by taking into consideration real errors
found by real projects, we could identify additional,
potentially very effective, rules for preventing the recurrence
of such errors.

The rules span a number categories, including assertions
that do not correctly state the user’s intent, “void” assertions
or ineffective coverage specifications that have no actual
effect, and efficiency impacts on simulation or formal
verification. Most of these do not represent truly illegal use
of the language, and therefore all these lint rules should be
waiveable, as they flag code which is standard-compliant and
in rare cases can match user intent. But in each of these cases
it is much more likely that the assertion code does not
function as intended, and it is important to review it in order
to reduce the danger of false positives, performance issues,
coverage holes, and related issues.

Ultimately, the integration of SVA has been a strong win
for Intel. It has dramatically improved our validation
environment as well as strengthened integration between
validation and design. With careful linting as described in
this paper, we hope to continue strengthening our validation
coverage and making our SVA usage even more successful.

In the examples of concurrent assertions given in this
paper, the clock and reset are often omitted for the sake of
clarity. In such cases it is assumed that the assertion belongs
to a scope of some default clocking and default
disable iff.

II. LINT RULES

The following table summarizes the major lint rules we have

added based on project experience. The rules fall into three

major categories:

1. Wrong functionality: This category covers

cases where the logical conditions checked by

the assertion probably don’t match user intent.

2. Possibly ignored assertions: These are

assertions that always pass when checked,

regardless of signal values, or cover a condition

in a trivial way.

3. Performance Hazards: These assertions are

legally stated and do match user intent, but can

cause major performance degradation in a

simulation or formal environment.

A. Wrong Functionality

1. Assertion active at both clock edges

2. Sequence used as clocking event

3. Complex Boolean expression used for clock

4. Wrong argument type or size

5. $stable(sig[index])) with variable index

6. Non-sampled value in action message

7. Property uses negated implication

B. Possibly ignored assertions

1. Short-circuitable function has assertion

2. Action block with no system function

3. Unbounded assertion always true due to weakness

4. Implication (|->,|=>) in cover property

5. Bad comparison to unknown

6. Assertion with constant clock

C. Performance Hazards

1. Many instances of single assertion

2. Assertion in loop not using index

3. Large or distant time windows

4. Unbounded time/repetition operator in antecedent

5. Using cover sequence rather than cover property

6. Applying $past to multiple terms of expression

7. Antecedents with empty match

The interesting cases we observed in Intel projects that

inspired each type of lint rule are summarized in the
following subsections.

A. Wrong Functionality

These rules check cases where the logical conditions
checked by the assertion most likely do not match user
intent. In general, such cases arise from the complexity and
flexibility of the SVA language: it is relatively easy to write
expressions whose semantics do not match user intent. If
these assertions go uncorrected, a dangerous verification gap
may result.

1) Assertion active at both clock edges
This rule checks that an assertion always specifies a

proper clock edge, as in @(posedge clk), rather than
omitting the clock edge qualifier and operating

unintentionally on both edges. This might seem like a non-
problem or a minor performance issue: if a logical condition
needs to be checked, why is it bad to check it during some
extra phases? We need to keep in mind, however, that many
SVA assertions are sequential, spanning multiple clock
cycles and many time steps. For example, one of our
designers wrote an assertion similar to this:

a1: assert property (@(clk) a|->b[*8]);

Because there was no edge qualifier, the repetition
operator counted 8 phases, which is 4 cycles, of the clock
involved. Actual user intent, however, was this:

a2: assert property(@(posedge clk)a|->b[*8]);

In this version, the repetition operator only counts
positive clock edges, and thus counts 8 cycles. In other
words, before this issue was detected, the assertion was
checking its condition only half the time intended.

2) Sequence used as clocking event
This rule has implications similar to those of the one

above, but covers a rarer situation: using a sequence as a
main clocking event of an assertion. SVA allows the use of a
sequence as a clocking event. The timing issues, however,
are tricky, since, for example, any delayed events will count
occurrences of the sequence instead of clock cycles, which is
very rarely what the user really wants. For example, in the
following code, a3 checks that c occurs after 3 further

occurrences of the clocking sequence a[*5], rather than 3
clock cycles later as the user intended:

sequence s;

 @(posedge clk) a[*5];

endsequence

a3: assert property (@(s) b |-> ##3 c);

This use of a sequence to clock a property is a very
unusual corner of the language, and we have yet to see a case
in project RTL where this feature is used correctly. Thus it
is fully reasonable to disallow it through lint rules.

