
SystemRDL to PSS

Anupam Bakshi
Amanjyot Kaur

BASIC TO PRO

1

Agenda

• Verification Constructs
– HDL PATH
– Constraint
– Structural Testing

• Perl preprocessor
• SystemRDL Usage Methodology
• SystemRDL Editor
• Introduction to Portable Standard Stimulus (PSS)
• SoC HW/SW Interface Layer (HSI)
• Example Sequence with HSI
• Introduction to Sequences
• Problems faced with sequences
• Proposed Solution
• ISS+PSS tool flow example: WISHBONE DMA
• Conclusion

• Introduction
• Components

– Field
– Register
– Register File
– Address Map
– Memory

• Signals
• Address Allocation
• Enumerations
• Parameters
• Structures
• Property Assignment
• Special Register

– Interrupt
– Counters

2

PSS Tool

Create high-level
scenarios

Low-level
sequences

handled by exec
blocks

Synthesize the
tests/scenarios

ISequence

Uses register map
to write

sequences on it

Generate
implementation
level sequences

on various
platforms

Generated exec
blocks can be

directly used in
PSS

SV TASKS
C

FUNCTIONS

Register map
in

SystemRDL

SystemRDL to PSS

EXEC BLOCK

3

CPU & IP Hardware Software Interface

CPU AXI /AHB Interconnect Fabric AP
B

Br
id

ge

AP
B

bu
s

Pr
og

ra
m

m
ab

le

Sl
av

e

Pr
og

ra
m

m
ab

le

Sl
av

e

Pr
og

ra
m

m
ab

le

Sl
av

e

Pr
og

ra
m

m
ab

le

Sl
av

e

Pr
og

ra
m

m
ab

le

Sl
av

e

AP
B

Sl
av

e
AP

B
Sl

av
e

C/C++
Program

Assembly
Slave w/
Memory

Memory

Sensors

Sensors

CPU HSI is the ISA
ARM, RISC-V etc

The slaves are programmed by
reading/writing to the
embedded register

interrupts

4

SystemRDL Importance and History
• An embedded system consists of Hardware and Software components.
• SystemRDL is a textual representation of Hardware-Software interface

consisting of addressable registers, interrupts, counters etc.
• History

– Created at Cisco, released as Accellera 1.0 standard.
– Version 2.0 released in Jan 2018

• Added Verification constructs, parameterization, data types etc.
• Reference:

https://www.accellera.org/images/downloads/standards/systemrdl/SystemRDL_2.0_Jan2018.pdf

• Support specification centric flow, automatically generate
– RTL bus interface
– Verification model
– C header and API
– Documentation

5

https://www.accellera.org/images/downloads/standards/systemrdl/SystemRDL_2.0_Jan2018.pdf

IDesignSpec™ helps IP/SoC Design architects and engineers to create an executable specification for registers and automatically generate
output for SW and HW teams.

Specifications can
be written in MS
Word, MS Excel,
LibreOffice or text-
based industry
standard formats
such as
SystemRDL, RALF
or IP-XACT.

IDesignSpec captures
simple as well as special
registers, signals,
interrupts, and
generates synthesizable
RTL, UVM model,
C/C++ Headers, HTML
or PDF.

IDesignSpec™ – Centralize Register Design/Verification from
a Golden Specification

6

Interrupt Registers

17 16 15 14 13 12 11 10

9 8 7 6 5 4 3 2 1 0

Example

register1

register2

register_group

0x4

0x8

0xc

register3

register4

register5

0 0 0 0 0 0 1 0 0 0 Field1

0 0 0 0 0 1 0 1 Field2

0 0 0 0 0 0 0 0 0 1 Field3
18192021222324252627

Reserved
2831

sw access ro

hw access rw

sw access wo

hw access ro

sw access rw

hw access wo

register6

register7

0x40

0x50

register80x54

Status register

Enable register

Pending register

7

Definitive definition :
In definitive definition we instantiate the component in a
separate statement. It is suitable for reuse.

Anonymous definition:
In Anonymous definition we instantiate the component in the
same statement. It is suitable for components that are used
once.

addrmap top {

};

regfile reggrp1 {

};
reggrp1 reggrp1;

reg r1 {

};
r1 reg1[3] @0x100;

regwidth = 32;

Repeat value

Offset value

regwidth

field f1 {

};
f1 field1[31:0] = 31’b0;

Default value

Bit information

hw = rw;
sw = rw;

addrmap top{
regfile {

reg {
desc=“Specify the register”;
field {} field1;
} reg1;

} reggrp1;
};

Describes the
component’s

purpose.

Default
regwidth = 32,
fieldwidth=1,

offset values = 0,
default value =0
sw=rw, hw=rw,

taken

Defining Components

8

3 bits from
29 down

to 31

The field component is the lowest-level structural component, it stores the bit information of a register .

Definitive field definition:
field [#(field_parameter_instance [,
field_parameter_instance]*)] field_instance_element [,
field_instance_element]*;
e.g. field f { };

f f1;
Anonymous field definition:
field {field_body} field_instance_element
[,field_instance_element]*;
e.g. field { } f1, f2;

e.g.
field { } singlebitfield; // 1 bit wide, not explicit about position
field { } somefield[4]; // 4 bits wide, not explicit about position
field { } somefield[3:0]; // a 4 bits field with explicit indices

Field ordering in registers
Field ordering in
registers

Syntax

lsb0 field_type field_instance [high:low]

msb0 field_type field_instance [low:high]

addrmap top{
lsb0;
reg{
field {} A[3]= 3’b110;
field {} B[15:8];
} regA;
};

3 bits from
2 down to 0

Lsb0
1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0

Msb0

- - - - - - - - - - - - - - - - 0 0 0 0 0 0 0 0 - - - - - 1 1 0

0 1 1 - - - - - - - - - - - - - 0 0 0 0 0 0 0 0 - - - - - - - -

addrmap top{
msb0;
reg{
field {} A[3]= 3’b110;
field {} B[8:15];
} regA;

