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Abstract—Interoperability between verification flows and tools
is of particular importance for verification engineers and the
EDA industry. While UVM and the Unified Coverage Interop-
erability Standard (UCIS) target the unified creation and reuse
of verification environments, the flow from verification plan to
testbench implementation and extraction of coverage data is still a
time-consuming and error prone task, for which little automation
support is available. In this article we present how to implement
a coverage plan-driven functional coverage metric generation for
SystemC verification environments, by means of UCIS and state-
of-the art code generation and Model-driven Engineering (MDE)
techniques.

I. INTRODUCTION

As designs have grown, verification closure by means of
coverage metrics is critical to measure the status and quality
of the verification plan. The verification plan, usually a spread-
sheet style document, defines the verification environment,
the stimuli generation plan, the coverage plan and more.
Moreover, as interoperability of flows and tools is of particular
importance, highly interoperable methodologies for verifica-
tion and coverage interchange have been introduced, such as
the Universal Verification Methodology (UVM) [1], and the
Unified Coverage Interoperability Standard (UCIS) [2]. While
UVM provides the verification engineer with elements to build
reusable testbenches with expected structure, UCIS defines a
schema for creation, merge and export of coverage information
across simulators and languages, eased by a convenient API.

In order to use those technical advances with the OSCI
SystemC reference simulator we developed the System Ver-
ification Methodology (SVM) [3] in previous work, which is
a verification methodology for the OSCI SystemC reference
simulator inspired by UVM. Besides, SVM integrates also a
previously developed functional coverage library [4].

Focusing on the verification environment construction and
process, we propose the verification plan preparation and its
exploitation to leverage from a systematic application of UCIS.
Therefore, we
(1) introduce the systematic collection of coverage plan data,

while preserving the language independence.
(2) utilize UCIS to store the coverage plan metrics for the

DUV in an interoperable format — a UCIS model.

By means of a Model-Driven Engineering (MDE) tech-
nology the UCIS metrics model is mapped to a design
model, combining both models for further analysis and code-
generation. Afterward, the corresponding SystemC testbench
infrastructure for the DUV is generated using our SVM library.
During the simulation run the UCIS database is filled with
actual coverage information, gathered from the simulation run.

The remainder of article is structured as follows. Section II
will present fundamentals such as UCIS, our previous work
and an overview about terms used in MDE. Section III will
introduce our contribution in more detail. Section IV shows a
detailed step-by-step explanation of the workflow by means of
an example system. Related work will be referenced in section
V. Section VI will discuss the limitations of our methodology
and lessons learned from the application of UCIS, before we
summarize and draw conclusions in section VII.

II. FUNDAMENTALS

A. Unified Coverage Interoperability Standard

The UCIS [2] has been developed to allow the coverage
metric interchange of a variety of coverage producers, from
statement coverage and functional coverage to formal. There-
fore, an analysis on the information model of verification has
been conducted by Accellera and a subset was selected and
mapped to a data model, the UCIS data model, being able
to represent a range of coverage information models used in
practice. A standardized mapping, naming conventions and
primary key management make the data objects universally
recognizable. Besides, an API was defined that standardizes
the way data is written or queried from this data model. The
official Accellera UCIS v1.0 standard release provides:

• UCIS Specification v1.0, describing the API functions
and the underlying data model.

• UCIS API Header File (.h), to allow custom implemen-
tations of coverage producers and consumers.

• UCIS XML schema, as formal definition of the inter-
change format.

The UCIS specification lists a number of use models. First,
coverage producers may use UCIS to generate data. Second,



Version 1.0 Unified Coverage Interoperability Standard 59

Figure 8—Functional and Code Coverage Scopes

If a scope or coveritem type is not mentioned or listed here, this standard has not defined a universal object
recognition model for it. This can be because the structures and names are assumed to be inherited from some other
standardized domain, such as a language reference manual. Alternatively, there may be types for which there is no
generally-accepted information model.