3) Complex Boolean expression used for clock
This rule is inserted mainly to prevent glitch dangers. In

one user example, an assertion in a block with an enabled
clock was clocked using an expression @(clk && en).

a4: assert property (@(clk && en) p1);

 While this seemed fine logically, en was vulnerable to

glitching while clk was 1: it could go from 0 to 1 for an
instant during a time step, then back to 0 by the end of the
time step. This resulted in a bogus edge of the assertion
clock, causing a sudden evaluation and failure that was very
difficult to debug. Such enabled clocks should be specified
using @(clk iff en), which is defined as being checked

only when clk changes.

a5: assert property (@(clk iff en) p1);

4) Wrong argument type or size
Argument type or size seem like items clearly worth

checking, but they can be difficult to check due to the

flexibility offered by SVA. This is a case where more
detailed information is known about a library checker than
can be directly inferred from its syntax. For example, one
common misuse we have seen is a library invocation such as
the following:

 `ASSERTS_ONE_HOT(a6, sig1||sig2||sig3, …);

This assertion was intended to check that there is
precisely one high bit among sig1, sig2, and sig3. But as
written, this assertion merely looks at the one-bit value
attained by ORing all the signals together, and checks that
the bit is 1. As a result, errors due to multiple signals being 1
at the same time, the major intent of the assertion, could be
missed. The second argument should have been a
concatenated vector, as in

 `ASSERTS_ONE_HOT(a7, {sig1, sig2, sig3} …);

By making lint tools aware of our assertion library, this
and similar cases are easy to detect. In this particular case,
we know that a ONE_HOT assertion does not make sense
unless its data argument has more than one bit, so we can
flag the erroneous case a6 above. Even without a checker
library, a limited version of this lint rule can be implemented
by looking at the use of system functions such as $onehot.

5) $stable(sig[index]) with variable index
This rule is an interesting, subtle case that was discovered

by a user after many confused hours of debug. The problem
was that sampled-value functions like $stable (which
checks that a signal matches its previous value) look into the
past of all their arguments, including array indices. So if
index just changed from 5 to 6, instead of comparing

sig[6] to its previous value as the user intended,

$stable(sig[index]) would compare the current value

of sig[6] to the previous value of sig[5]. To prevent this,
we needed to add a rule checking that the index of a vector
signal used in a sampled-value function is an elaboration-
time constant or an automatic variable. This applies to all
the sampled-value functions, including $past, $stable,

$changed, $rose, and $fell. While this rule might
initially sound very limiting, in the majority of cases a simple
rewrite with a generate block solves the problem. For
example:

int q_pos;

a8: assert property ($stable(sig[q_pos]));

generate

 for (genvar i = min; i < max; i++) begin

 a9: assert property (

 (i == q_pos) |-> $stable(sig[i]));

 end

 endgenerate

In the above code, suppose q_pos transitions from 0 to 1.

When calculating stability, a8 will compare the current

sig[1] to the previous sig[0], while a9 will compare the
current sig[1] to the previous sig[1], since genvar i is

not sampled. The latter case is much more likely to match
user intent.

6) Non-sampled value in action message
This rule does not impact assertion correctness, but can

save many wasted hours of debug time. The problem is that
the way SVA is defined, most signals in assertions use values
sampled at the beginning of the time step, while the action
block, where messages are reported, uses current values
when it is executed. So, in the following assertion, the value
of sig used for evaluation will be from one cycle earlier than
the value printed:

 a10: assert property (sig) else
 $error("Bad: %d", sig);

This can mislead the user during debug. The language offers

a simple fix, in the $sampled function:
 a11: assert property (sig) else
 $error("Bad: %d",$sampled(sig));

Thus linting should check that concurrent assertions report

sampled values when applicable.

7) Property using negated implication

 We have seen some designers create properties using

negated implication operators, such as the following:

 a18: assert property (not (a |-> b));

 Using the DeMorgan-like laws that apply to formally

rewriting SVA properties, this is equivalent to

 a18: assert property (a && !b);

 Thus a18 actually means that a must be true every cycle,

and must always occur with !b. However, in the vast

majority of these cases, the actual user intention was that if

a occurs, it always results in !b:

 a19: assert property (a |-> !b);

 We therefore have a lint rule to flag any cases of negated

implication.