}; AB

A B

Field

9

Software Access Properties

Properties Description Dynamic

rclr Clear on read Yes

rset Set on read Yes

onread Read side-effect Yes

woset Write one to set Yes

woclr Write one to clear Yes

onwrite Write function Yes

swwe Software write-enable active high Yes

swwel Software write-enable active low Yes

swmod Assert when field is modified by
software (written or read with a set or
clear side effect)

Yes

swacc Assert when field is software accessed Yes

singlepulse The field asserts for one cycle when
written 1 and then clears back to 0 on
the next cycle. This creates a single-cycle
pulse on the hardware interface

Yes

reg register1{
field {} fld1,fld2;
field {
hw = rw;
sw = rw;
onread = rclr;
onwrite = woset;
swacc;
} fld3;
field {
hw = r;
sw = w;
singlepulse;
} fld4;

};
addrmap myAmap{
register1 reg1;
reg1.fld1 -> swwel = true;
reg1.fld2 -> swmod = true;
};

10

Property Description Dynamic

we Write-enable (active high) Yes

wel Write-enable (active low) Yes

anded Logical AND of all bits in field Yes

ored Logical OR of all bits in field Yes

xored Logical XOR of all bits in field Yes

fieldwidt
h

Determines the width of all instances of the field. This
number shall be a numeric. The default value of fieldwidth
is undefined

Yes

hwclr Hardware clear. This field need not be declared as
hardware-writable

Yes

hwset Hardware set. This field need not be declared as
hardware-writable

Yes

hwenable Determines which bits may be updated after any write
enables. Bits that are set to 1 will be updated

Yes

hwmask Determines which bits may be updated after any write
enables. Bits that are set to 1 will not be updated

Yes

reg register1{
field {
fieldwidth = 5;

}fld1,fld2,fld3;
field {}fld4;
field {}fld5;

};
addrmap myAmap{
register1 reg1,reg2;
reg1.fld1 -> we = true;
reg1.fld2 -> wel = true;
reg1.fld3 -> anded = true;
reg2.fld1 -> hwenable =
reg1.fld1;
};

11

Hardware Access Properties

A register is defined as a set of one or more SystemRDL field instances that are atomically accessible by software at a
given address.

Definitive register definition
[external] reg_name [#(parameter_instance [, parameter_instance]*)]
reg_instance_element [, reg_instance_element]* ;
Anonymous register definition
reg {[reg_body]}
[external] reg_instance_element [, reg_instance_element]*;

Register Instantiation into three forms:

Register
Instantiation
forms

Description

internal all register logic is created by the SystemRDL compiler for
the instantiation (the default form)

external the register/memory is implemented by the designer and
the interface is inferred from instantiation

alias Alias registers are used where designers want to allow
alternate software access to registers. SystemRDL allows
designers to specify alias registers for internal or external
registers

reg reg1 {
field {
hw=w;
sw=rw;
} field1;

};
reg some_intr {
field {
hw=w;
sw=rw;
onwrite = woclr;
} field2;

};
addrmap foo {
some_intr event1;
external reg1 reg1;
alias event1 some_intr

event1_for_dv;
};

12

Register

Properties Description Dynamic

regwidth Specifies the bit-width of the register
(power of two)

No

accesswidth Specifies the minimum software access
width (power of two) operation that may be
performed on the register

Yes

errextbus The associated external register has error
input

No

intr Represents the inclusive OR of all the
interrupt bits in a register after any field
enable and/or field mask logic has been
applied

No

shared Defines a register as being shared in
different address maps

No

RDL:
addrmap top {
reg reg1{
errextbus = true;
regwidth = 32;
field {
hw = rw;
sw = rw;

} fld;
};
external reg1 reg1 @0x0;
};

Register Properties

13

A memory is an array of storage consisting of a number of entries of a given bit width. The physical memory implementation is
technology dependent and memories shall be external.

Definitive memory definition
external mem_name [#(parameter_instance [, parameter_instance]*)]
mem_instance_element [, mem_instance_element]* ;

Anonymous memory definition
mem {[mem_body]} external mem_instance_element [,
mem_instance_element]* ;

Properties Description Dynamic

mementries The number of memory entries No

memwidth The memory entry bit width No

sw Programmer’s ability to read/write a memory Yes

mem fixed_mem #(longint unsigned
word_size = 32, longint unsigned
memory_size = word_size * 4096) {

mementries = memory_size/word_size ;
memwidth = word_size ;

} ;

RDL

Memory Component

14

 A register file is as a logical grouping of one or more register and register file instances.
 The only difference between the register file component (regfile) and the addrmap component is an addrmap defines

an RTL implementation boundary where the regfile does not.

Definitive Register File Definition
[external | internal] regfile_name [#(parameter_instance [, parameter_instance]*)]
regfile_instance_element [, regfile_instance_element]* ;

Anonymous Register File Definition
regfile {[regfile_body]}
[external | internal] regfile_instance_element [, regfile_instance_element]* ;

Properties Description Dynamic

alignment Specifies alignment of all instantiated components
in the associated register file

No

sharedextbus Forces all external registers to share a common bus No

errextbus For an external regfile, the associated regfile has an
error input

No

regfile fifo_rfile {
reg {field {} a;} a;
reg {field {} a;} b;

};
regfile top_regfile {

external fifo_rfile fifo_a;
external fifo_rfile fifo_b[64];
sharedextbus;

};

addrmap top{
top_regfile top_regfile;

};

Register File Components

15

 An address component map (addrmap) contains registers, register files, memories, and/or other
address maps and assigns a virtual address or final addresses.