Neither case prevents a coverage generation tool from creating data with this type, or a consumption tool from acting
on the data to the degree to which it can understand it. It may however require extra analysis from tools attempting to
reconcile data of this type across tools or vendors.
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Fig. 1: The UCIS coverage scopes may contain coverage
information from various coverage producers [2].

coverage consumers may facilitate the API and the interchange
format to perform analysis tasks such as report generation or
test plan update. Moreover, the activity to combine coverage
results from independent simulation runs (temporal merge or
spatial merge) or from different coverage producers (heteroge-
neous merge) is another specified use case. By means of the
UCIS API, standardized interface names for creating, reading
and merging coverage metric databases are provided. Besides,
custom features can be implemented using API callback
functions.

As UCIS may contain coverage information from various
coverage data producers such as formal verification, static
checks, assertions and data coverpoints it can be used to help
in answering both the Does it work? and the Are we done?
questions (verification closure). Figure 1 lists the coverage
scopes as defined by the Accellera UCIS standard release v1.0.
In section III we will introduce how UCIS can additionally
improve the automation on verification closure by means of
systematic coverage plan utilization. Moreover, we will focus
on the UCIS_CVG_SCOPE coverage scope.

B. SVM - A verification methodology for SystemC

Despite SystemC is widely accepted for development at
higher abstraction levels such as TLM 2.0, its verification
capabilities are rather limited in comparison to other Hardware
Design and Verification languages (HDVL) such as IEEE-
1800 SystemVerilog or IEEE-1647 e as can be seen in Ta-
ble I. Moreover, in the past verification methodologies were
mainly introduced as SystemVerilog implementations, such

TABLE I: Selection of verification features of IEEE-1800,
IEEE-1647 and IEEE-1666 compared.

IEEE-1800
SystemVerilog

IEEE-1647 e IEEE-1666
SystemC

Functional Coverage +++ +++ x
Assertions +++ +++ x
Constraint Solver +++ +++ + (SCV lib.)
Verification Meth. +++ +++ x
TLM ++ + +++
AOP x ++ x
C-Software simulator simulator +++
Simulation dependent dependent

as the Universal Reuse Methodology (URM) from Cadence,
the Advanced Verification Methodology (AVM) from Mentor
Graphics, and the Verification Methodology Manual (VMM)
from Synopsys.

In order to use recent technical advances within the OSCI
SystemC reference simulator we developed the SystemC-
based System Verification Methodology (SVM) library [5],
[3] and a functional coverage library for SystemC [4], [6]
in previous work. SVM is based on the Open Verification
Methodology multi-language release (OVM-ML), a donation
from Cadence Inc. to the OVM community in February 2009
[7]. We refactored the base package and further improved it
to reflect the improvements from the transition of OVM to the
Universal Verification Methodology (UVM) standard [1]. We
also extended the limited UVM for SystemC subset to offer
the same expected structure as in SystemVerilog, e.g. allowing
usage of stimuli generation facilities, sequences management
and arbitration, command-line processing, etc. with the OSCI
SystemC reference simulator. Moreover, a functional coverage
library has been integrated into SVM and implements parts of
the IEEE 1800-2009 SystemVerilog covergroup functional
coverage metric to allow coverage-driven-verification (CDV)
using the standard OSCI SystemC reference simulator.

Consequently, testbench automation approaches, e.g. code
generation, for SystemC can now benefit from these improved
verification capabilities. Based on the two introduced contribu-
tions we now intend to improve the automation on verification
closure within the verification process with SystemC itself.

C. Model-driven Engineering (MDE)

As most part of a verification testbench is software source
code containing classes, objects and function calls, we ad-
vocate the application of MDE, in order to improve the
development of testbenches and the verification process. MDE
was proposed to overcome the limitations of object technology,
to rise the abstraction and deal with the increasingly more
complex and rapidly evolving systems.

