
System to catch Implementation
gotchas in the RTL Restructuring process

Anmol Rattan - ST Microelectronics
Satinder Singh Malhi - ST Microelectronics
Balwinder Singh Soni - ST Microelectronics
Anuj Kumar - Synopsys Inc
Navneet Chaurasia - Synopsys Inc
Sami Akhtar - Synopsys Inc

Motivation
2

• RTL Re-structuring - Design demanding Physical Design
changes, Reuse of legacy IPs, Derivative Design turnaround time
to market.

• Physical design changes require the RTL to be restructured for LBIST logic
insertion or to meet the Area, Timing and Power requirements

• Derivative designs often require architectural changes to accommodate
changes in bus width configuration, test logic insertion, power domain
creation, memory configuration, sub-system hardening/partitioning, etc.

Typically the restructuring of the RTL is either done manually or
using home-grown automation scripts, or through a RTL
Restructuring/Assembly EDA tool.

Hierarchy Manipulation &
RTL Restructuring

• Design issues induced : Irrespective of the approach used, RTL restructuring inadvertently
leads to inducing of design issues - often resulting in sub-optimal QoR during design
implementation.
Adds long engineering cycles to iteratively fix implementation bottle-necks and to achieve
desired implementation results.

• Long TAT to catch these Design issues : Huge loss of project time and wasted engineering
cycles

• When the issues are caught during Formal Functional checking or Synthesis, as it involves iterations of
debug/analysis and exchange across backend and frontend teams

• Significant manual effort is involved to debug/fix the issues

System to catch Implementation issues at RTL
3

• Typical Static check runs would typically flag huge number of violations (in 10’s of thousands) for
a full-SOC, thus making comprehensive checking/analysis undesirable for designers/integrators
already pressed against release schedules

• Therefore, a pre-selected set of relevant checks, combined with the differential approach and
simplistic presentation of the results – significantly brings down the data to analyze/debug –
making it an appealing/practically useful solution

• An automated system is proposed which uses a set of Static Rule Checks to catch all undesired
design changes leading to connectivity issues upfront at the RTL stage

• Basically targets 2 versions of the design (RTL) – in this case pre/post-Restructuring

Flow Description
• Pre-Restructuring RTL design is run through a set of

predefined Static checks (which identify the potential issues
that would impact backend implementation)

• The generated set of result/info is fed in along with the Post-
Restructuring design and run through same set of checks

• The issues present in the pre-RTL Restructuring are masked
• Only the induced issues due to RTL Restructuring are

presented in an easy to comprehend manner
Primarily helping identify the incremental issues added due to
the restructuring (change) process

System to catch Implementation issues at RTL
4

Main checks in the Flow
• Assignment to input ports

• Instances having unconnected/floating ports, hanging nets, loaded but undriven inputs/outputs, unloaded but driven,
inputs tied to constants, ..

• Multiply driven nets, read but not set inouts

• Width mismatches of ports/connecting nets

• Configuration mismatch with specification

• Value propagation checks to validate assumptions (values reaching/expected) at specific nodes/ports

• Unconstrained clocks/resets to validate clock/reset specifications

• The checks are pre-selected from available Static Checks of Lint/CDC/Connectivity solutions in
standard EDA industry tools

• The selection is based on industry experience, anticipation of potential issues, and desired
validation of assumptions

• Requires no special design setup – and leverages the design setup already used for running static,
synthesis, or simulation tools

Results
5

• Some typical issues which we were able to catch upfront using this flow
• Mismatch of widths (wrong signal definitions/connections)
• Input ports were being written to (wrong assign statements induced),
• Multiple drivers were found
• Parsed Parameter values overridden by out of range random/default values
• Buffer insertion in direct port to port connections
• Connectivity issues in the test logic
• Tied Low clock-gating logic preventing the propagation of the clock(s)

• The flow has been successfully tested on several versions of real multi-million gate Automotive
SOC designs (done for 2-SoC designs)

Statistics of the designs Design#1 Design#2

Gate Count ~15 million NAND2 eq ~17 million NAND2 eq

Std Cell Instance Count 4.45 million instances 4.8 million instances

Flop Count ~659k ~690k

Device Frequency 180MHz 200MHz

Typical Runtimes for the designs Design#1 Design#2

Design Compilation Rt 50~60 mins ~60 mins

Synthesis Rt 55~58 hrs (~3400 mins) ~55 hrs (~3300 mins)

Formal Functional Rt ~45 hrs (~2700 mins) ~47 hrs (~2800 mins)

Proposed Static Checks based system Rt ~10 mins ~11 mins

Multiple Drivers

Results/Conclusion
6

• Enables designers/system integrators to catch potential backend implementation & RTL Re-
structuring issues early in the design cycle

• Saves a huge amount of time and iterations between backend and frontend teams
• Enables timely delivery schedules

• Fits into the sign-off flow from frontend team to backend team

• Automated flow ensures easy integration with the users current flow
• requires no special setup or learning curve

• Insignificant overhead in runtime – as this flow runs in ~10mins

• Increases confidence in the Restructured RTL and helps the frontend team focus on the job at
hand – i.e. SOC Integration

The proposed Static Checks based system provides a huge value
by catching significant issues upfront with an insignificant overhead in terms of runtime

and requires no special setup

• Comparative TATs
• Issue caught at Synthesis : ~1 week+ (Syn Rt + exchange across backend/frontend design teams)
• Issue caught at Formal Fn check : 2~3 days+ (Rt + debug/analysis)
• Proposed Static Checks based system : 10~20 mins (uses same setup)

	System to catch Implementation � gotchas in the RTL Restructuring process
	Motivation
	System to catch Implementation issues at RTL
	System to catch Implementation issues at RTL
	Results
	Results/Conclusion

