
System Model – A Testbench Library Component Aided for Emulating User

Interaction

Hussain Wadia

Advanced Micro Devices, Inc.

2485 Augustine Dr, Santa Clara, CA 95054, USA

Hussain.wadia@amd.com

1. Abstract

To perform exhaustive verification of CPU cores,

we need capability in assembly tests to control

external stimuli and monitor internal system

events. The existing solutions in the industry are

mainly ad-hoc and dedicated for a type of

processor and there lacks such an instruction-set-

independent testbench component to work within

different types of processors.

For this purpose, we have created a universal

testbench component, which provides a software

interface and acts as a middle man to create

multiple scenarios and use cases. The primary

use-case of this component is to interpret

"special" stimulus events as triggers and inject the

corresponding asynchronous events into the

processor cores. Its capability has also been

extended to monitor internal events and provide

feedback to tests.

2. Introduction

In this paper, we demonstrate the proposal of such

a testbench component with an implementation

for X86 type of processor which is easily

extendable to other projects. The component

known as System Model has the capability of

driving events such as interrupts, reset, error

injection, etc. It provides end of test events with

appropriate status which serve as self-checks for

tests. It can monitor system events (e.g., Halt, C-

State changes) and memory/IO accesses and

provide count and cycle information to the test. It

has been developed in C++ language and

designed to fit in various environments, such as

standalone instruction set simulator, VCS co-

simulation, emulation, and so on.

The paper proposes a generic component which

the testbench can interface to through a well-

defined set of APIs. This helps make the

component truly ISA-independent and easily

integrated in several environments. It also

explains the specification for the components

which serves as a programmer’s manual for the

test authors.

3. System Model – Component

System Model was developed to allow assembly

test patterns with a mechanism for injecting

desired stimulus at programmable times or

intervals. The idea is to create an abstract

testbench component which can be ported in

multiple environments and used with variety of

processors.

System Model owns a portion of the memory

map. Assembly tests communicate through read

and write accesses to the System Model owned

memory. The System Model as such does not

have knowledge of the nature and location of the

memory. It creates what we refer to as

ports/registers against address offsets. The

addresses are governed by the specification

agreement of the System Model. Each project can

choose to define the location and type of System

Model memory. For our implementation used in

X86 processors, we chose to place the System

mailto:Hussain.wadia@amd.com

Model in the memory-mapped I/O (MMIO)

region.

In a nutshell, System Model’s working can be

described as follows,

Assembly tests programs the System Model

registers. This causes the System Model to

generate an output event after a specified system

event and/or delay. The output event could

represent variety of external events to a processor

for example interrupts, reset, error injection. In

addition to this System Model can store

information of system events and provide

feedback to the assembly tests. It can also be used

as a more generic ‘middle man’ to pass messages

back and forth between assembly tests and other

testbench components through scratch ports.

The block level diagram representing the System

Model is shown in Figure 1.

Figure 1

There are two parts of the System Model. The

central library component (highlighted in green)

specifies the registers as per the System Model

specification, schedules and generates events.

This library component is portable and can be

extended for more than one type of specification.

The wrapper components (highlighted in orange)

are per testbench where the library is used. These

are expected to be thin layers which detect the

System Model register accesses and other special

events, interface with the library through a set of

defined APIs and drive the events accordingly in

the testbench.

4. System Model Library

The System Model library is the main crux of this

verification infrastructure. It defines all the

registers which are owned by the System Model,

has knowledge of how to handle all the triggers

and what events to generate. The registers are

defined as per the specification and the library

can be easily extended to multiple specifications.

The library has capability to schedule the events

internally.

The library works as follow:

1. Assembly tests configure the registers.

System Model library identifies the new

configuration and waits for specific

triggers.

2. Wrappers notifies the triggers to the

System Model library.

3. Library reacts to these and schedules

internal events.

4. State machine of System Model is

"advanced" by the wrapper.

5. System Model generates events at

appropriate time ticks.

6. Wrapper drives these events back to

testbench.

The triggers to the System Model could be a

variety of events happening in the system, for

example Halt, C-State changes, memory/IO

accesses.

The library is structured as a hierarchy with base

class defining the interface APIs and the state

machine while the children implement the actual

specification. The skeletal architecture is shown

in Figure 2.

Figure 2

The base class defines the interface APIs to the

consumer. It consists of a list of registers which

will contain all the registers defined by the child

classes. It will perform the basic Read/ Write

functionality, determine if it is a System Model

or memory access and maintain the state

machine to schedule events. Based on the

triggers, internal events are created with timers

and queued up. Each Advance of the System

Model ticks these counters and determines when

these internal events are ready to send an output.

The APIs proposed in the implementation are as

follows

• int ProcessWrites(uintptr_t address,

uintptr_t data, uint8_t accSize);

• int ProcessReads(uintptr_t address,

uintptr_t data);

• int ProcessEvents(uint8_t event);

• void Advance()

The children of this class will define the actual

registers and handler functions associated with

each of the registers. As shown in the diagram,

multiple children can exist per specification.

One type of processors can have one baseline

specification which can be further extended, if

required for newer revisions. The design is kept

modular to pick and choose as per requirements.

The register classes encapsulate attributes -

WriteData, ReadData, Readable, Writable,

Address, and Name. The library defines various

behaviors as well such as maintain different data

for writes and reads, clear on reads, storing a

stack of data, etc.

The output of the System Model is a simple

packet like object which contains the relevant

information required to be driven into the

testbench. The fields are as follows

• Event type: The library will define all

the types of events which are to be

supported. The important events in our

implementation were Interrupts, Reset,

Debug Request (DbReq), Error

Injection, etc.

• Event namespace: The Event types are

decided by various derived child classes.