B. Possibly ignored assertions

The cases in this section are similar to those above,
except that rather than checking the wrong conditions, an
assertion may appear to be valid without actually checking
anything at all. Such cases are especially dangerous because
they are likely to lead to "false positives", where the designer
thinks some aspect of the design has been validated when in
reality it has actually been ignored.

1) Short-circuitable function has assertion
This rule checks that the user-instantiated functions are in

a place where the assertion is evaluated constantly.
SystemVerilog's short-circuiting feature causes some terms
of a Boolean expression to be ignored if the value is fully
determined by earlier terms, so there are some code locations
where an assertion will not always be evaluated. For
example, in a || expression, if the first term is 1, the overall

value is 1, and any further terms are irrelevant. Consider the
following snippet:

function bit legal_state(
 bit [0:3] current, bit valid);
 a12: assert #0 (valid |-> current != '0);
 legal_state = valid && $onehot(current);
endfunction

…

if (status || legal_state(valid, state))
…

Looking at the if condition, since the main operator is a
logical one, users usually order the arguments by complexity,
seeing performance as an important factor. In the above
example, each time status is equal to true, given that the

logical or operator || implies short-circuiting, the assertion

a12 will not get checked. This is a typical case that causes
missed checks which are hard to identify.

For the above example, there are simple solutions for
forcing evaluation of the function: either replace the binary
logical “or” operator with the binary bit-wise “or” operator
|, which does not allow short-circuiting, or switch the order
of the operator’s arguments (care must be taken in choosing
an appropriate solution for the situation, however; for
example, indiscriminate use of bitwise rather than logical
operators can degrade performance). To prevent situations
where the user-instantiated functions will not be evaluated
correctly due to short-circuiting, we added a rule that checks
that assertions always exist on a path where short-circuiting
will not affect their evaluation.

2) Action block with no system function
This rule checks a tricky class of user typos. When using

assertion blocks, the user usually wants to display data
regarding the assertion violation or to add an indication as to
what went wrong. It is unlikely that the user will add a
statement that does not contain a system function. This
becomes a serious issue when the user uses assertions
wrapped in macros, and forgets whether the macro is
responsible for adding the semicolon. See the following
example:

`define MY_MUTEX(sig) \
 assert #0($onehot0(sig))

 always @(posedge clk) begin

 ...
 `MY_MUTEX(fsm_1_state)

 `MY_MUTEX(fsm_2_state);

 end

Due to the missing semicolon after the first assertion, the

second assertion is treated as its action block, rather than as a
normal assertion which is continuously checked. While this
pitfall is easier to fall into when assertion macros are used, a
similar situation is possible using standard SVA assertions.
To prevent such cases, we require that each action block
include a system function.

3) Unbounded assertion always true due to weakness

This rule checks for possibly vacuous assertions. Starting
in the P1800-2009 standard of SystemVerilog, assertions
were defined as weak by default, which means that they are
considered true unless a finite simulation trace exists that can
disprove them. In contrast, a strong assertion can be
disproved through formal analysis on infinite traces. When
checking a protocol, the user usually adds assertions to check
its behavior, for example, that following a request it is
guaranteed that a grant will arrive at some point. When using
the open bound operators, the user must take care not to
write an assertion that might be vacuous due to the definition
of weakness. A typical case is the following:

 a13: assert property
 (@clk req |-> ##[1:$] gnt);

This assertion will pass even if no grant can ever arrive
since the operator ## appears in a weak context: no finite
trace can show that this is false. A strong version of the
property (using the SVA 2009 strong operator) can be
disproven in formal verification by demonstrating that
infinite traces exist where a req arrives and the system can

then enter an infinite loop where a gnt never does:

 a14: assert property
 (@clk req |-> strong(##[1:$] gnt));

In simulation, care must also be taken to ensure that
proper simulator options are used to report unbounded
assertions still incomplete at the end of simulation. These
may be treated as passes or failures on a case-by-case basis.