The basic concepts supporting the MDE principle are
system, model, metamodel, and the relations between
them, so that a model represents a system and conforms to
a metamodel [8]. Such concepts were organized in 3+1 layers
[8] as illustrated by means of the examples C++ and XML in
Figure 2.
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Fig. 2: Basic concepts, layered organization and relation of
model and metamodel with C++ and XML as examples.

The UCIS metamodel

A metamodel is also a model, which is a reference model for
other models, so that it defines classes of models that can be
produced conforming to it. It is an abstraction, which collects
concepts of a certain domain and the relations between these
concepts. As such, the UCIS data model can be used to define
the metamodel for the coverage domain. Therefore, we use
the UCIS XML schema to generate the UCIS metamodel in
our methodology.

Transformations

MDE models are operated through transformations, aiming
at the automation of development activity. Such transforma-
tions define clear relationships between models [8] and usually
are specified in a specialized language to operate on models.
Following the description in [9], a model transformation means
converting one or more source models to a target model, where
all models must conform to some metamodel, including the
model transformation itself, which is also a model.

Available tooling to enable MDE

MDE Technological frameworks [10] are tools to support
common tasks for MDE independently from the application
domain. Such tools rely on standards, in order to generalize
the manipulation of models, providing facilities such as persis-
tence, repository management, model transformation, model
mapping (weaving), etc. They are the technological support
for the MDE principles. For working with the UCIS XML
and UCIS metamodel we use the framework provided by
Eclipse Modeling Project1 (EMP) to provide tool support for
our methodology.

1http://www.eclipse.org/modeling/
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Coverage and Verification Overview
• the merging and aggregation of coverage data

• ranking of tests

• ranking of tests within a test plan

• analysis of coverage in light of late-stage ECO’s

• test and command re-runs

• various analyses of coverage data

• generation of easy-to-read HTML coverage reports

The flow described in Figure 25-1 represents a typical design verification process as it can be 
applied in the Questa SIM environment.

Figure 25-1. Verification of a Design
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Fig. 3: An abstract view of a typical verification flow [11].

III. UCIS FOR SYSTEMATIZED COVERAGE PLAN
PROCESSING AND METRIC GENERATION

The verification plan, usually a spreadsheet style document,
defines the verification environment, the stimuli generation
plan, the coverage plan and more. For example, it defines
which features of the design must be tested (What to verify?)
in the feature plan and defines how the verification shall be
conducted (How to verify?) in the coverage and checker plan,
e.g. by means of a detailed functional coverage metric descrip-
tion. Therefore, the overall verification plan also comprises
measurable metrics to determine the progress and completion
of the verification process itself.

Unfortunately, the flow from verification plan to testbench
implementation and the actual functional coverage metrics is
still a time-consuming and error prone task, for which little
automation support is available. Figure 3 depicts an abstract
view of a typical development flow whereas verification plan
definition and design implementation are conducted as parallel
threads. Based on the verification plan, test cases and coverage
metrics are defined and run together with the DUV in the
testbench. If the simulation reveals design flaws the design is
debugged to fix bugs. The overall regression testing process is
performed until no further faults are detected. and a predefined
(functional) coverage criteria is hit.

Especially, the left part of the development flow from design
specification to verification and coverage plan definition, as
well as the embedding of the latter in a verification envi-
ronment, is not well standardized and has little automation
support. Therefore, in this article we focus on the verification
thread from figure 3, more precisely the flow starting from
design specification, passing by verification and coverage plan
until the integrated metric within the testbench and its re-use.
Figure 4 highlights the current situation in most verification
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Fig. 4: Low automation support for coverage plan implemen-
tation due to informal manual conversions.
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Fig. 5: Methodical Coverage Plan Definition increases automa-
tion and soundness.

processes. Here, during the verification plan specification the
coverage plan is constructed manually as well as the actual
functional coverage metric in the testbench environment.

