
SystemC: Focusing on High Level Synthesis
and Functional Coverage for SystemC

1

Organizers: Dragos Dospinescu - AMIQ and Mark Glasser - NVIDIA
• High-Level Synthesis: an Introduction - Frederic Doucet - Facebook
• High Level Synthesis: Model Structure and Data Types - Mike Meredith - Cadence
• High Level Synthesis: Lessons Learned - Bob Condon - Intel
• Functional Coverage for SystemC (FC4SC) - Dragos Dospinescu - AMIQ
• Accellera SystemC Working Group Update - Mike Meredith - Cadence and Martin Barnasconi, NXP

High-level Synthesis: An Introduction

2

Frederic Doucet,
Facebook,

Menlo Park, CA

High-level Synthesis Overview
• SystemC / C++ based design with HLS

– Higher level of abstraction than Verilog

• Thousands of tapeouts on a variety of designs
– from very small to very large!
– Example of sizes of synthesized SystemC processes

• Small ~1k - 10k instances
• Large ~100k instances
• Very large ~500k instances

– Large datapaths, control mixed with datapath, etc
– Significant productivity increases, get to the finish line faster

High-level Synthesis Overview
• SystemC / C++ based design with HLS

– Higher level of abstraction than Verilog

• Thousands of tapeouts on a variety of designs
– from very small to very large!
– Example of sizes of synthesized SystemC processes

• Small ~1k - 10k instances
• Large ~100k instances
• Very large ~500k instances

– Large datapaths, control mixed with datapath, etc
– Significant productivity increases, get to the finish line faster

What does this all means?
How does it work?
How is it different than RTL?

High-level Synthesis Overview
HLS tool transforms synthesizable C++/SystemC code into RTL Verilog

1. Elaborate C++/SystemC code describing the design

2. Apply designer-specified synthesis directives / constraints

3. Characterize resources for all operations

4. Schedule all operations onto available clock cycles

5. Generate RTL that is “equivalent” to the input

C++/SystemC
Design

Tech node
spec

Synthesis
Directives

High-level
Synthesis

RTL
Verilog

Describing Computation with C++

Datapath functions:

DSP processing, Image processing, etc.

1: int compute(int val[4], int coef[4])
2: {
3: int sum = 0;
4: for (int i=0; i<4; i++) {
5: sum += val[i]*coef[i];
6: }
7: return sum;
8: }

Describing Computation with C++

Datapath functions:

DSP processing, Image processing, etc.

1: int compute(int val[4], int coef[4])
2: {
3: int sum = 0;
4: for (int i=0; i<4; i++) {
5: sum += val[i]*coef[i];
6: }
7: return sum;
8: }

HLS tool sees the body of the function as a loop
- What does it means in hardware?

Hardware Modeling with SystemC
• SystemC : syntax to model hardware in C++

– modules, ports, signals, processes, clocks, resets bit accurate datatypes,
channels, etc.

• SystemC module:
– provides the I/O interface of the design, and clock and reset specifications
– describes structure of the design: sub-modules, connections, etc.

• SystemC process:
– Defines I/O behavior and control around calls to datapath functions
– Specifies the control flow (usually with an implicit FSM)

• will be “concretized” by HLS tool into FSM/datapath in the RTL

8

SC_MODULE(DUT) {
sc_in<bool> clk;
sc_in<bool> rst_n;
sc_in<bool> vld_i;
sc_in<sc_uint<16> > vals_i [N];
sc_in<sc_uint<16> > coeffs_i[N];
sc_out<bool> vld_o;
sc_out<sc_uint<16> > sum_o;
...
SC_CTOR(DUT) {
SC_THREAD(process);
sensitive << clk.pos();
reset_signal_is(rst_n,0);

}
...
void process() { ... }

};

SystemC Module

DUT

clk

vld_i
val[0]

vld_o
sum_o

rst_n

val[1]
val[2]
val[3]

coef[1]
coef[2]
coef[3]

coef[0]

SystemC Process
...
void process() {
vld_o.write(0);
wait();
while (1) {
bool input_vld = vld_i.read();
sc_uint<16> vals[4], coeffs[4];
for (int i=0; i<4; i++) {
vals[i] = vals_i [i].read();
coeffs[i] = coeffs_i[i].read();

}
sc_uint<16> sum = compute(vals, coeffs);
vld_o.write(input_vld);
sum_o = write(sum);
wait();
vld_o.write(0);

}
}

...

SystemC I/O Behavior
...
void process() {
vld_o.write(0);
wait();
while (1) {
bool input_vld = vld_i.read();
sc_uint<16> vals[4], coeffs[4];
for (int i=0; i<4; i++) {
vals[i] = vals_i [i].read();
coeffs[i] = coeffs_i[i].read();

}
sc_uint<16> sum = compute(vals, coeffs);
vld_o.write(input_vld);
sum_o = write(sum);
wait();
vld_o.write(0);

}
}

...

clk

vld_i

vld_o

sum_o

vals_i[0]

coeffs_i[0]

v00

c00

sum0 sum1

vals_i[1] v10

vals_i[2] v20

vals_i[3] v30

coeffs_i[1] c10

coeffs_i[2] c20

coeffs_i[3] c30

sum2

v01

v11

v21

v31

v02

v12

v22

v32

v03

v13

v23

v33

Synthesis Directives:
Provide Hardware Design Intent

Tell the HLS tool how to transform C++ structures in hardware structures

1: sc_uint<16> compute(sc_uint<16> val [4], sc_uint<16> coef[4])
2: {
3: sc_uint<16> sum = 0;
4: for (int i=0; i<4; i++) {
5: UNROLL_LOOP;
6: sum += val[i] * coef[i];
7: }
8: return sum;
9: }