 Specifies RTL module boundary

Definitive Definition
component new_component_name [#(parameter_definition [, parameter_definition]*)]
{[component_body]} [instance_element [, instance_element]*];
Anonymous Definition
component {[component_body]} instance_element [, instance_element]*;

Properties Description Dynamic

alignment Alignment of all instantiated components in the address map No

sharedextbus Forces all external registers to share a common bus No

errextbus The associated addrmap instance has an error input No

littleendian Uses little-endian architecture in the address map Yes

addressing Controls how addresses are computed in an address map No

rsvdset The read value of all fields not explicitly defined is set to 1 if rsvdset is True; otherwise,
it is set to 0

No

rsvdsetx The read value of all fields not explicitly defined is unknown if rsvd-setX is True No

msb0 Specifies register bit-fields in an address map are defined as 0:N versus N:0 No

lsb0 Specifies register bit-fields in an address map are defined as N:0 versus N:0 No

Addrmap

16

addrmap top{

errextbus;
rsvdset;
reg reg1 {

field {

} fld1[31:20];

field {

} fld2[7:5];

};

reg reg2 {

field {

} fld1[32];

};

reg1 reg1 @0x0;

external reg2 reg2 @0x4;

};

Addrmap - Contd..

17

Signals

• “Signals” creates ports, at the block or chip level, and connect certain internal design signals to the external world.
• User can choose what gets connected to these signals and where these signals are used in the generated RTL using properties

Block1

Signals
(Error Interrupts)

Block2

Block1

Reg Group

Reg
A
Reg
B

Normal reg

Counter
reg
Interrupt reg

Chip

Signals
(Error Resets)

Signals (ref)
(Error Interrupts)

Signals (ref)
(Error Resets)

Keyword Description Dynamic

signalwidth Width of the signal No

sync Synchronous to the clock of the component Yes

async Asynchronous to the clock of the component Yes

cpuif_reset Default signal to use for resetting the software
interface logic. This parameter only controls the
CPU interface of a generated slave

Yes

field_reset Default signal to use for resetting field
implementations

Yes

active low Signal is active low (state of 0 means ON) Yes

active high Signal is active high (state of 1 means ON) Yes

resetsignal Reference to the signal used to reset the field Yes

18

addrmap top {
signal{activelow;async;field_reset;} pci_soft_reset;
signal{async;activelow;cpuif_reset;} pci_hard_reset;

reg PCIE_REG_BIST {
regwidth = 8;
field {
hw = rw;
sw = r;
fieldwidth = 4;

} cplCode [3:0];
field {
hw = rw;
sw = rw;
fieldwidth = 1;
resetsignal = pci_hard_reset;

} capable [7:7]=0;
};
PCIE_REG_BIST PCIE_REG_BIST @0x0;
};

Signals - Contd..

19

Address allocation operators
a) @ expression : Specifies the address for the component

instance.
b) += expression : Specifies the address stride when

instantiating an array of components (controls the
spacing of the components).

c) %= expression : Specifies the alignment of the next
address when instantiating a component (controls the
alignment of the components).

Addressing Modes:
a) Compact : Specifies the components are packed tightly

together while still being aligned to the accesswidth
parameter

b) Regalign : Specifies the components are packed so each
component’s start address is a multiple of its size

c) fullalign : The assigning of addresses is similar regalign,
except for arrays.

Instance Alignment Addressing Modes

Instance address allocation

20

addrmap top {
reg r1 {
field { } f1[3:0];
};
r1 reg1[4] @0x4;

};

addrmap top {
reg r1 {
field { } f1[3:0];
};
r1 reg1[4] @0x4 += 10 ;

};

Offset (@) Stride (+=)
reg1[0]

reg1[1]

reg1[2]

empty space

empty space

0x4-0x7

0xE-0x12

0x18-0x1B

0x22-0x26

reg1[2]

reg1[3]
0xB

0x10

0x8

reg1[0]

reg1[1]

reg1[2]

reg1[3]

0x4

reg1[3]

empty space

21

addrmap b1{
addressing = compact;
reg {
regwidth = 8;
field {
} fld[7:0];

} reg1;
reg {
regwidth=64;
field {
} fld1[63:0];

} reg2;
reg {
regwidth = 32;
field {
} fld2[31:0];

} reg3[20];
};

• It specifies the components are packed tightly together.

reg2

reg1

reg3

0x0 -0x0

0x1-0x8

0x9-0xc

Compact

22

addrmap b1{
addressing = regalign;
reg {
regwidth = 8;
field {
} fld[7:0];

} reg1;
reg {
regwidth=64;
field {
} fld1[63:0];

} reg2;
reg {
regwidth = 32;
field {
} fld2[31:0];

} reg3[20];
};

• It specifies the components are packed so each component’s start address is a
multiple of its size

reg10x0-0x0

0x8-0xf

0x10-0x13

reg2

reg3

empty space

Regalign

23

addrmap b1{
addressing = fullalign;
reg {
regwidth = 8;
field {
} fld[7:0];

} reg1;
reg {
regwidth=64;
field {
} fld1[63:0];

} reg2;
reg {
regwidth = 32;
field {
} fld2[31:0];

} reg3[20];
};

• The assigning of addresses is similar regalign, except for arrays.
• The alignment value for the first element in an array is the size in bytes of the whole array (i.e., the size of an array

element multiplied by the number of elements), rounded up to nearest power of two.

reg1 0x0- 0x0

0x8-0xf

0x80-0x83

reg2

reg3

empty space

empty space

Fullalign

24

Enumerations
enum Enum1 {
VAL1 = 3'h0 ;
VAL2 = 3'h1 ;
} ;
enum Enum2 {
VAL11 = 3'h0 ;
VAL22 = 3'h1 ;
VAL33 = 3'h2 ;
} ;
property MyUDP { component = addrmap ; type = Enum1;};
addrmap top {
reg some_reg { field {} a[3] ; } ;
addrmap {
MyUDP = Enum1::VAL1 ; // Allowed
some_reg regA ;
regA.a -> reset = Enum1::VAL2 + Enum2::VAL33;

} submap1 ;
addrmap {
reg {
field {
hwclr=longint'(Enum1::VAL1) ==

longint'(Enum2::VAL11);
} b;
} other_shared_reg ;

} submap2 ;
};

Keyword Description Dynamic

enum It encloses a set of constant named integral
values into the enumeration’s scope

no

encode Binds an enumeration to a field. Yes

• It encloses a set of constant named integral values into the enumeration’s scope

Syntax: An enum component definition appears as follows.
enum enum_name { encoding; [encoding;]* };

Enumerator references shall be prefixed with their
enumerated type name and two colons (::),
e.g., MyEnumeration::MyValue.