To improve this process, we propose a more formalized
coverage plan definition, as depicted in figure 5, which allows
assisted and automatized transformations to be applied on it,
hence, increasing productivity and soundness of the actual
coverage metric in the testbench environment. In the individual
steps we:
(1) enable the systematized coverage plan capture in a model-

based fashion.
(2) apply transformations on this data to a cover plan inter-

mediate model, which is in fact UCIS.
(3) bind the UCIS intermediate model to the design model by

model mapping.
(4) generate appropriate functional coverage metrics for the

testbench environment, based on the mapped model.
The next section will give a detailed explanation of the
methodology process and the individual steps by means of
a case study.

IV. APPLYING UCIS-BASED COVERAGE PLAN
METHODOLOGY ON AN EXAMPLE SYSTEM

In order to improve the verification process we extend
the common methodology flow shown in the Figure 3 by
adding intermediate UCIS-related steps in the process as can
be seen in Figure 6. Supporting tools assist and automatize
some of these steps or provide mechanisms to improve the (i)
interoperability, (ii) automation, (iii) and reuse in the future.
The shadowed areas highlight the verification thread steps
in the flow and will be explained in the next subsections.
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Fig. 6: Systematized coverage plan exploitation flow with
UCIS.

Discussion of activities such as design implementation or
design debug are not in focus of this article and will be
omitted.

A. Example System

In order to demonstrate our methodology, we consider the
verification of a functional SystemC model for an Adaptive
Cruise Control (ACC) system. Basically, ACC is a vehicle
comfort system which enhances the standard Cruise Controller
by additionally controlling the distance between the drivers car
and the front car, by adapting the vehicle speed. The Figure
7 illustrate the system functionality and Figure 8 shows a
simplified architecture of the ACC model.



Fig. 7: Functionality of an Adaptive Cruise Control (ACC)
system.

The main SystemC modules are:
(1) SpeedController module contains the adaptive part of the

controller.
(2) AccelerationController module represents the standard

cruise control component.
(3) EngineController is an abstract model of the vehicle.
In fact, SpeedController and AccelerationController imple-
ment the controller functionality of the system and the En-
gineController represents the plant to be controlled. The
SpeedController is only active when a front vehicle is detected
by the radar. Otherwise the desired speed set by the driver is
forwarded to the AccelerationController. Therefore, as soon as
a front vehicle is detected by the radar, the SpeedController
eventually modifies the current speed depending on the desired
distance. The desired distance is also provided by the driver.

The AccelerationController executes the control algorithm
and delivers the control action to the EngineController. The
EngineController performs the corresponding control action
to calculate the current speed of the vehicle and sends it to
the AccelerationController in return. Besides the introduced
modules, the system actually consists of various additional
modules, such as a radar model that performs detection of
vehicles driving in the same lane. The closest vehicle in the
same lane is identified as a target vehicle by the ACC system.
The ACC maintains a safety distance to a target by actuating
over the throttle or applying the brakes when necessary.

B. UCIS Application Assumptions and Requirements

As UCIS may contain coverage information from various
coverage data producers such as formal verification, static
checks, assertions and data coverpoints it can not only be
used after simulation to store results but also as intermediate
format for coverage metrics definition. Our approach and
application of UCIS is based on the following assumptions
and requirements:

- The Accellera UCIS v1.0 standard release is used.
- We focus on the functional coverage metric capture and

generation, hence, on the UCIS_CVG_SCOPE scope.
- As simulation infrastructure the OSCI SystemC reference

simulator is considered.
- Consequently, we expect a reference implementation of

the UCIS API to be available for use cases that go beyond
set/get of UCIS XML items, e.g. by EDA tools.

- All implementation activities shall be in conformance to
existing EDA standards wherever possible.

- MDE technological framework, such as transformations
and metamodels shall be hidden to the end-user wherever
possible.

C. Design Implementation

Our proposed methodology assumes there is a design spec-
ification, whence a concrete design implementation is derived.
The output of the design implementation process is the source
code representing the DUV. Although our methodology does
not impose restrictions to the design flow, we assume the
design is specified in SystemC TLM or RTL. Moreover,
a mechanisms to inject the SystemC design in our MDE
technological framework is required. Such injection is required
in order to analyze the design, mapping it to the UCIS
model or generate new code. There are different ways to
inject the design model, such as using parsers to read the
SystemC source code and generate the model conforming to
the respective metamodel. In [12] different front-end tools for
this purpose are presented. Alternatively, other representations
allow the processing of the design without requiring injection,
such as IP-XACT by using tools based on IP-XACT [13] and
its interchange format based on XML.

