
February 28 – March 1, 2012

System Verilog Assertion Linting: Closing
Potentially Critical Verification Holes

Erik Seligman, erik.seligman@intel.com

Laurence Bisht, laurence.s.bisht@intel.com

Dmitry Korchemny, dmitry.korchemny@intel.com

 Intel Corporation

1

mailto:erik.seligman@intel.com
mailto:laurence.bisht@intel.com
mailto:dmitry.korchemny@intel.com

Agenda

• Motivation

• Logically Wrong Assertions

• Potentially Ignored Assertions

• Performance Hazards

• Conclusions

2

Agenda

• Motivation

• Logically Wrong Assertions

• Potentially Ignored Assertions

• Performance Hazards

• Conclusions

3

Why SVA?

• Powerful language for assertions

– Combinational and temporal logic

– Triggered logical implication

• Antecedent |-> Consequent

– Usable in procedures, functions, modules

• Concurrent and procedural code

• With library, easy for engineers to use

• Supported by almost all EDA tools

– Simulation

– Emulation

– Formal Verification

4

But watch out…

• Projects discovered many wrong SVAs

– Legal, but didn’t match user intention

– Compiled correctly

– Affected simulation and formal verification

• Why didn’t library solve?

– Even with a library, flexibility in arguments

– Interaction with user RTL code

• Corners of language hard to understand

– Many ways to express same idea

 ways to express it wrong!

 Need to combine SVA usage with good methodology &
safety checks

5

What are Lint Rules?

• Sanity checks on RTL

– Syntactic code scan for common/likely mistakes

– Flag code that is legal, but risky

– NOT fancy formal engine checks

• Though some modern lint tools offer these

• Three main types of rules we developed

– Logically wrong assertions

– Potentially ignored assertions

– Performance hazards

• Presentation shows some examples

– Many more in paper

6

Full Rule Set From Paper
• Wrong Functionality

1. Assertion active at both clock edges
2. Sequence used as clocking event
3. Complex Boolean expression used for clock
4. Wrong argument type or size
5. $stable(sig[index])) with variable index
6. Non-sampled value in action message
7. Property using negated implication

• Possibly ignored assertions
1. Short-circuitable function has assertion
2. Action block with no system function
3. Unbounded assertion always true due to weakness
4. Implication (|->,|=>) in cover property
5. Bad comparison to unknown
6. Assertion with constant clock

• Performance Hazards
1. Many instances of single assertion
2. Assertion in loop not using index
3. Large or distant time windows
4. Unbounded time/repetition operator in antecedent
5. Using cover sequence rather than cover property
6. Applying $past to multiple terms of expression
7. Antecedents with empty match

 7

Agenda

• Motivation

• Logically Wrong Assertions

• Potentially Ignored Assertions

• Performance Hazards

• Conclusions

8

Clock Edge Hazards
• Does this assertion find the bug in the waveform?

9

P1: assert property (@clk p|->q[*4]);

Clk
P
Q

?

Clock Edge Hazards
• Does this assertion find the bug in the waveform?

10

P1: assert property (@clk p|->q[*4]);

Clk
P
Q

P_correct: assert property (@(posedge clk)(p|->q[*4]));

P1 misses the bug: 4 phases == 2 cycles
 50% weaker check than intended!

Lint Rule: Flag any assertion

clock without an edge

?

assign index = f_active_agent();
P1: assert property ($rose(req[index])|->!err);

11

Sampling A Variable Index

• Should the property pass or fail here?

?

assign index = f_active_agent();
P1: assert property ($rose(req[index])|->!err);

12

Lint Rule: Flag sampled value

functions using a sampled variable

as an index

Sampling A Variable Index

• Should the property pass or fail here?

 It fails– index sampled just like other variables!
• On index rise, $rose compares current req[1] to previous req[0]

Agenda

• Motivation

• Logically Wrong Assertions

• Potentially Ignored Assertions

• Performance Hazards

• Conclusions

13

Short Circuiting Hazard

14

function bit f_myfunc(…)

 mySVA: assert #0 (!bad_addr); …

endfunction

. . .

assign A = UopV && f_myfunc(UopV);

Will it flag bad_addr in this trace?

?

Short Circuiting Hazard

15

function bit f_myfunc(…)

 mySVA: assert #0 (!bad_addr); …

endfunction

. . .

assign A = UopV && f_myfunc(UopV);

Lint rule: Flag functions with

assertions in short-circuitable

positions

Will it flag bad_addr in this trace?

- No! SystemVerilog short-circuits boolean expressions

?

Implication In Cover Property

16

C1: cover property (a |=> b);

Is C1 covered by this waveform?

Implication In Cover Property

17

C1: cover property (a |=> b);

• Yes! C1 covers any cycle when (a=>b) doesn’t fail
• Including cases when a is false

C2 is more useful:

Lint rule: Flag any cases of

implication in a cover property

C2: cover property (a ##1 b);

Is C1 covered by this waveform?

Agenda

• Motivation

• Logically Wrong Assertions

• Potentially Ignored Assertions

• Performance Hazards

• Conclusions

18

Many Instances of Assertion

19

always_comb

 for(int i=0; i<1024; i++) begin

 P1: assert #0 ((~c[i] & ~(d[i] | e[i]))& f);

 end

// Logically same, but maybe 1024x efficient

always_comb

 P1: assert #0 (&(~c & ~(d | e))&& f);

Lint Rule: Flag any assertion with

more than <n> instances

Unbounded Repetition In Antecedent

20

A1: assert property (a[*1:$] |=> b);

Lint Rule: Flag any use of unbounded

repetition at the beginning or end of

a left-hand-side of |->, |=> .

• Potentially many evaluation threads in simulation
• Think about case where a==1 for a long time

• Will alternate version match user intent?

A2:assert property ($fell(a) |-> b);

Agenda

• Motivation

• Logically Wrong Assertions

• Potentially Ignored Assertions

• Performance Hazards

• Conclusions

21

Conclusions

• Linting == important enabler for SVA

– Lint well-established in other areas (C/C++, etc)

• Important to advance in SVA as well

– Rules in presentation were a sample– see more in paper

• SVA is powerful– and even more so with good lint

– Intel has observed solid return on investment

• 20% of reported logic bugs on recent project found thru SVA

• Not including early local finds by RTLers

– But great power ability to misuse

• Misuses rare but important to catch

– With new lint rules, expect even better ROI in future

22

Backup Slides

23

P1: assert property (req && !stall |-> gnt) else
$error(“P1 failed, stall = %d”,stall);

P2: assert property (req && !stall |-> gnt) else
$error(“P2 failed, stall = %d”,$sampled(stall));

stall

req

sample here Active vals

 Signal values are sampled

 Action block uses current values

 Messages without

$sampled report wrong

values

clk

gnt

24

Lint Rule: Require $sampled in action

block display statements where appropriate

Poor Failure Reporting

Unbounded Assertion Always True

25

P1: assert property (a |-> ##[1:$] b);

P2: assert property (a |-> strong(##[1:$] b));

What is the difference?
• P1 is a tautology: assertions weak by default
• P2 can be disproven by infinite trace with !b loop

Lint Rule: Flag unbounded assertions

always true due to weakness

Cover Sequence vs Cover Property

26

C1: cover sequence ($fell(rst) ##[*] a);

Lint Rule: Flag any use of cover

sequence

C2: cover property ($fell(rst) ##[*] a);

•C1 is running continuously
•C2 is done after first report

