L J

e

4

L
System to catch Implementation = *
gotchas in the RTL Restructuring process Xadd
Anmol Rattan - ST Microelectronics

Satinder Singh Malhi - ST Microelectronics
Balwinder Singh Soni - ST Microelectronics
Anuj Kumar - Synopsys Inc
Navneet Chaurasia - Synopsys Inc

r Sami Akhtar - Synopsys Inc
' I life.augmented

Motivation
[2
* RTL Re-structuring - Design demanding Physical Design Hierarchy Manipulation &
changes, Reuse of legacy IPs, Derivative Design turnaround time RTL Restructuring
to market.

* Physical design changes require the RTL to be restructured for LBIST logic (5?%%; @;‘D

insertion or to meet the Area, Timing and Power requirements

Promote
Ungroup

* Derivative designs often require architectural changes to accommodate
changes in bus width configuration, test logic insertion, power domain
creation, memory configuration, sub-system hardening/partitioning, etc.

Typically the restructuring of the RTL is either done manually or

,,,,,

1,
Partition

using home-grown automation scripts, or through a RTL k Grop)

Restructuring/Assembly EDA tool.

* Design issues induced : Irrespective of the approach used, RTL restructuring inadvertently
leads to inducing of design issues - often resulting in sub-optimal QoR during design
implementation.

Adds long engineering cycles to iteratively fix implementation bottle-necks and to achieve
desired implementation results.

* Long TAT to catch these Design issues : Huge loss of project time and wasted engineering
cycles

* When the issues are caught during Formal Functional checking or Synthesis, as it involves iterations of
debug/analysis and exchange across backend and frontend teams

* Significant manual effort is involved to debug/fix the issues

7

life.augmented

System to catch Implementation issues at RTL
* An automated system is proposed which uses a set of Static Rule Checks to catch all undesired
design changes leading to connectivity issues upfront at the RTL stage

* Basically targets 2 versions of the design (RTL) — in this case pre/post-Restructuring

Flow Description

RTL Pre- RTL Post-
/ / ; Restructuri Restructuring
 Pre-Restructuring RTL design is run through a set of b

predefined Static checks (which identify the potential issues
that would impact backend implementation)

Static Verification |
" Static Checks

. Based Automated
Differential Analysis I system

» The generated set of result/info is fed in along with the Post-
Restructuring design and run through same set of checks

» The issues present in the pre-RTL Restructuring are masked
|

* Only the induced issues due to RTL Restructuring are . .
Incremental Report Generation I

presented in an easy to comprehend manner

Primarily helping identify the incremental issues added due to

L
the restructuring (change) process II

* Typical Static check runs would typically flag huge number of violations (in 10’s of thousands) for
a full-SOC, thus making comprehensive checking/analysis undesirable for designers/integrators
already pressed against release schedules

* Therefore, a pre-selected set of relevant checks, combined with the differential approach and
simplistic presentation of the results — significantly brings down the data to analyze/debug —

‘, ’making it an appealing/practically useful solution

life.augmented

System to catch Implementation issues at RTL

* The checks are pre-selected from available Static Checks of Lint/CDC/Connectivity solutions in
standard EDA industry tools

* The selection is based on industry experience, anticipation of potential issues, and desired
validation of assumptions

* Requires no special design setup — and leverages the design setup already used for running static,
synthesis, or simulation tools

Main checks in the Flow
* Assignment to input ports

* [Instances having unconnected/floating ports, hanging nets, loaded but undriven inputs/outputs, unloaded but driven,
inputs tied to constants, ..

* Multiply driven nets, read but not set inouts

* Width mismatches of ports/connecting nets

* Configuration mismatch with specification

* Value propagation checks to validate assumptions (values reaching/expected) at specific nodes/ports

* Unconstrained clocks/resets to validate clock/reset specifications

7

life.augmented

Results

* The flow has been successfully tested on several versions of real multi-million gate Automotive

SOC designs (done for 2-SoC designs)

Gate Count ~15 million NAND2 eq ~17 million NAND2 eq
Std Cell Instance Count 4.45 million instances 4.8 million instances
Flop Count ~659k ~690k

Device Frequency 180MHz 200MHz

Design Compilation Rt 50~60 mins ~60 mins

Synthesis Rt 55~58 hrs (~3400 mins) ~55 hrs (~3300 mins)
Formal Functional Rt ~45 hrs (~2700 mins) ~47 hrs (~2800 mins)
Proposed Static Checks based system Rt ~10 mins ~11 mins

* Some typical issues which we were able to catch upfront using this flow

input [40:40] aips0_onpf_ips_xfr_wait: //newly added port after re-partition

* Mismatch of widths (wrong signal definitions/connections)

wire [63:0] aips0_onpf_ips_xfr wait; // wire of 64-bit — unused in reference/sourced RTL

* Input ports were being written to (wrong assign statements induced), aips lte mega aic %) aips0(
* M ultiple drivers were f ound -Onpups_ﬂr_wait(;zs;go_eﬂgfo_’\ps_xfr_wait_ I1n[40] bit
12'h000,
* Parsed Parameter values overridden by out of range random/default values stmi_ips_xfr_wait, /In[27] bit
stm0_ips_xfr_wait. //In[26] bit
. 4'h0,
* Buffer insertion in direct port to port connections swi_ips_xfr_wait, /in[21] bit

* Connectivity issues in the test logic

* Tied Low clock-gating logic preventing thg propagation of the clock(s)

v Multiple Drivers

Undesired
_Value

ahb2wh_ul

| \dat_o_reg[0]] conmax_u'

P b e m___

e = = i ‘ Hie_11047 !

! i mO_data_ii wh_data_i

i LR | i S Aw !

|

| |

|

[] ! | ric_I65
i

pantaa 0t

”
Kys =4

life.augmented

i
| Wh_conmax_master it
|

Wh_conmax_top

Cells' TEST_EN is NOT Tied Low

Results/Conclusion

« Comparative TATs 6
* Issue caught at Synthesis o ~I week+ (Syn Rt + exchange across backend/frontend design teams)
* Issue caught at Formal Fn check : 2~3 days+ (Rt + debug/analysis)
* Proposed Static Checks based system : 10~20 mins (uses same setup)

* Enables designers/system integrators to catch potential backend implementation & RTL Re-
structuring issues early in the design cycle

* Saves a huge amount of time and iterations between backend and frontend teams
* Enables timely delivery schedules

+ Fits into the sign-off flow from frontend team to backend team

* Automated flow ensures easy integration with the users current flow
* requires no special setup or learning curve

* Insignificant overhead in runtime — as this flow runs in ~10mins

* Increases confidence in the Restructured RTL and helps the frontend team focus on the job at

¥

hand — i.e. SOC Integration

The proposed Static Checks based system provides a huge value
by catching significant issues upfront with an insignificant overhead in terms of runtime
and requires no special setup

) /

life.augmented

	System to catch Implementation � gotchas in the RTL Restructuring process
	Motivation
	System to catch Implementation issues at RTL
	System to catch Implementation issues at RTL
	Results
	Results/Conclusion