25

• All definitive component types, except enumerations and constraints, may be parameterized using
Verilog-style parameters.

reg myReg #(longint unsigned SIZE =32){
regwidth = SIZE;
field {
} data[SIZE – 1];

};
addrmap myAmap {

myReg reg32;
myReg reg32_arr[8];
myReg #(.SIZE(16)) reg16;
myReg #(.SIZE(8)) reg8;

};

Parameter
used

Parameter
override during

instantiation

Defining component parameters

26

struct configIP {
boolean Reg1_is_present;
boolean Reg2_is_present;

};
struct configTop {

configIP IP1;
configIP IP2;

};
addrmap ip #(configTop t){
reg r1 {

ispresent = t.IP1.Reg1_is_present;
field {}f1;

};
reg r2{

ispresent = t.IP2.Reg2_is_present;
field {}f1;

};
r1 r1;
r2 r2;

};
addrmap top {
ip #(.t(configTop'{IP1:configIP'{Reg1_is_present:true},

IP2:configIP'{Reg2_is_present:false} })) ip1;
ip #(.t(configTop'{IP1:configIP'{Reg1_is_present:false},

IP2:configIP'{Reg2_is_present:true} })) ip2;
};

Syntax: A struct definition appears as follows.
[abstract] struct struct_name [: base_struct_name]

{{member_type member_name;}*};

struct base_struct {
bit foo ;

} ;

struct derived_struct : base_struct {
longint unsigned bar ;

} ;

struct final_struct : derived_struct {
// final_struct's members are foo, bar, and baz.
string baz ;

} ;

Deriving structures
A struct declaration may derive from another struct by
specifying the base struct’s name after a colon (:),

Struct

27

reg {
default name =”def
name”;
field f_type {
name = “other name”;

};
f_type f1;
f1->name = “Dynamic

Assignment”;
} some_reg;

reg {
default name =”def
name”;
field f_type {
name = “other name”;

};
f_type f1;
f1->name = “Dynamic

Assignment”;
} some_reg;

reg {
default name =”def
name”;
field f_type {
name = “other name”;

};
f_type f1;
f1->name = “Dynamic

Assignment”;
} some_reg;

reg {
default name =”def
name”;
field f_type {
name = “other name”;
we;

};
f_type f1;
f1->name = “Dynamic

Assignment”;
} some_reg;

1 2 3 4

Dynamic Assignment Property Assignment Default Property
Assignment

SystemRDL Default
Value for Property type

Property Assignment

• When a property is assigned
after the component is
instantiated, the assignment
itself is referred to as a
dynamic assignment.
Syntax:
instance_name ->
property_name [= value];

• A specific property shall
only be set once per scope.

Syntax:
property_name[=expression];

• A specific property
default value shall only
be set once per scope.

• Property takes its
default value

Syntax
default property_name [= value];

28

addrmap block_name {
reg Status1 {

regwidth = 32;
field {

hw = rw;
sw = rw;
onread = r;
onwrite = woclr;
intr;

} Fld[31:0] = 32'h0;
};
reg Status2 {

regwidth = 32;
field {

hw = rw;
sw = rw;
onread = r;
onwrite = woclr;
intr;

} Fld[31:0] = 32'h0;
};
reg Enable1 {

regwidth = 32;
field {

hw = rw;
sw = rw;
onread = r;
onwrite = w;

} Fld[31:0] = 32'h0;
};

reg Mask1 {
regwidth = 32;
field {

hw = rw;
sw = rw;
onread = r;
onwrite = w;

} Fld[31:0] = 32'h0;
};

Status1 Status1 @0x0000;
Status2 Status2 @0x0004;
Enable1 Enable1 @0x0008;
Mask1 Mask1 @0x000C;
Status1.Fld -> enable = Enable1.Fld;
Status2.Fld -> mask = Mask1.Fld;

};

Keyword Description

intr Interrupt, part of interrupt logic for a register

posedge Interrupt when next goes from low to high

negedge Interrupt when next goes from high to low

bothedge Interrupt when next changes value

level Interrupt while the next value is asserted and maintained
(the default)

nonsticky Defines a non-sticky (hierarchical) interrupt (not locked)

enable Defines an interrupt enable; i.e., which bits in an
interrupt field are used to assert an interrupt

mask Defines an interrupt mask ; i.e., which bits in an interrupt
field are not used to assert an interrupt

haltenable Defines a halt enable (the inverse of haltmask); i.e.,
which bits in an interrupt field are set to de-assert the
halt out.

haltmask Defines a halt mask (the inverse of haltenable); i.e.,
which bits in an interrupt field are set to assert the halt
out

sticky Defines the entire field as sticky; i.e., the value of the
associated interrupt field shall be locked until cleared by
software (write or clear on read)

• Interrupt is a signal generated and sent to the processor by hardware or software indicating an event that
needs attention

Interrupt

29

addrmap block_name {
reg incr_reg {

regwidth = 32;
field {
hw = na;
sw = rw;
counter;
incrvalue = 2;
incrsaturate = 15;
incrthreshold = 10;
} Fld[31:0] = 32'h0;

};
reg decr_reg {

regwidth = 32;
field {
hw = na;
sw = rw;
counter;
decrvalue = 2;
decrthreshold = 10;
decrsaturate = 5;
} Fld[31:0] = 32'h0;

};
incr_reg incr_reg @0x0000;
decr_reg decr_reg @0x0004;

};

Keyword Description

counter Field implemented as a counter.

incrvalue Increment counter by specified value.

decrvalue Decrement counter by specified value.

incrsaturate Indicates the counter saturates in the incrementing direction.

decrsaturate Indicates the counter saturates in the decrementing direction.