Unroll the loop:
all iterations to be executed
in parallel

Synthesis Directives:
Provide Hardware Design Intent

Tell the HLS tool how to transform C++ structures in hardware structures

1: sc_uint<16> compute(sc_uint<16> val [4], sc_uint<16> coef[4])
2: {
3: sc_uint<16> sum = 0;
4: for (int i=0; i<4; i++) {
5: UNROLL_LOOP;
6: sum += val[i] * coef[i];
7: }
8: return sum;
9: }

*

+

vals[0]

vals[1]

vals[2]

vals[3]

coeffs[0]

coeffs[1]

coeffs[2]

*

*

*

+

+ sum

coeffs[3]

Unroll the loop:
all iterations to be executed
in parallel

SystemC + Directives =
Hardware Model Ready for HLS

...
void process() {
vld_o.write(0);
wait();
while (1) {
bool input_vld = vld_i.read();
sc_uint<16> vals[4], coeffs[4];
for (int i=0; i<4; i++) {
vals[i] = vals_i [i].read();
coeffs[i] = coeffs_i[i].read();

}
sc_uint<16> sum = compute(vals, coeffs);
vld_o.write(input_vld);
sum_o = write(sum);
wait();
vld_o.write(0);

}
}

...

With directives:
- unroll loops
- balanced expressions

wait()

1

wait()

sum_o=sum
vld_o=vld

vld_o=0

*

+

vals[0] coeffs[0]

+

+

sum

*

vals[1] coeffs[1]

*

vals[2] coeffs[2]

*

vals[3] coeffs[3]

vld_o=0

HLS: Cycle-Accurate Design
• Directives / constraints:

– Unroll loops
– Balance expressions
– Clock period: 0.7ns
– Scheduling: cycle accurate

High-level Synthesis Overview
HLS tool transforms synthesizable C++/SystemC code into RTL Verilog

 Elaborate C++/SystemC code describing the design

 Apply designer-specified synthesis directives / constraints

 Characterize resources for all operations

4. Schedule all operations onto available clock cycles

5. Generate RTL that is “equivalent” to the input

C++/SystemC
Design

Tech node
spec

Synthesis
Directives

High-level
Synthesis

RTL
Verilog

Resource Characterization
For all operations in the design,
HLS tool characterizes resources for delay and area

HLS tool will use the combination of resource grades
when exploring the different schedules

Resource Size Grade Delay Area
Multiplier 16x16x16 Fast 0.27 70

Slow 0.5 36
Adder 16x16x16 Fast 0.1 15

Slow 0.3 6
Mux 16x4->16 Fast 0.1 4

Slow 0.05 3
Register 16 0.04 /

0.03
6

wait()

1

wait()

sum_o=sum
vld_o=vld

vld_o=0

*

+

vals[0] coeffs[0]

+

+

sum

*

vals[1] coeffs[1]

*

vals[2] coeffs[2]

*

vals[3] coeffs[3]

vld_o=0

Operation Scheduling: Cycle Accurate

0.03
0.7

*

0.5 0.3
+

0.03
0.7

*

0.5 0.1
+

0.1
+

0.03
0.7

0.27
*

0.1
+

0.1
+

0.05 0.04

With clock period set to 0.7ns:Resource Size Grade Delay Area
Multiplier 16x16x16 Fast 0.27 70

Slow 0.5 36
Adder 16x16x16 Fast 0.1 15

Slow 0.3 6
Mux 16x4->16 Fast 0.1 4

Slow 0.05 3
Register 16 0.04 /

0.03
6

Cycle-Accurate Design: Generated RTL
• Directives / constraints:

– Unroll loops
– Balance expressions
– Clock period: 0.7ns
– Scheduling: cycle accurate

• Area:
– 4 fast multipliers, 3 fast adders

*

+

vals[0]

vals[1]

vals[2]

vals[3]

coeffs[0]

coeffs[1]

coeffs[2]

*

*

*

+

+

coeffs[3]

sum

0.27

0.1

0.1

0.56

0

...

0.05 0.04

Micro-arch Area Thro. Lat.
Cycle accurate 335 1 1

High-level Synthesis Overview
HLS tool transforms synthesizable C++/SystemC code into RTL Verilog

 Elaborate C++/SystemC code describing the design

 Apply designer-specified synthesis directives / constraints

 Characterize resources for all operations

 Schedule all operations onto available clock cycles

 Generate RTL that is “equivalent” to the input

C++/SystemC
Design

Tech node
spec

Synthesis
Directives

High-level
Synthesis

RTL
Verilog

High-level Synthesis Overview
HLS tool transforms synthesizable C++/SystemC code into RTL Verilog

 Elaborate C++/SystemC code describing the design

 Apply designer-specified synthesis directives / constraints

 Characterize resources for all operations

 Schedule all operations onto available clock cycles

 Generate RTL that is “equivalent” to the input

C++/SystemC
Design

Tech node
spec

Synthesis
Directives

High-level
Synthesis

RTL
Verilog

Let’s go back and try a different micro-
architecture...