This issue is further complicated by the fact that before
the P1800-2009 standard ([4]), the strength and weakness of
properties in the language was not defined in a useful way,
and properties such as the one in a13 were strong. In the past
year we have seen code like this treated both as weak and
strong by different FV tools. Thus during linting it is
especially important to flag weak properties spanning
unbounded time windows which may be usefully handled by
some tools and treated as trivially true by others.

4) Implication in cover property
This rule checks for possibly vacuous coverage

properties. The implication operators are commonly used to
define assertions stating that an antecedent implies a
consequent. The result of the implication is either true or
false. A common mistake users make is to use the
implication in a cover property expression when the
intent is to cover the case when the antecedent is true and the
consequent follows. However, with these operators, if there
is no match of the antecedent, the implication evaluation
returns true by definition, creating a coverage report that is
not useful. In general this stems from the basic Boolean
logic rule that if A->B, and A is false, then the implication is
trivially true. Some tools may solve this by omitting such
vacuous coverage, but this is not required by the language
and so cannot be relied upon in all cases.

Consider the following example:

property next_state(state, clk);
 (@clk (state==REQ) |=> (state==SEND));

endproperty

a15: assert property (next_state(st, clk));
c15: cover property (next_state(st, clk));

The user wrote an assertion for a specific state in an FSM

along with a cover property. The assertion will fulfill the
intention, but the cover property will collect coverage each
time st is not equal to REQ, likely resulting in trivial reports
that all tests cover this case. A much more useful cover point,
probably what the user intended, would have been:

 c16: cover property (@clk

 (state==REQ)##1 (state==SEND));

To prevent cases such as that described above, we
disallow use of implication in cover properties.

5) Bad comparison to unknown

 This rule involves assertions containing X values and used

incorrectly in expressions. For example:

 a17: assert property (@clk !(a == 1’bx));

 The intention of the user is clear, but this is a constantly

true assertion that will never fail. To properly compare 4-

valued logic values, the === (triple equals sign) operator

must be used. While this situation is not unique to SVA, we

have found that this mistake is much more likely in practice

to appear in assertions. Thus we defined a lint rule reporting

any case of comparison to X or Z using the == operator.

6) Assertion with constant clock
We were surprised to see some RTL code in our projects

where assertions were clocked by a constant.

 parameter ALWAYS_ON = 1;

 a20: assert property

(@(ALWAYS_ON) (a || b));

Here the users have made a basic misinterpretation of the

language, thinking that a constant 1 will ensure that the

assertion will always be active. However, since assertions

are triggered at the edge of their relevant clock, this actually

had the opposite effect, permanently deactivating the

assertion. The correct solution would have been to use an

immediate assertion, since these are unclocked and thus are

inherently active at every time step their inputs change:

 a21: assert #0 (a||b);

To prevent such errors, we defined a new lint rule to detect

constant clocks in assertions.

C. Performance hazards

Assertion performance essentially depends on the way
the assertion is written. Performance of two equivalent
assertions may be absolutely different both in simulation and
in formal verification. For example, the assertion

a22: assert property (a |=> b);

introduces minimal simulation overhead, whereas the
equivalent

1
 assertion

a23: assert property (##[*]a |=> b);

may slow down the simulation [1].

The situation with assertion performance is complicated
by the fact that often simulation and formal verification have
different and even contradictory requirements for assertion
performance. This issue is discussed in detail in [2] (see also
the comparison of different simulation algorithms there). For
example, for many formal verification tools the performance
of assertions a22 and a23 is exactly the same. It is worth
noting that the requirements for assertion efficiency in
emulation are usually more similar to those imposed by
formal verification than to those imposed by simulation [2].

In this section we discuss lint rules related to
performance hazards. Some rules are relevant only for
simulation or formal verification; others are universal. While
there is nothing logically incorrect about these cases, their
cumulative performance costs may have a significant
negative impact on project success.

