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• RTL Re-structuring - Design demanding Physical Design 
changes, Reuse of legacy IPs, Derivative Design turnaround time 
to market.

• Physical design changes require the RTL to be restructured for LBIST logic 
insertion or to meet the Area, Timing and Power requirements

• Derivative designs often require architectural changes to accommodate 
changes in bus width configuration, test logic insertion, power domain 
creation, memory configuration, sub-system hardening/partitioning, etc.

Typically the restructuring of the RTL is either done manually or 
using home-grown automation scripts, or through a RTL 
Restructuring/Assembly EDA tool. 

Hierarchy Manipulation &
RTL Restructuring

• Design issues induced : Irrespective of the approach used, RTL restructuring inadvertently 
leads to inducing of design issues - often resulting in sub-optimal QoR during design 
implementation.
Adds long engineering cycles to iteratively fix implementation bottle-necks and to achieve 
desired implementation results. 

• Long TAT to catch these Design issues : Huge loss of project time and wasted engineering 
cycles

• When the issues are caught during Formal Functional checking or Synthesis, as it involves iterations of 
debug/analysis and exchange across backend and frontend teams

• Significant manual effort is involved to debug/fix the issues
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• Typical Static check runs would typically flag huge number of violations (in 10’s of thousands) for 
a full-SOC, thus making comprehensive checking/analysis undesirable for designers/integrators 
already pressed against release schedules

• Therefore, a pre-selected set of relevant checks, combined with the differential approach and 
simplistic presentation of the results – significantly brings down the data to analyze/debug –
making it an appealing/practically useful solution

• An automated system is proposed which uses a set of Static Rule Checks to catch all undesired 
design changes leading to connectivity issues upfront at the RTL stage

• Basically targets 2 versions of the design (RTL) – in this case pre/post-Restructuring

Flow Description
• Pre-Restructuring RTL design is run through a set of 

predefined Static checks (which identify the potential issues 
that would impact backend implementation)

• The generated set of result/info is fed in along with the Post-
Restructuring design and run through same set of checks

• The issues present in the pre-RTL Restructuring are masked
• Only the induced issues due to RTL Restructuring are 

presented in an easy to comprehend manner
Primarily helping identify the incremental issues added due to 
the restructuring (change) process
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Main checks in the Flow
• Assignment to input ports

• Instances having unconnected/floating ports, hanging nets, loaded but undriven inputs/outputs, unloaded but driven, 
inputs tied to constants, .. 

• Multiply driven nets, read but not set inouts

• Width mismatches of ports/connecting nets

• Configuration mismatch with specification

• Value propagation checks to validate assumptions (values reaching/expected) at specific nodes/ports

• Unconstrained clocks/resets to validate clock/reset specifications

• The checks are pre-selected from available Static Checks of Lint/CDC/Connectivity solutions in 
standard EDA industry tools

• The selection is based on industry experience, anticipation of potential issues, and desired 
validation of assumptions

• Requires no special design setup – and leverages the design setup already used for running static, 
synthesis, or simulation tools
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• Some typical issues which we were able to catch upfront using this flow
• Mismatch of widths (wrong signal definitions/connections)
• Input ports were being written to (wrong assign statements induced), 
• Multiple drivers were found
• Parsed Parameter values overridden by out of range random/default values
• Buffer insertion in direct port to port connections
• Connectivity issues in the test logic
• Tied Low clock-gating logic preventing the propagation of the clock(s)

• The flow has been successfully tested on several versions of real multi-million gate Automotive 
SOC designs (done for 2-SoC designs)

Statistics of the designs Design#1 Design#2

Gate Count ~15 million NAND2 eq ~17 million NAND2 eq

Std Cell Instance Count 4.45 million instances 4.8 million instances

Flop Count ~659k ~690k

Device Frequency 180MHz 200MHz

Typical Runtimes for the designs Design#1 Design#2

Design Compilation Rt 50~60 mins ~60 mins

Synthesis Rt 55~58 hrs (~3400 mins) ~55 hrs (~3300 mins)

Formal Functional Rt ~45 hrs (~2700 mins) ~47  hrs (~2800 mins)

Proposed Static Checks based system Rt ~10 mins ~11 mins

Multiple Drivers
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• Enables designers/system integrators to catch potential backend implementation & RTL Re-
structuring issues early in the design cycle

• Saves a huge amount of time and iterations between backend and frontend teams
• Enables timely delivery schedules

• Fits into the sign-off flow from frontend team to backend team

• Automated flow ensures easy integration with the users current flow
• requires no special setup or learning curve

• Insignificant overhead in runtime – as this flow runs in ~10mins

• Increases confidence in the Restructured RTL and helps the frontend team focus on the job at 
hand – i.e. SOC Integration

The proposed Static Checks based system provides a huge value
by catching significant issues upfront with an insignificant overhead in terms of runtime

and requires no special setup

• Comparative TATs
• Issue caught at Synthesis : ~1 week+ (Syn Rt + exchange across backend/frontend design teams)
• Issue caught at Formal Fn check : 2~3 days+ (Rt + debug/analysis)
• Proposed Static Checks based system : 10~20 mins (uses same setup)
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