HLS: Minimal Area Design (1/3)
• Directives / constraints:

– Unroll loops
– Balance expressions
– Clock period: 0.7ns
– Scheduling: minimize area

Reduce area: increase latency
to share resources and generate a new RTL

HLS: Minimal Area Design (1/3)
• Directives / constraints:

– Unroll loops
– Balance expressions
– Clock period: 0.7ns
– Scheduling: minimize area

• The state machine is changed
– The scheduler adds 4 states to

share 1 multiplier for 4
multiplications

– Adders are also shared

new
states

vld_o=0

wait()

1

wait()

sum_o=sum
vld_o=vld

vld_o=0

*

+*new wait()

sum

+

new wait() +*

new wait() +*

new wait()

vals[0]

vals[1]

vals[2]

vals[3]

*
+

0
sum

coeffs[0]

coeffs[1]

coeffs[2]

coeffs[3]

...

...
...

...

...

0.50 0.30

0.1 0.1

0.1

0.67
0.57

HLS: Minimal Area Design (2/3)

• Generated RTL will now include
– shared resources
– shared registers
– sharing muxes

• The generated FSM drives
enables to sharing muxes and
registers at the correct time

sharing mux

shared resource

shared register

HLS: Minimal Area Design (3/3)
• Area ~1/3, but throughput 5clk

(No need to register the coeffs...)

Micro-arch Area Thro. Lat.
Cycle accurate 335 1 1
Min Area 139 5 5

clk

vld_i

vld_o

sum_o

vals_i[0]

coeffs_i[0]

v00

c00

sum0

vals_i[1] v10

vals_i[2] v20

vals_i[3] v30

coeffs_i[1] c10

coeffs_i[2] c20

coeffs_i[3] c30

v01

v11

v21

v31

v02

v12

v22

v32

v03

v13

v23

v33

v04

v14

v24

v34

v05

v15

v25

v35

v06

v16

v26

v36

HLS: Minimal Area Design, Stable Inputs
• Directives / constraints:

– Unroll loops
– Balance expressions
– Minimize area
– Coeffs inputs are stable

• 18% smaller, throughput 5clk

vals[0]

vals[1]

vals[3]

*
+

0
sumcoeffs[0]

coeffs[4]

coeffs[2]
coeffs[3]

...

...
...

vals[2]

Micro-arch Area Thro. Lat.
Cycle accurate 335 1 1
Min Area 139 5 5
Min area /
stable inputs

115 5 5

HLS: Pipeline (1/2)
• Directives / constraints:

– Unroll loops
– Balance expressions
– Pipeline

• Can use slow resources
except for the last adder

*

+

vals[0]

vals[1]

vals[2]

vals[3]

coeffs[0]

coeffs[1]

coeffs[2]

*

*

*

+

+

coeffs[3]

sum0

...

0.50

0.30

0.10

HLS: Pipeline (2/2)
• Throughput is 1 per cycle
• Latency is now 2 cycles
• Significant area gain for extra cycle

of latency

Micro-arch Area Thro. Lat.
Cycle accurate 335 1 1
Min Area 139 5 5
Min area /
stable inputs

115 5 5

Pipeline 205 1 2

clk

vld_i

vld_o

sum_o

vals_i[0]

coeffs_i[0]

v00

c00

sum0 sum1

vals_i[1] v10

vals_i[2] v20

vals_i[3] v30

coeffs_i[1] c10

coeffs_i[2] c20

coeffs_i[3] c30

v01

v11

v21

v31

v02

v12

v22

v32

v03

v13

v23

v33

Imagine making all these changes by hand...

Abstracted in SystemC, Refined by HLS
1. Operations to resource bindings and sharing muxes

– Resource sharing depends on the synthesis directives (performance or area?)
2. Allocation and mapping of values to internal registers

– Values in flight need to be registered
– Depends on when the operation are mapped to the resources, which depends on

the HLS directives
3. Creation of FSM states and transitions:

– wait() statements are converted to FSM states (in code, and added by tool)
– transitions between waits are FSM transitions
– current / next state logic generated by the tool

it does not turn random sof
tware into hardware!

Benefits of HLS
1. Fast design turnaround:

– Quickly implement large (micro-architecture) changes and regenerate RTL
– Allows for fast micro-architecture exploration for design and qor

optimizations
2. High-level verification:

– huge productivity benefits to verify and close coverage at SystemC level
– Bit match datapath functions
– Bugs are mostly in integration with other non-HLS RTL blocks

3. Get to finish line faster
– Get a first version up and optimize it (when good enough, tape it out!)

Accellera SystemC Standardization
• Goal: support eco-system with multiple HLS vendors

• Further standardization work needed:
– Channel/hierarchical port syntax
– Channel libraries

• fifos, point-to-point, memories, etc.

– Standardization of Synthesis Directives
• pipeline, loop unrolling, etc
• syntax and interpretation

– C++11 / C++14 support

High-level Synthesis
SystemC Model Structure and Datatypes

32

Mike Meredith
Contact: mmeredith@cadence.com

SystemC Models

• Virtual platform modelling
– Primarily for integration and validation of embedded software
– TLM now part of IEEE 1666-2011 SystemC language standard

• High-level synthesis
– As an alternative to traditional RTL design by hand
– Accellera SystemC Synthesis Subset standard

• Verification
– As glue for multiple languages and abstractions
– Increasingly as a testbench language
– Accellera SystemC Verification Library standard and new UVM-SystemC Library draft

33

Primary purposes for use of SystemC

TLM Modeling
• TLM requirements: SPEED!
• Appropriate scope

– System
• Appropriate detail

– Memory map
– Algorithm
– Transaction order

• Appropriate techniques
– Event sensitivity
– Abstract communication with function calls through sc_port
– Passing pointers to host memory
– Any technique that will increase speed without losing necessary detail

