
System Responsiveness Verification of large Multi-

Processor System Configurations using Micro-

Benchmarks and a Multi-Level Analysis
Dr. Ralf Winkelmann, Edward Chencinski, Hanno Eichelberger, Michael Fee, Carsten Otte, Christoph Raisch

IBM* Systems

Computer system development necessitates design changes to incorporate new technology. These changes

can have unintended negative side effects, such as statistically significant system responsiveness issues. We

architected, implemented and executed a flexible environment that enables us to identify and address these

issues in pre- and post-silicon simulation environments (software simulator, hardware accelerator, real

hardware). A deterministic Linux** kernel based execution environment has been created to implement and run

micro-benchmarks targeting multi-processor coordination test scenarios. Sophisticated multi-hierarchy analysis

and predication tooling were invented. We successfully applied this method to multiple generations of IBM

Mainframe systems creating a benchmarking history, thereby providing insights for the creation of significant

system level hardware improvements.

Overview
• Multi-processor coordination features that are addressed with our methodology strongly depend on system

components playing well together in concert.

• Critical behaviour occurs via interaction between the components on the microarchitectural level.

• Therefore, a “full” sized cycle accurate hardware model has been chosen for the pre-silicon environment.

• A complete system running in production mode at customer sites is beyond our pre-silicon capabilities,

instead we run Linux bare metal on the underlying hardware.

• Pre-silicon experiments are constraint by runtime and model size – post-silicon allows us to go beyond

those limits.

• Running Linux bare metal on our hardware with micro-benchmarks on top is supported for both pre-silicon

and post-silicon execution with only minor changes.

• Specific approaches, such as, “stop_machine”, are used to prevent us from measuring unintended artifacts.

• We have a hierarchical approach that enables us to analyse and debug the system efficiently on various

level of abstraction.

Production vs. Simulation Environment

Pre-Silicon Environment Microbenchmark Example (Semaphore Locks)

Hierarchical Debugging Results

The Figure on the left side illustrates an example of a production environment on a mainframe computer. Real customer environments

are usually more complex, but here we use a less complex example to show the difference to our Bare Metal Linux environment. For

our low-level analysis and debug of system responsiveness micro-benchmarks we need to run on a cycle accurate model to study the

interaction between code and hardware in detail. Reducing the complexity in the environment and in the model size is a key enabler for

success. Therefore, the Firmware code and the hypervisor are not part of our environment (see Figure on the right side). Instead, Linux

runs directly on the underlying hardware.

Events

Instruction

Traces

Signal

Traces

CYCLE EVENT

... ...

289109219 LTG

289109319 EX Resp

289109769 STCKF

289110361 CSG

... ...

TIME EVENT

... ...

ddfd72 UNLOCKED

ddfef8 RDVAL

ddff64 RDVAL

de0052 LOCKED

de010a CSFAIL

... ...

Microbenchmark Execution

...

Require

CRITSEC Duration of critical section

ITERATIONCOUNT Count of iterations

IDLETIME Idle duration after critical section

NOISE_LOAD, NOISE_STORE Specifies the noise

lock Variable which represents the lock

n_start, tmp Temporary variables

1 for i=0 to ITERATIONCOUNT do

2 rc=LTG; // RDVAL

3 if rc==1 goto 2;

4 rc=CSG; // LOCKED

5 if rc==1 goto 2; // CSFAIL

6 wait(CRITSEC);

7 lock=0; // UNLOCKED

8 n_start=time();

9 if NOISE_LOAD:

10 while (time()-n_start<IDLETIME) tmp=lock;

11 else if NOISE_STORE:

12 while (time()-n_start<IDLETIME) lock=tmp;

13 else:

14 wait(IDLETIME);

CPUCount

Iterations

CritSec

IdleTime

Noise

Test Case Parameters

Microbenchmark Flow

Critical
Section

Thread 1

Critical
Section

Thread 2

Fight to get
Lock

Fight to get
Lock

Critical
Section

Thread 3

False SharingNo False Sharing

Near Placement of the CPUs Distributed Placement of the CPUs

• Critical sections are executed in sequence

• Fight to get lock in between

Microbenchmark is parametrizable

Statemachine transitions of eventsAlgorithm of test case

Results of executing microbenchmark using different placements of 32 CPUs

...

Results with / without false sharing from other CPUs in critical section

Hardware

Firmware / Hypervisor

Testcase
(User space)

Bare Metal Linux
with test cases in kernel space

constraint run environment

Bare Metal Linux environment

• Reduce complexity

• Reduce model size

• Avoid measurement artifacts

Production

environment

CP

chip

CP

chip

CP

chip
L4

CP

chip

CP

chip

L4
CP

chip

Linux

CP

chip

CP

chip

CP

chip
L4

CP

chip

CP

chip

L4
CP

chip

Hardware

Partition

Test Case

(User Space)

A
C

C
E

L
E

R
A

T
O

R

All event trace (AET)

Instruction execution traces (IET)

Simulation traces and messages

Hardware Model and initialization

Bare Metal Linux
with test cases in kernel space

constraint run environment

Test case result data (RAW events)

Test cases and command line

parameters

H
O

S
T Runtime

environment

Abstract

Hardware Model

*Trademark of IBM in USA and/or other countries
**Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