This info will allow the child classes to

freely define the event types. The

consumer / driver will have to

appropriately decode the event type

based on this field.

• Target CPUs: All the CPUs to which the

event is to be targeted.

• Source CPU: This will represent the

source of the event.

• Additional Data: This will be event

specific list of values.

5. System Model Wrapper components

There are 3 wrapper components need to be

implemented by testbench to interface with the

System Model library. These will be project

dependent as they need to understand the project

specifics.

The Access Parser is meant to snoop all data

traffic coming out of the testbench and pass it to

the library. For our implementation and since we

chose the registers to be IO ports, we have an IO

device as an Access Parser which sends requests

to the library.

The System Events Monitor will have hooks

across the testbench and DUT to observe a variety

of events and notify the library.

The Driver will need to Advance and collect the

events generated by the Library and appropriately

drive the events back in the testbench.

6. System Model – Specification

System Model is developed for a specification

which acts as a programmer’s guide to

configuring the System Model library. As

mentioned before assembly tests configures

registers. These registers are mostly 32-bit wide

for convenience, but they can be of any size. Our

implementation of System Model has defined

various type of registers. This paper does not

describe the exact specification but provides an

idea of the various types of registers. The most

important of the registers are Interrupt Control

Registers (ICRs) which provide capability for

tests to generate external events after specific

trigger and delay. These are explained in detail in

the next section.

7. ICR registers

ICR or Interrupt Control registers generate

specific events which are driven into the core

complex. The common list of ICRs are (but not

limited to) INTR, NMI, SMI, INIT, DbReq,

Reset, etc. These events are generated based on

certain triggers which are defined by Trigger

Management Control register (TMCR). The

TMCR are configured with these triggers which

could be either in form of a memory access or a

system event (e.g., Halt, C-State change).

Whenever the trigger/event is received, the

corresponding TCMR will fire the ICRs

configured for that TMCR. Accordingly, the

event of the ICR will be queued up.

A TMCR is defined by a group of 3 registers. In

our implementation we defined 7 sets of TMCRs

for ease of test writers.

Trigger_Control: This register will map an event

to this TMCR. The fields are as follows

31-9 8 7-0

Reserved Enable Trigger ID

• Trigger ID - A 8-bit id which defines the

trigger.

• Enable - Whether this TMCR is enabled.

• Reserved bits can provide flexibility to

add more control bits to this register in

the future.

Trigger_Address: This register will allow the test

to configure a physical address for a memory/IO

access trigger.

Trigger_Count: This register will hold the count

of the times the trigger/event occurs. This

provides useful feedback to the test.

An ICR is defined by a group of 3 registers

ICRControl_{Name}:

ICRDelay_{Name}:

31-0

Delay

ICRTarget_{Name}:

31-0

Target

• Active – Defines whether ICR is enabled.

• Repeat - ICR fires in cyclic manner. If it

is zero, ICR will be de-activated after

firing once. Stimulus will have to re-

enable it. If it is repeat mode, it will

generate an event and then wait for

trigger & delay to generate once again.

• Rand - When this bit is set delay is

chosen randomly.

• Start Trigger - Indicates which TMCR to

wait for before generating the

corresponding event. 0 indicates no

trigger, the "delay" counter is started

immediately.

31

-

15

14-12 11 10-8 7-

3

2 1 0

 End

Trigger

 Start

Trigger

 Ra

nd

Rep

eat

Acti

ve

• End Trigger - Indicates which TMCR to

wait for before clearing the

corresponding event. This may not be

applicable for all ICRs (e.g., interrupts).

0 indicates after certain defined time

units.

• ICR delay - Number of time units to wait

after the TMCR has fired to generate the

corresponding event.

• ICR target – Configures the CPU target

of the ICR event. Essential if test wants

capability of targeting events in multi-

threaded or multi-processor events.

8. Evaluation and Use-cases

At AMD, the System Model is extensively used

to verify several complex architectural and

micro-architectural features.

The concept has been existing for long, but the

implementation proposed in this paper abstracts

out the common functionalities from the test

bench into a library component. The wrapper–

library style design allows the component to be

easily integrated in various environments. It helps

make it project agnostic as its implementation is

dependent on the specification. In our current

implementation, we chose to place the System

Model in the MMIO space while project could

simply move it to a non-cacheable memory

region. This design also allows project to extend

the specification to suit their needs.

This design of the System Model library allows

to write unit-test which aids in quick

development time. In our implementation we

created a basic shell around the System Model

library which invokes the APIs in an appropriate

fashion which would help test various scenarios.

At AMD the common cases where System Model

is being used are as follows.

• Wakeup processor from halt.

• Wakeup processor at various C-States.

Helps in verifying several power

management scenarios.

• Random injection of interrupts and reset.

This is particularly useful in random

tests, where a specific ICR is

programmed in repeat and random mode

at the beginning. This helps cross

interrupts with several

instructions/scenarios.

• Precise error injection.

• Self-checks on complex instructions, for

example Cache-Management instruction

evicted a cache line. Test would setup a

TMCR to monitor writes to an address,

execute the instruction and then query the

System Model for the number of times

the trigger occurred.

• Provide means for assembly tests to end

with a status code.

9. Conclusion

This paper attempts to describe a generic

testbench component which provides an aid to

assembly tests to control external events. We

implemented this component to suit our X86

microprocessor projects. However, it was

developed to scale and be compatible for any type

of microprocessor. The wrapper–library style

design allows the component to be easily

integrated in various environments. The concept

of System Model has been used for various

generations of processors at AMD. It has been

useful to verify difficult to check stimulus as the

component sits at a higher level in the testbench

and is capable of monitoring events happening in

the system. It has been used to verify various

power management, interrupts, and error

injection scenarios.