34

Modeling For Synthesis
• Synthesis requirements: Bring the model down to earth
• Appropriate scope

– Block, subsystem

• Appropriate detail
– Cycle accuracy for protocol and control

– Abstract algorithm for exploration

• Appropriate techniques
– Clock sensitivity
– Concrete communication with pin-level protocols
– Detail modeling of reset behaviors
– Abstract modeling of algorithm and and storage architecture

35

Modeling For Verification
• Appropriate scope

– Block, subsystem, and system
– For verifying virtual platforms and synthesizable implementations

• Appropriate techniques
– Constrained random stimulus
– Test sequences
– Sequencer, driver, monitor functionality
– Functional coverage

36

Module Structure For Synthesis

37

SC_MODULEclock
reset

sc_in ports
required for

SC_CTHREAD,
SC_THREAD

sc_in and
sc_out

ports for
reading

data

sc_in and
sc_out
ports for
writing
data

SC_CTHREAD SC_METHOD

Member
functionsMember

functions

Data members
(Storage)Data members

(Storage)

submodule submodule
sc_signals

SC_THREAD

sc_signals

SC_CTHREAD And SC_THREAD Reset Semantics
For Simulation

• At start_of_simulation each SC_THREAD and SC_CTHREAD
function is called
– It runs until it hits a wait()

• When an SC_THREAD or SC_CTHREAD is restarted after wait()
– If reset condition is false

• execution continues
– If reset condition is true

• stack is torn down and function is called again from the
beginning

• This means
– Everything before the first wait will be executed while reset

is asserted
38

SC_CTHREAD
or SC_THREAD

reset behavior

while (true) {
main loop

}

post-reset
initialization

wait();

Note that every path through
main loop must contain a wait()
or simulation hangs with an
infinite loop

SC_CTHREAD And SC_THREAD Reset Semantics
For Synthesis

• Assignments become reset initializations of registers in
the hardware
– Assignments to ports
– Assignments to signals
– Assignments to variables

• Initialization of data members of modules
– Includes ports, signals, and data members
– Should be done in reset behavior of some process
– Should NOT be done in module constructor

• This invites a mismatch between behavior and RTL
reset functionality

39

SC_CTHREAD
or SC_THREAD

reset behavior

while (true) {
main loop

}

post-reset
initialization

wait();

Note that every path through
main loop must contain a wait()
or simulation hangs with an
infinite loop

SystemC Processes For Synthesis

SC_CTHREAD
• Clock-synchronous thread process
• Must have clock and reset specification
• Can have wait()s to span clock cycles
• Implemented in RTL as an FSM

SC_METHOD
• For implementing RTL constructs
• Semantics are same as Verilog always

block
• Can be synchronous or asynchronous

SC_THREAD
• Equivalent in synthesis to

SC_CTHREAD
• Only synthesizable if constrained like

SC_CTHREAD
– Sensitive to clock and reset
– Only wait()s are to the sensitive

clock edge

40

C++ Datatypes For Synthesis
• All C++ integer types are supported except wchar_t
• Synthesis standard refinements over ISOC++

– Twos complement signed representation
– Specific bit widths

41

Type Width
(un)signed char, char 8
(un)signed short 16
(un)signed int 32
(un)signed long 32
(un)signed long long 64

Note that specification of narrower bit
widths using SystemC datatypes can
significantly reduce hardware cost after
synthesis

SystemC Datatypes
• sc_int, sc_uint

– Limited precision signed and unsigned integers with widths from 1 to 64
• sc_bigint, sc_biguint

– Finite precision signed and unsigned integers with width from 1 to unlimited
• sc_fixed, sc_ufixed

– Finite precision fixed-point data with user selectable saturation and rounding
• sc_bv

– Finite word-length bit vector without arithmetic support
• sc_lv

– 4-state logic, but X and Z not supported for synthesis

42

Lessons Learned – Intel’s Experience

43

Bob Condon
Intel

Intro
• Bob Condon - past 8 years at Intel – coach new HLS teams
• At Intel we use HLS in production for both algorithm dominated designs and

control dominated designs.
• We have many groups who have produced multiple generations of designs

and have thoroughly integrated HLS as part of their default workflow
• Key benefit – faster time to market because

– Find bugs sooner
– Tolerate late breaking arch changes

• What have we learned about designs which have gone through several
iterations.

3/2/202
1/28/2019 Bob Condon Intel 44

Power
• HLS tools have some ability to consider power when pipelining.
• When targeting cell libraries with low leakage cells, designer intuition of a

“good design” is sketchy. – and using these cells is a bit like a technology
change.

• Key HLS benefit -- rapidly generate multiple uarchs lets us evaluate design
properties which HLS doesn’t explicitly address. (ex, static and dynamic
power consumption)

3/2/2022

1/28/2019 Bob Condon Intel 45

Reuse tests across flows
• When a test fails, who is wrong? The test, the DUT, the spec?...
• Goal – find as many failures as possible with the cheapest tests.
• SystemC DUT tested with MATLAB vectors

Keep algo and implementation in synch.
flushes out functional and quantization bugs

• Some HLS models are fast enough to integrate directly in a VP flow.
• For designs with well established interfaces, test the pre-HLS code with

OVM/UVM testbench.

3/2/2022

1/28/2019 Bob Condon Intel 46

Designs Evolve -- Refactor
- Refactor – change a design to make it easier to debug, reuse, maintain without

changing the functionality.
- A good one-minute C++ test will find almost all functional bugs in an HLS design.