1) Many instances of single assertion
The justification for this rule seems pretty obvious, but it

is amazing how often it is violated in user code. The rule
states that one should avoid writing many assertions for
individual signal bits when it is possible to write one
assertion for the entire signal. For example, if one wants to
make sure that two vectors a and b have equal values, it is

sufficient to check that a == b instead of checking in a

procedural or in a generate loop that each bit of a is equal to

the corresponding bit of b. In the following code, while a24

and a25 are logically equivalent (assuming that a and b are
128-bit vectors), it is very likely that the version in the
generate loop is much less efficient for simulation:

 generate for (i = 0; i < 128; i++) begin

 a24: assert #0 (a[i] == b[i]);

 end

 endgenerate

a25: assert #0 (a==b);

2) Assertion in loop not using index
This rule addresses the situation where an assertion is in a

loop, but the actual expression being checked does not
involve the index of the loop. Thus, the loop is actually
irrelevant to the assertion, and it could easily have been
placed outside it, significantly reducing the number of
executions. Instead of executing once per clock tick (for
concurrent assertions) or when variables in their expression
change (for deferred or immediate assertions), such
assertions execute for each iteration of the loop. This means
that many of the executions are wasted, with repeated
execution of the same assertion on the same values. For
example:

1 Strictly speaking, these two assertions are not equivalent because they
have different attempts, but logically they check exactly the same thing.

 for (i = 0; i < 128; i++) begin

 a26: assert #0 (a == 1);

 end

There is a slight complication here: to be fully general,
this rule should take into account that an assertion may be
using a loop index indirectly – i.e., it may contain a variable
which depends on the loop index. However, in the common
case it may be sufficient simply to examine the assertion
expression, flag the assertion in lint if it does not use the
index, and let the designer waive if necessary.

3) Large or distant time windows
Large or distant time or repetition windows in sequences,

and $past functions with a large cycle count are inefficient
both in simulation and in formal verification. For example,
all sequences and expressions similar to the following should
be avoided: a[*2:1000], a[*999:1000], ##[2:1000],

##[999:1000], $past(a, 1000). In formal verification
and in emulation it is usually much more efficient to use
unbounded time or repetition windows in this case, e.g.
a[*2:$].

4) Unbounded time or repetition window in antecedent
Unbounded time and repetition windows in an assertion

antecedent may be costly in simulation, as in this example:

 a27: assert property (a[*1:$] |=> b);

Most simulators will launch a new checking thread for
this property every time a is active. This can lead to an
inefficient explosion of threads. Thus any case of an
unbounded time window in an assertion antecedent should be
reported.

This rule forbids using unbounded repetition windows at
the beginning or end of the antecedent, and unbounded time
windows at any place in the antecedent. Unbounded
repetition windows in the middle of the antecedent, though
possibly presenting some performance risk, are actually quite
common, as shown in the following example:

a28: assert property (

 req ##1 gnt[->1] |=> done);

Here it is checked that the done signal is asserted after
the request has been granted. There is an implicit unbounded
repetition in the antecedent, as gnt[->1] is equivalent to

!gnt[*] ##1 gnt. This assertion is generally efficient
when the system is behaving in a reasonable way, i.e., when
a request is granted within several clock cycles.

5) Using cover sequence rather than cover property
SVA defines two versions of the concurrent cover

statement: cover sequence and cover property. The

cover sequence statement must report every match of the

sequence for each attempt, while the cover property
statement is only required to report one match per attempt.
An attempt occurs whenever the sequence being covered
begins evaluation. The cover sequence statement is very

rarely needed in practice, and in many cases is extremely
inefficient in simulation. For example, assume the reset
signal falls once, and we have the following two cover
points:

c29: cover sequence ($fell(rst) ##[*] b);

c30: cover property ($fell(rst) ##[*] b);

Cover c29 will be active continuously after the fall of rst,

reporting a coverage success every time b is true. Cover c30

will report a success the first time b is true, and afterwards
cause no further overhead in simulation.

6) Applying $past to every argument of an expression

The sampled value function $past imposes performance
overhead in both simulation and formal verification. This
rule flags cases of redundant $past usage: instead of

applying $past to all arguments of an expression, it is more
efficient to apply it to the expression result. For example,
instead of $past(a) * $past(b) == $past(c) one

should write $past(a * b == c).

7) Antecedents with empty match
Properties with antecedents that admit an empty match

are redundant and often do not correctly reflect user intent.
In addition, they will be triggered every time step, which
causes inefficiency. For example (see [2]), a[*] |-> p is

equivalent to a[+] |-> p, and a[*] |=> p is equivalent

to p. Therefore, all assertions with antecedents that admit an
empty match should be reported.