Incrthreshold Indicates the counter has a threshold in the incrementing direction.

decrthreshold Indicates the counter has a threshold in the decrementing direction.

decrwidth Width of the interface to hardware to control decrementing the counter externally.

incrwidth Width of the interface to hardware to control incrementing the counter externally.

threshold This is an alias of incrthreshold.

saturate This is an alias of incrsaturate.

underflow Underflow signal asserted when counter underflows or wraps.

overflow Overflow signal asserted when counter overflows or wraps.

incr The counter increment is controlled by another component or signal (active high).

decr The counter decrement is controlled by another component or signal (active high).

• A counter is a special purpose field which can be incremented or decremented by constants or
dynamically specified values.

Counter

30

Property Description Dynamic

hdl_path Assigns the RTL hdl_path for an addrmap,
reg, or regfile

Yes

hdl_path_slice Assigns a list of RTL hdl_path for a field or
mem

Yes

hdl_path_gate Assigns the gate-level hdl_path for an
addrmap, reg, or regfile

Yes

hdl_path_gate_slice Assigns a list of gate-level hdl_path for a
field or mem

Yes

HDL PATH

An hdl_path_slice or hdl_path_gate_slice can be put on a field
or mem component. It can be used when the corresponding
RTL or gate-level netlist is not contiguous.

addrmap blk_def #(string ext_hdl_path = "ext_block"){
hdl_path = "int_block" ;
reg {

hdl_path = { ext_hdl_path, ".externl_reg" } ;
field {

hdl_path_slice = '{ "field1" } ;
} f1 ;

} external external_reg ;
reg {

hdl_path = "int_reg" ;
field {

hdl_path_slice = '{ "field1" } ;
} f1 ;

} internal_reg ;
} ;
addrmap top {

hdl_path = "TOP" ;
blk_def #(.ext_hdl_path("ext_block0")) int_block0 ;
int_block0 -> hdl_path = "int0" ;
blk_def #(.ext_hdl_path("ext_block1")) int_block1 ;
int_block1 -> hdl_path = "int1" ;

};

Syntax:
hdl_path = "path";
hdl_path_gate = "path";
hdl_path_slice = ‘{"path" [, "path"]*};
hdl_path_gate_slice = ‘{"path" [, "path"]*};

• By specifying an HDL path, the verification environment can have direct access to memory, register, and
field implementation nets in a Design Under Test (DUT).

31

Property Description Dynamic

constraint_disable Specifies whether to disable (true)
or enable (false) constraints

Yes

constraint max_value { this < 256; };
enum color {
red = 0 { desc = " color red ";};
green = 1 { desc = " color green ";};
};
reg register1 {
field {
} limit[0:2]= 0;
field {
max_value max1;

} f1[3:9]= 3;
field {
encode=color;
constraint{this inside{color::red,color::green};}rg1;

} f2[10:31];
};
addrmap constraint_component_example {
register1 reg1;
register1 reg2;
reg2.f2.rg1->constraint_disable = true;

};

Definitive definition
constraint constraint_component_name
{[constraint_body]};
constraint_component_name constraint_inst;

Anonymous definition
constraint {[constraint_body]}
constraint_component_name;

• A constraint is a value-based condition on one or more components; e.g., constraint-driven test
generation allows users to automatically generate tests for functional verification.

Constraint

32

Structural Testing

addrmap top{
reg r1{
dontcompare;
field{
} fld1;
};
reg r2{
donttest;
field{
} fld1;
};
r1 r1 @0x0;
r2 r2 @0x8;
};

`ifndef CLASS_top_r1
`define CLASS_top_r1
class top_r1 extends uvm_reg;
`uvm_object_utils(top_r1)
. . .
. .
virtual function void build();
this.fld1 = uvm_reg_field::type_id::create("fld1");
this.fld1.configure(this, 1, 0, "RW", 0, 1'd0, 1, 1, 0);
this.fld1.set_compare(UVM_NO_CHECK);
. . .
. .
class top_r2 extends uvm_reg;
`uvm_object_utils(top_r2)
. . .
. .
virtual function void build();
this.fld1 = uvm_reg_field::type_id::create("fld1");
this.fld1.configure(this, 1, 0, "RW", 0, 1'd0, 1, 1, 0);
uvm_resource_db#(bit)::set({"REG::", this.get_full_name()},
"NO_REG_TESTS", 1, this);

2) donttest : This testing property indicates the component is not included in structural testing.

1) dontcompare : This is testing property indicates the components read data shall be discarded and not compared
against expected results.

dontcompare

donttest

33

• Perl snippets shall begin with <% and be terminated by
%>; between these markers any valid Perl syntax may
be used.

• Any SystemRDL code outside of the Perl snippet
markers is equivalent to the Perl print 'RDL code' and
the resulting code is printed directly to the post-
processed output.

• <%=$VARIABLE%> (no whitespace is allowed) is
equivalent to the Perl print $VARIABLE.

• The resulting Perl code is interpreted, and the result is
sent to the traditional Verilog-style preprocessor.

reg myReg { <% for($i = 0; $i < 6; $i += 2) {
%> myField data<%=$i%> [<%=$i+1%>:<%=$i%>]; <% } %>
};

reg myReg {
myField data0 [1:0];
myField data2 [3:2];
myField data4 [5:4];

};

SystemRDL with Embedded Perl

34

Including Multiple File

IDSBatch Output:

35

SystemRDL Editor

• SystemRDL editor is available as a part of IDS-NG
• User can write input SystemRDL file in the editor
• Keywords are highlighted which makes effective code visibility
• Auto completion of components is also possible (e.g. bracket, semicolon completion)
• The tool indicates syntax error for every line, simultaneously, while writing the spec
• The tool also provides keyword hinting, and it can also hint to the component names

used within the file during instantiation or dynamic assignment.
• At the end, the entire input file can be checked for compilation and syntax errors
• Suggestions for error resolution are also provided
• User can check and generate the input file as well from the tool
• Evaluation Request : support@agnisys.com

36

37

SystemRDL Editor – Contd..