Run on every clean compile.
- Refactorings

- Templatizing datatypes, modules …
- separating control from algorithm
- adding debugging

3/2/2022

1/28/2019 Bob Condon Intel 47

Evolution of a function

3/2/2022
1/28/2019 Bob Condon Intel 48

/ Closest to the original C code
OUT_T filt_calc_vO(sc_fixed<10,2> d[4]){

const sc_fixed<5,1> Coef[]= { 9.0/16, -1.0/16 };
sc_fixed<14,2> dac = (Coef[0] * (d[1]+d[2])) +

(Coef[1] * (d[0]+d[3]));
return dac;

}

/ Matches the spec(with explict datapath sizing)
// But the multiple RND's and SAT's are expensive
template <typename OUT_T, typename IN_T>
OUT_T filt_calc_v1(IN_T d[4]) {
{

const sc_fixed<5,1> C[] = { 9.0/16, -1.0/16 };
sc_fixed<10,2,SC_RND,SC_SAT> t1 = d[1]+d[2];
sc_fixed<10,2,SC_RND,SC_SAT> t2 = d[0]+d[3];
sc_fixed<14,2,SC_RND,SC_SAT> t3 = t1 * C[0];
sc_fixed<14,2,SC_RND,SC_SAT> t4 = t2 * C[1];
sc_fixed<14,2,SC_RND,SC_SAT> t5 = t3 + t4;
OUT_T dac = t5;
return dac;

}

// Avoids the rnd until the end
template <typename OUT_T, typename IN_T>
OUT_T filt_calc_v2(IN_T d[4]) {

const sc_fixed<5,1> C[] = { 9.0/16, -1.0/16 };
sc_fixed<10,2> t1 = d[1]+d[2];
sc_fixed<10,2> t2 = d[0]+d[3];
sc_fixed<14,2> t3 = t1 * C[0];
sc_fixed<14,2> t4 = t2 * C[1];
sc_fixed<15,2> t5 = t3 + t4;
OUT_T dac = t5;
return dac;

}

Evolution of a funct (cont)

3/2/2022

1/28/2019 Bob Condon Intel 49

// Here is a small test harness to isolate the
core of the design and allow rapid experimentation
template <int VER>
SC_MODULE(x2_experiment) {
…

typedef x2::input_t i_t;
typedef x2::dac_output_t o_t;

void process() {
wait();
while (true) {
input_t d[4]; d[0]=d0.read(); d[1]=d1.read();
d[2]=d2.read();d[3]=d3.read();
switch (VER) {
case 0: dac.write(filt_calc_v0(d); break;
case 1: dac.write(filt_calc_v1<o_t,i_t>(d);

break;
case 2: dac.write(filt_calc_v2<o_t,i_t>(d);

break;
}
wait();

}
}
};

-refactored to 1-off test (of a subunit)
-Kept 3 variants of the code
- tradeoff between maintenance and
triage
-Added unit tests for individual functions
- the first three vectors found all the
functional bugs.

Refactor to extract common
control idioms

Many blocks will have the same control pattern.
A common idiom: calculate with a throughput of K
outputs per clock:

result[i] = f(s[i-W], …s[i-1])
Let K = 8, W = 4

Implement with a shift register

3/2/2022

1/28/2019 Bob Condon Intel 50

template <typename T, int N, int K=1>
struct TD_Window {

unsigned maxSample; // debug – total samples
T d[N];
void reset() {

maxSample=0;
for (size_t i=K; i<N; ++i) //Add HLS pragmas here

d[i] = 0;
}
T operator[](int indx) const {

sc_assert(size_t(indx) <N);
return d[indx];

}
void shift_in(const T t[K]) {

maxSample += K;
for(size_t i=0; i<N-K; i++)

d[i] = d[i+K]; // Shift the old
for(size_t i=0; i<K; i++)

d[i + (N-K)] = t[i]; // ... and read in the new
}

};

Evolution of a funct (cont)

3/2/2022

1/28/2019 Bob Condon Intel 51

SC_MODULE(x2_experiment) {
…

typedef x2::input_t i_t;
typedef x2::dac_output_t o_t;
typedef TD_Window<i_t, 4, 8> win_t;
win_t din;

void process() {
din.reset();
wait();
while (true) {
input_t d[K]; read_inputs(d);
din.shift_in(d);
dac.write(filt_calc_v2<o_t,win_t>(din));
}
wait();

}
}
};
template <typename OUT_T, typename win_t>
OUT_T filt_calc_v2(win_t win) {…

t = coef[0] * win[0]; …
}

-Algo code still uses [] – but now it is
from the window class.
HLS can optimize the arrays and the
functions together (so different than
sharing a module).
Any debugging, logging gets shared
across all users.

Repurpose C++ tools
• Eclipse with extensions for SystemC datatypes.

– Our code has lots of templates and the IDE helps new coders get up to speed on the
codebase.

• gtest for regression testing of C++ libraries.
• Boost command line argument parsing.
• Boost metaprogramming for iteration over the repetive parts.

3/2/2022
1/28/2019 Bob Condon Intel 52

Recap
• Rapid generation of different RTL implementation allows power exploration
• Re-use every test you can

– From the architectural/functional model
– from the RTL turnin model

• Refactor to make code used in more circumstance and easier to debug.
• Separate datapath from control to make each piece re-usable with other

models.
• Keep an eye on what you can steal from the C++ software engineering world.