III. NON-LINT TECHNIQUES AND FUTURE ADDITIONS

It is important to point out that we have not solved all
SVA usage problems: some require different or more
complex procedures than linting to detect, and others are
more easily addressable through tool or language extensions.
In this section we show examples of issues that fall into these
categories.

A. Unsupported SVA 2009 constructs

We observed, in numerous cases, use of constructs that,
while legally in the language, are unsupported by some of
our EDA tools. For example, the following code makes use
of a global clocking future value function, a nice feature in
SVA 2009 that makes it possible to look ahead one tick of
the fastest clock:

a31: assert property (

 a |-> $rising_gclk(b));

We need to find a way to enable our RTL to take
advantage of these features when useful, since our main
simulation and formal tools do support them, but to be able
to turn them off when compiling for a flow that does not
support them.

Our solution is based on leveraging our common
assertion library. Assertions that use such constructs are
required to protect them with an `ifdef flag: if
SVA_LIB_SVA2005 is defined, we replace the assertion
code with a constant 1. We lose the checking of that
assertion in such cases, but are able to smoothly compile the
model for non-2009-supporting tools.

B. Rules requiring formal engines

Some rules are too complex to be implemented in
preprocessing, or may be more easily implemented with
support from a formal verification engine.

An example is the performance hazard of liveness
assertions in formal verification, which we detect in the front
end of our formal property verification tool rather than
during linting. From the point of view of formal verification,
all assertions can be classified as either safety or liveness

2

properties [3]. A counterexample of a safety property is
always finite. All other properties are liveness properties.
Checking liveness properties in formal verification is much
more expensive than checking safety properties [8]. It
sometimes happens that people write liveness assertions
without intending to. This rule flags all liveness assertions to
make sure they are intentional. Consider the following
assertions:

a31: assert property(

 $fell(rst)|->s_eventually a);

a32: assert property (
 @clk not(write ##1 read));

Both assertions a31 and a32 are liveness. Assertion a31

states that a will eventually be true, and its liveness is

inherent. The likely intent of assertion a32 is to state that

read cannot follow write directly. However, assertion a32

also checks that after each write the clock ticks at least
once. This check is usually not intended, but it makes formal
verification of a32 much more costly. The proper way to
write this assertion is not strong(write ##1 read).

C. Glitch sensitivity for deferred assertions

As originally defined in SVA 2005, immediate assertions
in procedural code were vulnerable to glitch issues, whereby
a temporary signal value during relaxation could result in an
assertion failure even though the settled signal values at the
end of the time step would be legal. To solve this problem,
SVA 2009 introduced deferred assertions, whose evaluation
would be deferred until after model activity. Unfortunately,
in the 2009 definition deferred assertions could still cause
glitches due to iteration with new values set by the testbench;
once the testbench changed signal values, there could be
further model activity. Thus we have been working to
introduce a new construct in the 2012 iteration of the
standard: final assertions. Final assertions will mature after
all model and testbench activity is complete, and thus not be
vulnerable to glitches.

D. Poor X/Z behavior for bit-vector functions

Bit-vector functions are not well suited for checking 4-
valued data. For example, $onehot(v) returns 1 even if

several bits of the vector v are X or Z, which is usually not
the intended behavior. To address this, we currently use
solutions such as adding a check that all bits have a known
value: $onehot(v)&& !$isunknown(v). To deal with this
problem, the emerging standard provides a new system

2 By liveness we do not understand the pure liveness as defined in [3], but
all properties that are non-safety.

function, $countbits, that generalizes the existing bit-
vector functions and takes 4-valued data into account.
While we have been considering a lint rule to check that bit-
vector functions are always used in conjunction with
$isunknown, language change will enable a more robust
solution.

E. System task $asserton not waking up always procedures

SVA has a mechanism for disabling/enabling assertion
execution using the functions $assertoff/$assertkill

and $asserton. However, $asserton does not affect the

sensitivity list of the always procedures always_comb,

always_latch, and always @*. Consider the following
example:

always_comb begin … assert #0 (a); …; end

If assertions were previously disabled and then became
enabled with $asserton, the assertion above would be

checked for the first time when the value of a changes, and

not when the assertion becomes enabled. If a was and
remained low at the time of assertion enabling, the assertion
will not fire. We have been investigating tool extensions to
handle this special case, forcing such assertions to be
triggered after an $asserton.