D. Verification Planning

The example system design specification contains a list
of use cases whereof the verification plan is constructed in
the verification planning phase. To define appropriate stimuli,
we make use of the classification tree method (CTM) which
provides tree-oriented decomposition of test scenarios into
individual variable ranges of interest [14]. The detailed feature
plan and verification plan information are omitted due to the
focus of our approach on the coverage metric automation. The
requirement for language independent metric processing must
be reflected in the spreadsheet structure.

To implement our own spreadsheet data model we make
use of the Requirement Interchange Format (ReqIF) defined
by Object Management Group (OMG) [15]. Using ReqIF the
requirements are stored in a data model, which can be handled
by an MDE technological framework, simplifying our tool
chain. However, support for other types than ReqIF is possible
by injecting the requirement in the framework using different
tools such as file parsers, e.g. text files defining tables in
Comma-separated Values (CSV), or tables in the Microsoft
Excel Spreadsheet XML.
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Fig. 8: Simplified architecture of the ACC model.



TABLE II: Excerpt of the coverage plan for
AccelerationController.

Name Range Type Weight Goal

desired speed [10:100] BIN 1 100
current speed [0:100] BIN 1 100
desired distance [10:30] BIN 1 100
current distance [0:150] BIN 1 100
enable acc [0:1] BIN 1 100
enable dist [0:1] BIN 1 100

A filled table can be seen in table II. The table shows an ex-
cerpt of the coverage plan for our example system. The names
in the table identify some important system input, namely
desired speed and desired distance which specify respectively
the speed and distance configured by the user. Other important
values are the current speed and current distance calculated
by the ACC system. The other two boolean values enable acc
and enable dist allow one to turn on and off the adaptive
control of the speed and the distance control respectively.

Note that information such as the actual variable specified
in the design that must be connected to the coverage bin
and the trigger condition do not need to be specified at this
point. As such information is defined in the design and may
not be synchronized with the verification plan, we propose
to add such information during the mapping between the
extracted coverage plan (as UCIS model) to the design model,
as described in the next sections.

This step is equivalent to the interpretation performed by
the engineer, when implementing the coverage metrics in the
test bench, however we are providing tool-support. Moreover,
the mapping step creates a logical link between the design
and coverage plan that can be traced by computational tools,
in order to update references or as in our proposal, to generate
code.

E. Coverage Plan Extraction

The systematic specification of the coverage plan in the pre-
vious step, allows automatic data processing and extraction of
valuable information. At this step, the relevant information for
the coverage is automatically extracted from the verification
plan and stored in a UCIS model. This model is filled with
information about the specified metrics for coverage, such as
coverage group, coverage description, and others elements.
Figure 9, left pane illustrates part of the UCIS model extracted
from the verification plan for our ACC case study.

The UCIS format is used here to store coverage information
orthogonally to the design. As such, one mapping step is
required to link the UCIS model to design entities before the
testbench generation, as our UCIS model does not contain any
design information.

F. Model Mapping

The verification plan does not contain information about
the design, only references to design entities based on the
design specification. Therefore, in the common verification
flow presented in the Figure 3 an engineer interprets the

verification plan and manually implements the test bench,
by including the source code responsible for coverage data
extraction during simulation and handle UCIS models. Such
task consists of understanding the coverage intent and the
design where it must be applied before implementing the
testbench code.

In our proposed methodology, the model mapping process
receives a UCIS model and a design model as input. This
process generates another model as output containing refer-
ences to both input models. The information that could not
be gathered from the verification plan can now be included
in the UCIS model with tool support. Improving the UCIS
model and linking it to the design model in the next step
allows the automatic generation of the testbench source code
that is responsible for the extraction of coverage data during
the simulation and for the handling of UCIS models.