3/2/2022
1/28/2019 Bob Condon Intel 53

Thanks for listening

54

Bob Condon
Intel

Functional Coverage For SystemC
(FC4SC)

55

Dragoș Dospinescu
Contact: contributors@amiq.com

mailto:contributors@amiq.com

Agenda

56

1.Motivation
2.What is functional coverage?
3.What is FC4SC?
4.FC4SC features overview
5.Coverage constructs
6.Coverage control
7.Coverage database management
8.Conclusions
9.Roadmap

Motivation

57

• Implement constrained-random testbenches for verification
• Measure the degree of randomisation in the test suite
• Define milestones based on coverage metrics
• Track verification progress during the development cycle
• Generate reports on what functionality was tested

What is functional coverage? (1)

58

• User defined metric used in constrained-random verification
• Records what “happens” during test execution
• Qualitative metric relative to functionality aspects of the model

Two 64-bit inputs ⇒ 2128 possibilities.

Impossible to verify exhaustively!

What is functional coverage? (2)

59

The functional coverage approach:
● Interesting values for A & B

○ 0, 1, MIN, MAX
○ some values in [MIN:MAX]

● Relationship between A & B
○ parity
○ sign

...

Coverage is based on the model’s features!

What is FC4SC?

60

• C++11 header only library
• No dependency on any 3rd party library
• Provides functional coverage capabilities
• Based on the IEEE 1800 - 2012 SystemVerilog Standard

• Download library: https://github.com/amiq-consulting/fc4sc
• Include it in your project: #include "fc4sc.hpp"
• Ready to use!

https://standards.ieee.org/standard/1800-2012.html
https://github.com/amiq-consulting/fc4sc

FC4SC features overview

61

• Coverage definition: bin, coverpoint, cross, covergroup
• Coverage control: options, sample disabling
• Runtime coverage interrogation
• Coverage database saving
• Coverage database management tools

62

bins less_than_8 = {
1,
[2:3],
[5:7]

};

SystemVerilog

Bin: collection of values and intervals

bin<int>("less_than_8", // bin name
1, // 1
interval(2, 3), // [2:3]
interval(7, 5) // [5:7]

);

FC4SC

Coverage constructs: bin (1)

bin_array<int>("split",
3, // 3 bins
interval(0, 255) // [0:255]

);
illegal_bin<int>("illegal_10", 10);

bins split[3] = {
[0:255]

};

illegal_bins illegal_10 = {10};
ignore_bin<int>("ignore_100", 100); ignore_bins ignore_100 = {100};

63

auto fibonacci = [](size_t N) -> std::vector<int> {
int f0 = 1, f1 = 2; // initialize starting number
std::vector<int> result(N, f0);
// calculate following fibonacci numbers
for (size_t i = 1; i < N; i++) {

std::swap(f0, f1);
result[i] = f0;
f1 += f0;

}
return result;

};
COVERPOINT(int, bin_array_cvp, value) {

bin_array<int>("fibonacci", fibonacci(5))
};

Coverage constructs: bin (2)

bin<int>("fibonacci[0]", 1),
bin<int>("fibonacci[1]", 2),
bin<int>("fibonacci[2]", 3),
bin<int>("fibonacci[3]", 5),
bin<int>("fibonacci[4]", 8)

Coverage constructs: coverpoint (1)

64

● Contains bins with data of interest
● Handles sampling
● ignore_bin → illegal_bin → bin

COVERPOINT(int, datacp, data)
{
bin<int>("positive", interval(0, 10)),
bin<int>("negative", interval(-10,0)),
illegal_bin<int>("illegal_zero", 0)

};

FC4SC SystemVerilog
datacp : coverpoint data
{
bins positive = {[0:10]};
bins negative = {[-10:0]};
illegal_bins illegal_zero = {0};

}

65

SystemVerilog

COVERPOINT(int, datacp, data*2, flag!=0)
{

// ...
};

FC4SC

datacp: coverpoint (data*2) iff (flag!=0)
{

// ...
}

Sample expression

Sample condition

Both are evaluated at the point of sampling (dynamically)!

Coverage constructs: coverpoint (2)

66

● Cartesian product of coverpoints’ bins
● Behaves the same as a coverpoint in all regards

COVERPOINT(int, cvp1, data1) {
bin<int>("zero", 0),
bin<int>("positive", 1, 2, 3)

};

FC4SC SystemVerilog
cvp1 : coverpoint data1 {
bins zero = {0};
bins positive = {1, 2, 3};

}

Coverage constructs: cross

COVERPOINT(int, cvp2, data2) {
bin<int>("zero", 0),
bin<int>("negative", -1, -2, -3)

};
auto cvp1_x_cvp2 = cross<int,int>(
"cvp1_x_cvp2", &cvp1, &cvp2);

cvp2 : coverpoint data2 {
bins zero = {0};
bins negative = {-1, -2, -3};

}
cvp1_x_cvp2 : cross cvp1, cvp2;

67

● Ties together all coverage constructs
● Dispatches sampling data to coverpoints and crosses

class cvg_ex: public covergroup {
public:

int data;
COVERPOINT(int, cvp1, data) {

bin<int>("zero", 0),
bin<int>("positive", 1, 2, 3)

};
CG_CONS(cvg_ex) {/*constructor*/}

};

FC4SC SystemVerilog

covergroup cvg_ex {
cvp1 : coverpoint data {

bins zero = {0};
bins positive = {1, 2, 3};