F. System task $asserton/kill not performing as necessary

to handle multiple power planes

For the purposes of power control, assertions should be
switched on and off during simulation. The language allows
switching assertions on and off in a specific hierarchy, but in
some cases this capability is not sufficient. Imagine that it is
required to switch off all the assertions in the hierarchy

top.block1 except those in the sub-hierarchy

top.block1.subblock2. An attempt to kill all the

assertions in top.block1 and then to reenable them in

top.block1.subblock2 results in killing all active

attempts of assertions in top.block1.subblock2. The
workaround for this situation is to enable and disable
assertions individually. In the emerging standard it is planned
to introduce block-level assertion locking and unlocking.
This will make it possible to lock assertions in the sub-block,
kill them in the outer block, and then unlock the assertions in
the sub-hierarchy without affecting their execution there.

G. Performance hazard due to global clocking

Assertions governed by the global clock are usually
efficient in formal verification. However, in the presence of
many clock domains, the global clock should be the finest-
grained event among all the clocking events. As a result,
assertions governed by the global clock may significantly
slow down simulation. It is therefore recommended to enable
such assertions only when checking blocks belonging to one
or a few clock domains. To address this issue for the full
chip, the emerging standard allows different definitions of
the global clock for different design hierarchies.

IV. RESULTS AND CONCLUSION

Overall, the use of SVA has been a very effective
technique in our design and validation environments.
Simulation failures are much more easily debugged when a

nearby assertion can help point to the root cause of a
problem, and our formal verification environments are built
using SVA. One recent project reported that 20% of all pre-
silicon RTL logic bugs were found with the aid of assertions,
while only 2% of the bugs were actually due to incorrect
assertions. The 20% is an underestimate; many bugs are
found by assertions in early models that the designer has not
yet checked into the database. In addition, some of our flows,
such as emulation, have moved to assertions as their primary
error-checking method.

Naturally, any instance of an incorrect assertion demands
attention. We have been gradually implementing the rules
presented in this paper in response to discovering the actual
issues in production on our major CPU projects. As a result
we have been continually improving our confidence in our
SVA assertion checking. While disturbing, the corner cases
presented here have been very rare, and do not negate the
overall benefits of SVA.

Ultimately, the integration of SVA has been a strong win
for Intel. It has dramatically improved our validation
environment as well as strengthened integration between
validation and design. With careful linting as described in
this paper, we hope to continue strengthening our validation
coverage and making our SVA usage even more successful.

ACKNOWLEDGMENTS

We would like to acknowledge the contributions of
Kedar Jog, who implemented most of the rules discussed in
the paper, and Wayne Clift, who helped identify many of the
tricky SVA usage issues.

REFERENCES

[1] Roy Armoni, Dmitry Korchemny, Andreas Tiemeyer, Moshe Y.

Vardi, and Yael Zbar, Deterministic Dynamic Monitors for Linear-
Time Assertions. FATES/RV 2006

[2] Eduard Cerny, Surrendra Dudani, John Havlicek, and Dmitry Kor-

chemny, The Power of Assertions in SystemVerilog.: Springer, 2010.
[3] Leslie Lamport, "Proving the Correctness of Multiprocess Programs,"

IEEE Transactions on Software Engineering, vol. SE-3, no. 2, pp.
125-143, March 1977.

[4] "IEEE Standard for SystemVerilog – Unified Hardware Design,
Specification, and Verification," IEEE STD 1800-2009, 2009.

[5] Janick Bergeron, Eduard Cerny, and Andy Nightingale, Verification
Methodology Manual for SystemVerilog.: Springer, 2005.

[6] SystemVerilog Org page: http://www.systemverilog.org/

[7] Erik Seligman, Laurence Bisht, Wayne Clift, "Stumbling on SVA:
Pitfalls from Real Intel Projects", Design Automation Conference,
2011.

[8] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer
Strichman, and Yunshan Zhu, “Bounded model checking," Advances
in Computers, vol. 58, pp. 117-148, 2003.

http://www.informatik.uni-trier.de/~ley/db/conf/fates/fates2006.html#ArmoniKTVZ06
http://www.systemverilog.org/