The model mapping tool support is provided by AWM
[16]. This tools consist of a multiple pane editor, where the
UCIS, the mapping model and the design model are displayed
side-a-side. Dragging and dropping elements from UCIS and
design model into the mapping model, an engineer build links
between the models and at the same time is able to include
additional information in the UCIS model, if it is required.

As the UCIS metamodel does not contain specialized con-
structs to reference external models and design elements,
the mapping model is required to associate elements from
UCIS model to the design ones. In order to keep the UCIS
specialized on the coverage domain, the addition of constructs
to link multiple models in UCIS metamodel is not desired.
Moreover, by using the mapping approach the UCIS stays
independent of design language, so that the UCIS model
can be associated to SystemC, SystemVerilog or any other
language.

G. Coverage Metrics Generation

This process enhances the implementation of coverage
metrics, by generating automatically the source code used to
extract the coverage metrics during the simulation. Consider-
ing the Figure 9, the generation process starts following the
links defined in the mapping model (Figure 9 middle pane) to
elements of the UCIS model (Figure 9 left pane), and generates
the source code constructs related to it, such as acquiring
the factory reference, creating the coverage database, and
cover groups. The Listing 10 lines 2-8 show part of the code
generated for such constructs. Moreover, the process generates
code that refers to design elements, by following associated
links between UCIS and design model (Figure 9 right pane)
elements. For instance, code to create different type of bins as
illustrated in the Listing 10 lines 18 and 22. A default report
can also be generated inside of the SVM Component’s report
callback. The generated code relies on the SVM library, which
provides the API to implement SystemC testbenches in a UVM
like fashion as well as functional coverage.



Fig. 9: Multi pane editor, with an excerpt of ACC models: Coverage-UCIS (left), UCIS to design mapping (middle), and
SystemC design model (right).

H. Simulation

To define appropriate stimuli, we made use of the classifi-
cation tree method (CTM) during verification planning which
provides tree-oriented decomposition of test scenarios into
individual variable ranges of interest [14]. Moreover, for our
specific case study this approach avoids the generation of
meaningless stimuli. We combine this methodical breakdown
of test scenarios with common constrained-random stimula-
tion. Here, we build up-on the SVM library and apply the
MiniSat based constraint solver CRAVE for SystemC [17].

During simulation of the ACC System the generated cover-
age metrics collected functional coverage information. Figure
11 shows an excerpt of the functional metric after simulation.
In this report the hits represent the accumulated hits of the
specified individual intervals.

I. UCIS Reader/Writer API Generation

At the beginning of the simulation the data contained in the
UCIS model must be loaded. This model is updated during the
simulation or at the end, depending on the coverage metric
extraction strategy and if the results must be integrated in
an existing UCIS model. To have the coverage results in an
interoperable format its necessary to store the metric according
to the UCIS schema definition. Therefore, we apply MDE
to generate the API implementation from the XML schema
for the Accellera UCIS v1.0 release. The tooling transforms
the XML schema in an ECORE metamodel. Afterward, it
generates a UCIS API for C++, by using EMF4CPP, and for
Java, by using EMF. Such APIs are used during the simulation

1 // Init the factory
2 svm_pFac = svm_Factory::init();
3
4 // Acquire existing UCIS model
5 svm_pFac->setCoverageModel(acc_ucisModel);
6
7 // Specify metric, covergroups
8 cv_pCG = svm_pFac->newCovergroup(this, "ACC_DUV",

"ACC_DUV_i");
9

10 cv_pCP = svm_pFac->newCoverpoint(cv_pCG, "ACC_CTRL");
11 cv_pCP->set_weight(1); // type_options
12 cv_pCP->set_at_least(100);
13 cv_pCP->set_goal(90);
14
15 (...)
16
17 // Specify metric, bin types
18 cv_pBa = svm_pFac->newBins(cov_pCP, "CURRENT_SPEED",

AUTOBINS);
19 cv_pBa << range(10, 49) << range(50, 69) << range(70,

100);
20 cv_pBa->connect(current_speed);
21
22 cv_pBb = svm_pFac->newBins(cov_pCP, "DESIRED_SPEED",

AUTOBINS);
23 cv_pBb << range(10, 49) << range(50, 69) << range(70,

100);
24 cv_pBb->connect(desired_speed);
25
26 (...)