}
}

Coverage constructs: covergroup

Coverage control (1)

68

• Options
‒ adjusting coverage distributions: weight
‒ setting coverage goals: goal, at_least

• Sample enable/disable
‒ starting and stopping coverage collection

• Coverage interrogation (at runtime)
‒ getting coverage percentage (per type/instance)
‒ getting the number of hits

• Usable on: covergroup, coverpoint, cross

Coverage control (2)

69

class cvg_ex: public covergroup
{
public:

int data;
CG_CONS(cvg_ex, int w = 100) {

this->option.weight = w;
}
COVERPOINT(int, cp1, data) {

bin<int>("zero", 0),
bin<int>("positive", 1, 2, 3)

};
};

cvg_ex cvg; // instantiate covergroup
cvg.data = 0; // set data on 0
cvg.sample(); // sample
// expect 50% covered
EXPECT_EQ(cvg.get_inst_coverage(),50);

Usage Example

cvg.stop(); // stop sampling
cvg.data = 2;
cvg.sample();
// still 50% covered
EXPECT_EQ(cvg.get_inst_coverage(),50);

Coverage db management:
visualization

70

JavaScript app: fc4sc/tools/gui/index.html

Coverage db management:
creation

71

• Generate coverage database:
fc4sc::global::coverage_save("coverage_db_name.xml");

• Databases can be generated at any point during runtime!

• Writes to XML file:
– Complete coverage model
– All coverage options
– Number of hits for each bin

Coverage db management:
merging

72

Merge = aggregate the coverage data from different executions

$> python merge.py /path/to/top/directory merged_coverage_db.xml

Coverage db management:
reporting

73

$> python report.py
--xml_report input_db.xml
--yaml_out report.yaml
--report_missing_bins

Special thanks to: Armond Paiva <apaiva@tenstorrent.com>

mailto:apaiva@tenstorrent.com

Conclusions

74

FC4SC:
● brings the functional coverage from SV domain to SystemC domain
● provides a qualitative metric of the functionality of a SystemC model
● introduces coverage-driven verification as an alternative to test-driven

verification
● allows an easy transition from SV syntax
● is easy to integrate into a regression flow

Roadmap

75

• Default bins
• SystemC integration:

– Support for coverage over custom data types
– Event based sampling

• Cross bin filtering: with keyword
• Cross definition: binsof, intersect
• Transition coverage

References

76

• FC4SC github repository
• IEEE 1800 - 2012 SystemVerilog Standard
• Singhal M. (2015, June 4). What is functional coverage
• (2013, April 20). Why you need functional coverage. Retrieved from

SynthWorks Blog
• Marriott, P. (2006, September 1). The ‘What’, ‘When’, and ‘How Much’

of functional coverage
• INF5430 - SystemVerilog for Verification, Ch. 9 Functional Coverage

https://github.com/amiq-consulting/fc4sc
https://standards.ieee.org/standard/1800-2012.html
http://www.learnuvmverification.com/index.php/2015/06/04/what-is-functional-coverage/
http://www.synthworks.com/blog/2013/04/20/why-you-need-functional-coverage/
http://www.techdesignforums.com/practice/technique/the-what-when-and-how-much-of-functional-coverage/
https://www.uio.no/studier/emner/matnat/ifi/INF5430/v16/roarsk/inf5430_sv_functional_coverage.pdf

Accellera SystemC Working Groups Update

77

Mike Meredith, Cadence Design Systems
Martin Barnasconi, Accellera Technical Committee Chair

Outline
• Accellera SystemC Working Groups
• IEEE-related SystemC Working Groups
• SystemC Working Groups update
• SystemC Evolution Day
• SystemC Community and Forum

78

Accellera SystemC Working Groups
• Language Working Group (LWG)
• Transaction-Level Modeling Working Group (TLMWG)
• Analog/Mixed-Signal Working Group (AMSWG)
• Configuration, Control & Inspection Working Group (CCIWG)
• Synthesis Working Group (SWG)
• Datatypes Working Group (SDTWG)
• Verification Working Group (VWG)

79

IEEE-related SystemC Working Groups
• P1666 (SystemC)

– IEEE Standard for Standard SystemC Language Reference Manual Working Group (LWG)
– Latest version: IEEE 1666-2011, published 2012-01-09
– Chair: Jerome Cornet (ST Microelectronics)
– PAR approved, P1666 WG started end of 2018
– Call for Participation: Please contact Jerome Cornet (chair) or Jonathan

Goldberg (IEEE) how to join

• P1666.1 (SystemC-AMS)
– IEEE Standard for Standard SystemC(R) Analog/Mixed-Signal Extensions Language Reference

Manual
– Latest version: IEEE 1666.1-2016, Published 2016-04-06
– Chair: Martin Barnasconi (NXP)
– P1666.1 WG not active at the moment

80

SystemC Language + TLM WG

• SystemC Reference Implementation version 2.3.3 released in Nov 2018

• LWG is preparing contribution to IEEE P1666

• TLM-CAN contribution from Bosch + ST Microelectronics
– Discussion standard to explore the need for TLM standardization for other serial

protocols

81

SystemC Analog/Mixed Signal

• SystemC AMS User’s Guide
– Update to make it compatible with IEEE 1666.1 standard
– Detailed documentation on dynamic TDF features
– Release expected in Q2 2019

• Development and release of SystemC AMS regression suite
– Containing many basic and application examples
– Release expected 2H 2019