CPU AXI /AHB Interconnect Fabric AP
B

Br
id

ge

AP
B

bu
s

Pr
og

ra
m

m
ab

le

Sl
av

e

Pr
og

ra
m

m
ab

le

Sl
av

e

Pr
og

ra
m

m
ab

le

Sl
av

e

Pr
og

ra
m

m
ab

le

Sl
av

e

Pr
og

ra
m

m
ab

le

Sl
av

e

AP
B

Sl
av

e
AP

B
Sl

av
e

C/C++
Program

Assembly
Slave w/
Memory

Memory

Sensors

Sensors

CPU HSI is the ISA
ARM, RISC-V etc IP (slave) HSI are the

registers, interrupts

The slaves are programmed
by reading/writing to the
embedded register

interrupts

SV-UVM
environment

C based
environment

SoC HW/SW Interface Layer

38

• As an example, the code below is a SV task that is manually coded by the user. It shows that HSI is
a critical part of a sequence to achieve a certain behavior in the target device.

Writing a
Register

Writing a
Field

Reading a
Field

task xmit(int noOfTxTrans);

endtask

Example Sequence with HSI

39

Introduction to Sequences

• Sequences are built on registers, memories, pins
• Sequences contain

– Register / Field Writes
– Register / Field Reads
– Pin Manipulation Commands
– Wait / Function calls, sub sequence calls

• Information about Registers/Memories can be in any format
– IP-XACT
– SystemRDL
– Word / Excel
– Text files

40

• Designer Creates HW design with a certain sequence
• Verification engineer reads from a spec or from designer’s mind and creates SV/UVM

sequences
• Firmware engineer repeats step 2 but this time in his own environment typically C/C++
• Lap debug may have a C based environment or even TCL/Python based environment
• Repeat the process for validation

Why repeat the same algorithm over and over again in the various stages of the
development?

The Problem:
How to write sequences once, run anywhere?

41

Create a Golden Spec for Implementation-Level Sequences and Auto-Generate the
Code

• Capturing the golden specification for sequences will need the following capabilities:
– Control flow
– High level of abstraction devoid of implementation detail
– Access to hierarchical register data for SoC, Subsystem and IPs
– Access to pins, signals and interfaces
– High level execution of arbitrary transactions
– Deal with timing differently based on the target
– Hierarchy of sequence and base address of the DUT

Proposed Solution

42

Make changes to the
Specification and have the
change automatically permeate
to all views

Specification

Hardware
Verification

Device
Driver

Firmware

Lab Debug

Technical
Document-

-ation

Diagnostics

Application
Software

Hardware
Design

Specification Driven Development

43

GUI Mode
ISS Word /
ISS Excel /

ISS Calc

Batch Mode
IDSBatch

SystemRDL IP-XACT Custom XMLYAML/JSON/XML RALF

All of these can be generated

All above register formats can be referenced by ISequenceSpec

Custom CSV

Text
based

ISequenceSpec

Register
Spec

SV UVM C/C++
Firmware

Automatic Test
Equipment Formats

MATLAB HTMLTCL

OpenOffice

OpenOffice

Portable Stimulus
Standard

CSV

ISequenceSpec™ Suite

Platform

44

• PSS helps automate the testing process, thereby reducing the time to generate complex use-case scenarios

• It can generate tests, 10x faster than hand coding

• Portability from IP to sub-system to SoC level, including hardware-aware software can be achieved

Portable Stimulus Standard

45

SoC level

Block-level
Implementation

Transaction
level verification

ISS tool

Requires high-level of test scenario
creation

Ability to reuse across various level of
configuration and integration

Portability

Ability to reuse block-level test intents
at subsystem

PSS tool

Portable Stimulus Standard – Contd..

46

• PSS 1.0 Standard was released in June 2018

• Powerful concepts of PSS: Abstraction and Reuse
• PSS is useful for high-level test scenario creation

• Modeling Data flow
• Modeling Behavior
• Constraints, Randomization, Coverage

• Actions are a key abstraction unit – can model the scenarios and include exec blocks
• The implementation-level tests are handled by “exec blocks”

Portable Stimulus Standard – Contd..

47

`
• Buffers: A buffer represents persistent data that can be written (output by

a producing action) and may be read (input) by any number of consuming
actions.

• Streams: The stream flow object type represents transient data shared
between actions. The semantics of the stream flow object requires that
the producing and consuming actions execute in parallel (i.e., both
activities shall begin execution when the same preceding action(s)
complete.

• States: The state flow object represents the state of some element in the
DUT or test environment at a given time. Multiple actions may read or
write the state object, but only one write action may execute at a time.

• Data Object Pools: Data flow objects are grouped into pools, which can be
used to limit the set of actions that can communicate using objects of a
given type. For buffer and stream types, the pool will contain the number
of objects of the given type needed to support the communication
between actions sharing the pool. For state objects, the pool will only
contain a single object of the state type at any given time.

PSS Data Flow Object Types

a. Buffers

b. Streams

c. States

48

• Component: A structural entity, defined per type and instantiated under other components.

• Action: An element of behavior.

PSS Language Constructs

overrides_declaration
action_declaration
object_bind_stmt
exec_block
package_body_item
component_field_declaration
attr_group

overrides_declaration
activity_declaration
constraint_declaration
exec_block_stmt
symbol_declaration
action_field_declaration
covergroup_declaration

– Atomic action: An action that corresponds directly to operations
of the underlying system under test (SUT) and test environment.

– Compound action: An action which is defined in terms of one or
more sub-actions.

• Activity: An abstract, partial specification of a scenario that is used in a compound action to determine the
high-level intent and leaves all other details open.