Fig. 10: Excerpt of functional coverage metric for
AccelerationController.

to manipulate the UCIS model but could be used as back-end
in custom EDA tools, in order to improve the coverage related
flows. The generated API implementation contains functions



1 BIN: ACC_SPEED_CTRL:desired_speed::: 20145 Hits
2 BIN: ACC_SPEED_CTRL:current_speed::: 21893 Hits
3 BIN: ACC_SPEED_CTRL:desired_distance::: 20772 Hits
4 BIN: ACC_SPEED_CTRL:current_distance:: 23383 Hits
5 BIN: ACC_SPEED_CTRL:enable_ac::: 414 Hits
6 ...

Fig. 11: Excerpt of ACC_CTRL transaction coverage report.

to load/store entries from UCIS models, which corresponds
to read/write on the UCIS XML, respectively. It also con-
tains a factory to create elements of the UCIS metamodel.
Functions such as set/get and add/remove are generated, as
well as interfaces and implementation for all concepts in the
metamodel. The generated API and EMF library also provide
features to observe state changes in the model, control data
transactions, interfaces and callbacks to customize the API.
Figure 12 illustrates the generated API for C++.

The sample code shown in the Figure 12 starts regis-
tering the UCIS metamodel. This step allows tools to be
aware of any change in the metamodel. In the Line 4 an
ecorecpp::parser is defined. The parser knows the UCIS
metamodel, because it was registered before, hence it is able
to load the UCIS model in the Line 9.

In case Accellera changes the UCIS metamodel (or the
XML Schema), a new reader/writer can actually be automati-
cally generated from the metamodel and no changes in the
read/write functions are required. Lines 11 and 12 get an
instance of the UCISPackage and UCISFactory. This
classes provide facilities to create and access instances of
classes. Line 16 illustrates how an object is created using the
factory concept and the Line 16 shows how the API is used to
change the model. After all changes in the model are done, one
can store the model into a XML database. Line 21 shows the
call to the serializer, which writes the model in XML using the
UCIS XML Schema. Finally, the API instance can be deleted
in the Line 24.

V. RELATED WORK

Data models for storing and merging coverage information
from multiple coverage producers are common practice in
EDA design flows and multiple vendors offer verification
management solutions covering process management and test
plan tracking. Nonetheless, prior to Accellera UCIS no inter-
operable data model was existing. As initial stimulus for UCIS
development Mentor Graphics donated the UCDB technology.
[18]. To the best of our knowledge so far there is no application
of UCIS in early stages of design, such as systematized
coverage plan processing. This may be related to the specific
set of use cases currently specified for UCIS application, as
well as a set of limitation of the current Accellera UCIS v1.0
release that will be discussed in section VI.

VI. LIMITATIONS AND LESSONS LEARNED

This section will list limitation of our prototype implemen-
tation as well as lessons learned with the usage of UCIS.
Moreover, we intend to highlight challenges and potential

1 (...)
2 // Registering the metamodel
3 ecorecpp::MetaModelRepository::_instance()

->load(UCISPackage);
4
5
6 // Loading the model from XML
7 ecorecpp::parser::parser parser;
8 DocumentRoot_ptr ucisModel =

parser.load("acc_cov.xml")->as< DocumentRoot >();
9

10 (...)
11 UCISPackage_ptr ucisPackage =

UCISPackage::_instance();

12 UCISFactory_ptr ucisFactory =
UCISFactory::_instance();

13
14 // Create Instance Coverage
15 INSTANCECOVERAGE_ptr icoverage =

ucisFactory->createINSTANCECOVERAGE();
16 icoverage->setName("InstCov"); /*@
17 (...)
18 // Serialize the model
19 ecorecpp::serializer::serializer

ser("acc_sim_cov.xml");
20 ser.serialize(ucisModel);
21
22
23 // Delete the model
24 delete ucisModel;
25 (...)