82

SystemC Configuration Control and Inspection
• CCI 1.0.0 released in June 2018, covering Configurability of SystemC models
• CCI Community forum is in place
• Language Reference Manual and supplemental material available

– Overview tutorial, Reference implementation and 20+ examples
– Key features

• Portable information exchange Parameters
• Preloading configuration info Parameter callbacks
• Value callbacks & traceability User-defined value types supported
• Architected for seamless integration of existing configuration solutions

• More information and download:
http://accellera.org/activities/working-groups/systemc-cci

• Next: SystemC Checkpointing

83

http://accellera.org/activities/working-groups/systemc-cci

SystemC Synthesis & Datatypes WG

• SystemC Synthesis Subset Language Reference Manual version 1.4.7 (2016)
available on Accellera website
– https://accellera.org/downloads/standards/systemc

• Ongoing discussion to enhance datatypes
– Different contributions submitted to Accellera
– Exploring standardization and implementation w.r.t. language, API and performance

• Enhancements for high-level synthesis under discussion
– E.g. Benefit from modern language constructs in C++1

84

https://accellera.org/downloads/standards/systemc

SystemC Verification Working Group

• UVM-SystemC reference implementation 1.0beta2 released for public
review in November 2018
– Current development focusing on completion of registration abstraction layer

• Next step: introduce Constrained Randomization capabilities, by using
CRAVE as add-on library

85

SystemC Evolution Day
• Successful SystemC Evolution Day held

at DVCon Europe October 2018
– Interactive workshop to discuss evolution of SystemC

standards to advance the SystemC eco-system
– Topics discussed: AMS, CCI, TLM-serial, Multi-language
– Presentation material available

https://accellera.org/news/events/systemc-evolution-day-2018

• SystemC Evolution Day 2019 planned on October 31, 2019
– Call for contributions will open soon, more information:

https://accellera.org/news/events/systemc-evolution-day-2019

86

https://accellera.org/news/events/systemc-evolution-day-2018
https://accellera.org/news/events/systemc-evolution-day-2019

SystemC Community & Forum
• Join the vibrant SystemC Community!

• Accellera SystemC Community pages
https://accellera.org/community/systemc/about-
systemc

• Accellera SystemC Discussion Forums
http://forums.accellera.org/forum/9-systemc/

• Or join any of the Accellera SystemC
Working Groups!

87

https://accellera.org/community/systemc/about-systemc
http://forums.accellera.org/forum/9-systemc/

Q & A

88

	SystemC: Focusing on High Level Synthesis and Functional Coverage for SystemC
	High-level Synthesis: An Introduction
	High-level Synthesis Overview
	High-level Synthesis Overview
	High-level Synthesis Overview
	Describing Computation with C++
	Describing Computation with C++
	Hardware Modeling with SystemC
	SystemC Module
	SystemC Process
	SystemC I/O Behavior
	Synthesis Directives: �Provide Hardware Design Intent
	Synthesis Directives: �Provide Hardware Design Intent
	SystemC + Directives = �Hardware Model Ready for HLS
	HLS: Cycle-Accurate Design
	High-level Synthesis Overview
	Resource Characterization
	Operation Scheduling: Cycle Accurate
	Cycle-Accurate Design: Generated RTL
	High-level Synthesis Overview
	High-level Synthesis Overview
	HLS: Minimal Area Design (1/3)
	HLS: Minimal Area Design (1/3)
	HLS: Minimal Area Design (2/3)
	HLS: Minimal Area Design (3/3)
	HLS: Minimal Area Design, Stable Inputs
	HLS: Pipeline (1/2)
	HLS: Pipeline (2/2)
	Abstracted in SystemC, Refined by HLS
	Benefits of HLS
	Accellera SystemC Standardization
	High-level Synthesis�SystemC Model Structure and Datatypes
	SystemC Models
	TLM Modeling
	Modeling For Synthesis
	Modeling For Verification
	Module Structure For Synthesis
	SC_CTHREAD And SC_THREAD Reset Semantics�For Simulation
	SC_CTHREAD And SC_THREAD Reset Semantics�For Synthesis
	SystemC Processes For Synthesis
	C++ Datatypes For Synthesis
	SystemC Datatypes
	Lessons Learned – Intel’s Experience
	Intro
	Power
	Reuse tests across flows
	Designs Evolve -- Refactor
	Evolution of a function
	Evolution of a funct (cont)
	Refactor to extract common control idioms
	Evolution of a funct (cont)
	Repurpose C++ tools
	Recap
	Thanks for listening
	Functional Coverage For SystemC�(FC4SC)
	Agenda
	Motivation
	What is functional coverage? (1)
	What is functional coverage? (2)
	What is FC4SC?
	FC4SC features overview
	Coverage constructs: bin (1)
	Coverage constructs: bin (2)
	Coverage constructs: coverpoint (1)
	Coverage constructs: coverpoint (2)
	Coverage constructs: cross
	Coverage constructs: covergroup
	Coverage control (1)
	Coverage control (2)
	Coverage db management: visualization
	Coverage db management: creation
	Coverage db management: merging
	Coverage db management: reporting
	Conclusions
	Roadmap
	References
	Accellera SystemC Working Groups Update
	Outline
	Accellera SystemC Working Groups
	IEEE-related SystemC Working Groups
	SystemC Language + TLM WG
	SystemC Analog/Mixed Signal
	SystemC Configuration Control and Inspection
	SystemC Synthesis & Datatypes WG
	SystemC Verification Working Group
	SystemC Evolution Day
	SystemC Community & Forum
	Q & A