49

• Exec block: Specifies the mapping of PSS scenario entities to its non-PSS implementation.

exec_kind_identifier:
pre_solve
post_solve
body
header
declaration
run_start
run_end
init

PSS Language Constructs – Contd..

50

• Capture sequences in pseudo-code
in the golden spec (spreadsheet or
text)

• Generate sequences in multiple
formats (C, System Verilog, UVM)

• PSS tool user creates the test
scenarios and calls the exec blocks
generated by ISS

• PSS tool user synthesizes the
tests/scenarios and generates the
required files for the target platform

Golden Sequence
Specification

Portable Test &
Stimulus Standard

(PSS)

Verification (UVM)

Validation

Firmware

ISequenceSpec PSS Tool

Register Data

Exec blocksExec blocksExec blocks

UVM
Sequences

Firmware
Sequences

MATLAB/SV
Sequences

ISequenceSpec + PSS Proposed Tool Flow

51

• WISHBONE DMA has been contributed by OpenCores. This core provides DMA transfers between two
WISHBONE interfaces. Transfers can also be performed on the same WISHBONE interface.

• Following block diagram depicts the DMA Engine and its functional blocks.

Source: https://opencores.org/websvn/filedetails?repname=wb_dma&path=%2Fwb_dma%2Ftrunk%2Fdoc%2Fdma_doc.pdf

WISHBONE DMA

52

https://opencores.org/websvn/filedetails?repname=wb_dma&path=/wb_dma/trunk/doc/dma_doc.pdf

• It consists of 3 building blocks:
– 2 WISHBONE interfaces
– DMA Engine
– Pass-through logic

• WISHBONE interface :
– DMA Bridge/Core has two master and slave capable WISHBONE

interfaces.
– Both interfaces are WISHBONE SoC bus specification Rev. B compliant.
– This implementation implements a 32-bit bus width.

• DMA Engine:
– The DMA engine is a up to 31 channel DMA engine that supports transfers

between the two interfaces as well as transfers on the same interface.
– Each channel can be programmed to have a different priority.

• Pass-through logic:
– This block performs the bridging operation between the two WISHBONE

interfaces.
– It includes a two entry deep write buffer in each direction. The write

buffer can be disabled if desired.

Source: https://opencores.org/websvn/filedetails?repname=wb_dma&path=%2Fwb_dma%2Ftrunk%2Fdoc%2Fdma_doc.pdf

WISHBONE DMA – Contd..

53

https://opencores.org/websvn/filedetails?repname=wb_dma&path=/wb_dma/trunk/doc/dma_doc.pdf

Source: https://opencores.org/websvn/filedetails?repname=wb_dma&path=%2Fwb_dma%2Ftrunk%2Fdoc%2Fdma_doc.pdf

– This implementation is designed to work with two WISHBONE interfaces running at the same clock.

– The WISBONE specification and additional information about WISHBONE SoC can be found at:
http://www.opencores.org/wishbone/

– The Main features of the DMA/Bridge are:
• Up to 31 DMA Channels
• 2, 4 or 8 priority levels
• Linked List Descriptors Support
• Circular Buffer Support
• FIFO buffer support
• Hardware handshake support

WISHBONE DMA – Contd..

54

https://opencores.org/websvn/filedetails?repname=wb_dma&path=/wb_dma/trunk/doc/dma_doc.pdf
http://www.opencores.org/wishbone/

. . .

DMA Register Map

55

DMA Verification Intent

wb_dma_c

mem2mem

mem2dev

dev2mem

setup_single_transfer

setup_ll_transfer

finish_item

start_item

Implementation-level sequences

56

Descriptors in DMA

Descriptors
for DMA

57

58

PSS code

PSS component
containing actions

PSS code – Contd..

PSS action
blocks

containing the
Exec Block

“exec” blocks
generated by

ISequenceSpec
containing SV

tasks.

59

PSS code – Contd..

60

DMA sequences

61

DMA sequences– Contd..

62

Capture Sequences in Golden Spec

Setting
configuration for

each output in
text based format

63

Capture Sequences in Golden Spec – Contd..

Structure
class

Declaration of
Variables

Declaration of
Constants

Arguments of
sequences

64

Capture Sequences in Golden Spec – Contd..
Steps of

sequences

65

Generated Sequences in the Target Format

UVM
generated
sequences

66

extend action wb_dma_c :: mem2mem_a {
exec body SV = ""“

mem2mem({{channel}}, {{dat_i.addr}}, {{dat_o.addr}}, {{tot_sz}}, {{trn_sz}});
""";
}

extend action wb_dma_c :: mem2mem_a {
exec body C = ""“

mem2mem({{channel}}, {{dat_i.addr}}, {{dat_o.addr}}, {{tot_sz}}, {{trn_sz}});
""";
}

Portability and connection to implementation level
sequences

67

Generated PSS code
Creation of high-level test scenario

68

ISequenceSpec uses the stimulus created by Questa inFact test engine by calling ISS generated sequence methods
inside inFact actions.

inFact Scenario ISS Sequence

Contains actions,
meta_action and coverage

strategy

Contains steps to program
low level registers captured

from spec

ISS sequence methods are
called from inFact action and

takes stimulus from inFact

ISS sequence methods are
called inside Infact actions by

using attributes

The inFact Scenario works
in C, SV, …

Within inFact action ISS
sequence methods are

called

inFact employs an efficient
rule/graph-based technique to
generate stimulus or target
coverage goals. This reduces
test redundancy to reach
complete coverage.