Fig. 12: Sample of UCIS API generated from the UCIS XML
schema.

pitfalls on building custom interconnections to the UCIS data
model.

Implementation limitations

The current flow has several limitations. First, we only
consider the UCIS_CVG_SCOPE coverage scope of UCIS
for improved automation on verification closure due to the
fact that we only had a functional coverage library available.
In general, an extension of formalized capture, mapping and
automation are also possible for other coverage scopes if
suitable coverage producers are available. Moreover, we only
focus on code-generation for the SystemC OSCI simulator.
Besides, we expect the existence of a model of the SystemC
design that is compatible with MDE tooling.

One-time effort for tool platform construction

The one-time effort to establish a working link from meta-
model based coverage plan entries to generated coverage met-
ric statements in the verification environment is moderate but
requires expertise in the fields of model-driven engineering.
In particular, the definition of an appropriate meta model for
formalized coverage plan capture, e.g. by means of the OMG
Requirements Interchange Format (ReqIF), and associated
Eclipse tooling are likely to be out of scope for verification
engineers. However, these models and transformation only
need to be defined once. Afterward the usage of APIs is
straightforward and even the building of code generators once
the data model has been structured.



UCIS data model

From our point of view it is a promising direction that
there is not only a common standardized data model for
exchange and merge of coverage producers data, but also
a more standardized way of processing the coverage plan
from higher levels of abstraction. Here, the current UCIS v1.0
release is missing specific structures in the data model to allow
fast adaption for testplan description such as generic trigger
conditions for metrices, a mandatory information for code-
generation for RTL design.

The experience from MDE community may contributes for
those issues. A domain-specific language can be specified to
address the condition expressions at different abstraction levels
(RTL/TLM), by using existing languages from EDA com-
munity, such as SystemVerilog or defining a new expression
language tailored to this problem.

UCIS schema and API

Despite the fact that the Accellera UCIS v1.0 standard
release provides a header file describing the standardized API
functions, a reference reader (or writer) implementation is not
included. Moreover, the standardized API functions do not
always match with the structure of the XML schema elements.
Such a mismatch can be bothersome if no synchronization
mechanism is provided once the UCIS model and API evolve.

Metamodeling tools such as ECORE, EMF4CPP and MDE
standards can provide strong contributions to UCIS users such
as automatic code generation based on the UCIS metamodel.
Such a generation can act as synchronization mechanism
between API and data model. Moreover, additional features
such as model copy, merge, version control and others are
available, once a metamodel is available.

VII. CONCLUSION

In this article we introduced an approach to systematize
coverage metric generation based on methodical coverage plan
data capture and machining, utilizing the Unified Coverage
Interoperability Standard (UCIS). We formalized the flow from
design specification to verification plan and coverage plan
specification by means UCIS as intermediate format. Defining
a verification methodology incorporating these UCIS related
steps in the earlier phases of verification planning we can assist
and automize functional coverage metric generation. Despite
the fact that we concentrated on the UCIS_CVG_SCOPE
functional coverage scope of UCIS, the approach in general
is also applicable to other coverage scopes of UCIS - if
suitable coverage producers are available. Moreover, although
knowledge of model-driven engineering techniques and spe-
cific software centric tooling was necessary to define parts
of the verification process steps, the actual end-user, here a
verification engineer, does not necessarily need to be aware
of the back-end flows once an initial one-time effort setup
was conducted. Therefore, we see additional potential for the
usage of standardized coverage models such as UCIS in earlier
phases of the system design, in particular, the verification
plan creation and exploitation phase, besides being the future

standard for coverage data exchange between different vendor
tool chains and flows.
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