ISequenceSpec automates the
generation of consistent portable
sequences for programming,
validation and functional
verification of design from the
specification

Flow Diagram

69

• Questa inFact™ is useful for SoC high-level test scenario creation; the IP level details are
currently handled using “exec blocks”

• Currently, users have to manually write long sequences that deal with the registers and pin
manipulation commands

• Every scenario can not be covered by manual sequences which can have low coverage.
• This limitation is removed by PSS where all scenarios are covered which finally provide the

maximum coverage.
• Also ISequenceSpec™ augments PSS tools and includes:

– Capturing sequences in a golden spec
– Generate implementation-level SV/UVM/C sequences that enable register R/W and pin

manipulation commands

Conclusion

70

Thanks to Matt @MentorGraphics for his help with PSS, inFact and DMA
example

71

Agnisys’ Solutions

IDesignSpec (IDS)
Create Models

ARV-Sim
Create Test Sequences & Environment

ARV-C
Create Test Sequences & Environment in C

ARV-Formal
Create Formal Properties and Assertions

ISequenceSpec
Create UVM sequences and Firmware routines from
the specification

IDS-NextGen
Cross-platform HSI Layer Specification

Specta-AV
Automatic Verification

ARV-Sim™ ARV-C™ ARV-
Formal™

IDesignSpec™

ISequenceSpec™

IDS-NG™

IDSBatch / IDSWord / IDSExcel / IDSCal

Specta-AV™
72

73

Hands-on Instruction

• Go to the website www.agnisys.com
• Go to MEDIA ROOM > Events > DVCon US 2020
• Click on ‘To download eval, click here’ link
• Fill the requisite information and the license will be sent to the email mentioned in the

form
• Install the software
• Set the path for license file

http://www.agnisys.com/

Agnisys, Inc.
• IDesignSpec™
• ISequenceSpec™
• IDS NextGen™
• ARV™
• Specta-AV™
• DVInsight-Pro™

www.agnisys.com

support@agnisys.com

PH: 1 (855) VERIFYY
1 (855) 837-4399

74

http://www.agnisys.com/
mailto:sales@agnisys.com

APPENDIX

75

Access UVM SystemRDL 1.0 SystemRDL 2.0

Read Only
RO sw = r

sw = r
onread=r

Read Clear
RC

sw=r
rclr

sw=r
onread =rclr

Read Set
RS

sw = r
rset

sw=r
onread =rset

Write Only
WO sw = w

sw=w
onwrite =w

Write One to Clear - sw = w
woclr

sw=w
onwrite =woclr

Write one to set - sw = w
woset

sw=w
onwrite =woset

Write one to toggle - - sw=w
onwrite =wot

Write zero to clear - - sw=w
onwrite =wzc

Write zero to set - - sw=w
onwrite =wzs

Software Access

76

Access UVM SystemRDl 1.0 SystemRDL 2.0

Write zero to toggle - - sw=w
onwrite =wzt

Write clear WOC - sw=w
onwrite =wclr

Write set WOS - sw=w
onwrite =wset

Read Write RW sw = rw sw=rw
onread =r

onwrite =w

Read / Write one to
clear

W1C sw = rw;
woclr

sw=rw
onread =r

onwrite =woclr

Read /Write one to set W1S sw = rw;
woset

sw = rw;
onread =r

onwrite =woset

Read /Write one to
toggle

W1T - sw=rw
onread =r

onwrite =wot

Read /Write zero to
clear

W0C - sw=rw
onread =r

onwrite =wzc 77

Software Access – Contd..

Access UVM SystemRDL 1.0 SystemRDL 2.0

Read /Write zero to set W0S - sw=rw
onread =r

onwrite =wzs

Read / Write zero to toggle W0T - sw=rw
onread =r

onwrite =wzt

Read/ Write clear WC - sw=rw
onread =r

onwrite =wclr

Read / Write set WS - sw=rw
onread =r

onwrite =wset

Write/Read clear WRC sw = rw
rclr

sw=rw
onread =rclr
onwrite =w

Read Clear / write one to clear - sw =rw
rclr
woclr

sw=rw
onread =rclr

onwrite =woclr

Read clear / Write one to set W1SRC sw = rw
rclr
woset

sw=rw
onread =rclr

onwrite =woset

Read clear / Write one to
toggle

- - sw=rw
onread =rclr

onwrite =wot 78

Software Access – Contd..

Access UVM SystemRDL 1.0 SystemRDL 2.0

Read clear / Write zero to
clear

- - sw=rw
onread =rclr
onwrite =wzc

Read clear / Write zero to set W0SRC - sw=rw
onread =rclr
onwrite =wzs

Read clear / Write zero to
toggle

- - sw=rw
onread =rclr
onwrite =wzt

Read write clear - - sw=rw
onread =rclr

onwrite =wclr

Read clear / write set WSRC - sw=rw
onread =rclr

onwrite =wset

Read set / Write WRS sw = rw
rset

sw=rw
onread = rset
onwrite =w

Read set / Write one to clear W1CRS sw = rw
rset
woclr

sw=rw
onread = rset

onwrite =woclr

Read set / Write one to set - sw = rw
rset
woset

sw=rw
onread = rset

onwrite =woset 79

Software Access – Contd..

Access UVM SystemRDL 1.0 SystemRDL 2.0

Read set / Write zero to clear W0CRS - sw=rw
onread = rset
onwrite =wzc

Read set / Write zero to set - - sw=rw
onread = rset
onwrite =wzs

Read set / Write zero to toggle - - sw=rw
onread = rset
onwrite =wzt

Read set / Write clear WCRS - sw=rw
onread = rset
onwrite =wclr

Read set / Write set - - sw=rw
onread = rset
onwrite =wset

Read set / Write one to set - - sw=rw
onread = rset

onwrite =woset

Read set / write zero to toggle - - sw=rw
onread = rset
onwrite =wot

Read set / Write set - - sw=rw
onread = rset
onwrite =wset

Read set / write zero to toggle - - sw=rw
onread = rset
onwrite =wot 80

Software Access – Contd..

	SystemRDL to PSS
	Slide Number 2
	Slide Number 3
	Slide Number 4
	SystemRDL Importance and History
	�
	Example
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Enumerations
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	 Structural Testing
	Slide Number 34
	Including Multiple File
	 SystemRDL Editor
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	`
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	 Agnisys’ Solutions
	Slide Number 73
	Agnisys, Inc.
	APPENDIX
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80

