
	
System-Level	Security	Verification	Starts	with	

the	Hardware	Root	of	Trust	

1

Dr.	Jason	Oberg	
Co-founder	and	CEO	

DVCon	2019	
jason@tortugalogic.com	

Software-only	based	security	is	not	enough	

2	Copyright	Tortuga	Logic	2019		

Hardware	Vulnerabilities	are	Widespread,		
Dangerous,	and	Costly		

Copyright	Tortuga	Logic,	Inc.	2019	 3	

Hardware vulnerabilities cause system-level exploits
These hardware vulnerabilities have:
•  Exposed intellectual property
•  Leaked customer information, violating vendor trust
•  Broken system integrity, causing harmful malfunction
•  Cost billions in recalls, market cap, and brand damage
	

July 2017 January 2018 April 2018

Making	security	a	unique	challenge	as	attacks/threats	vary	based	on	the	market	
4	

Aerospace/Defense AI / Machine learning Datacenter

IoT Edge Automotive

Hardware	Manages	Security	For	Many	Markets	

Copyright Tortuga Logic 2019

5	

Aerospace/Defense AI / Machine learning Datacenter

Vulnerabilities:
Changing of weights and other meta data to
cause misclassification

Hardware Attacks:
•  Firmware extraction and device re-flashing
•  External debug access

Vulnerabilities:
Infrastructure vulnerabilities to allow
unauthorized access to information

Hardware Attacks:
Baseboard management controller (BMC)
compromises allowing malware execution,
firmware flashing, or bricking it entirely

Vulnerabilities:
1.  Trusted microelectronics
2.  Theft of mission information
3.  Mission critical malfunction

Hardware Attacks:
•  Hardware trojans
•  FIB attacks to connect eFuses
•  Fault injection
•  Clock glitching
•  Differential Power Analysis (DPA)
•  Firmware extraction and device re-

flashing
•  External debug access

Hardware	Manages	Security	For	Many	Markets	

Copyright Tortuga Logic 2019

6	

IoT Edge Automotive

Vulnerabilities:
1.  Unauthorized access to customer data
2.  Harmful device malfunction
3.  Theft of intellectual property

Hardware Attacks:
•  Fault injection
•  Clock glitching
•  Differential Power Analysis (DPA)
•  Firmware extraction and device re-flashing
•  External debug access

Vulnerabilities:
1.  Disabling essential driver assist features
2.  Fob hacking
3.  Remote access to safety features
4.  Stolen personal information

Hardware Attacks:
•  Fault injection
•  Clock glitching
•  Differential Power Analysis (DPA)
•  Firmware extraction and device re-flashing
•  External debug access

Hardware	Manages	Security	For	Many	Markets	

Copyright Tortuga Logic 2019

Example	Vulnerabilities	–	AI/ML	

Booming area for the semiconductor industry and will introduce new attacks on hardware

–  Really good reference here: https://elie.net/blog/ai/attacks-against-machine-learning-an-overview/

1. Adversarial inputs:

 Injecting inputs into the system with intention of them being misclassified

2. Data poisoning:

 Malicious changes to training data to produce invalid and unsafe results

3. Model stealing:

 Copying proprietary training data to get a market advantage

All such assets will be stored on modern hardware and will need to be protected

7	Copyright Tortuga Logic 2019

Example	Vulnerabilities	-	Datacenter	
•  Baseboard Management

Controller (BMC): server
motherboard component
allowing remote monitoring and
maintenance of hardware

•  BMC can power cycle system,
update or re-install the OS etc.

•  Enables server admin to
perform tasks previously
requiring physical access to the
server

8	

https://www.servethehome.com/explaining-the-
baseboard-management-controller-or-bmc-in-servers/

Copyright Tortuga Logic 2019

Example	Vulnerabilities	-	Datacenter	
•  Aspeed	ast2400	and	ast2500	BMC	chips	connect	to	host	via	Advanced	
High-performance	Bus	(AHB)	bridges	

•  Private	physical	memory	and	I/O	ports	exposed	directly	through	AHB	
interface	with	no	authentication	or	access	control	mechanisms	

•  Malware	on	the	host	processor	with	root	privileges	or	rogue	server	
administrator	can:	
–  Completely	replace	the	BMC	firmware	with	malware	
–  Dump	BMC	firmware	to	host	processor	
–  Continuously	power	cycle	the	machine	or	brick	the	BMC	and	entire	server	
	

9

https://www.theregister.co.uk/2019/01/24/bmc_pantsdown_bug/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-6260

Copyright Tortuga Logic 2019

Example	Vulnerabilities	-	Datacenter	

•  Datacenter hardware shared by many
customers, OS may not be trusted

•  Secure Enclaves: execution
environments with strong hardware-
enforced security guarantees (ex. Intel
SGX)
–  Isolation and protection from all other

processes, including the operating system
•  Problem: Secrets processed within

SGX enclaves recoverable by the
Foreshadow attack

10	

https://software.intel.com/en-us/articles/intel-software-
guard-extensions-tutorial-part-1-foundation

Copyright Tortuga Logic 2019

Example	Vulnerabilities	-	Datacenter	
•  Foreshadow	Attack:	speculative	execution	attack	(similar	to	Meltdown)	
targeting	enclave	memory		
– Malicious	process	faults	when	accessing	enclave	memory	but	can	execute	
transient	instructions	before	fault	is	generated	(tip	race	condition	in	attacker’s	
favor	by	marking	enclave	memory	page	as	“not	present”)	

–  Load	data	into	cache	locations	based	on	secret	enclave	data	and	recover	using	
cache	access	timing	side	channel	

•  Foreshadow	used	to	extract	remote	attestation	keys,	effectively	
allowing	arbitrary	enclaves	to	be	vetted	as	trustworthy	by	the	Intel	
remote	attestation	ecosystem		

11

Van Bulck, Jo, et al. "Foreshadow: Extracting the Keys to the Intel {SGX} Kingdom with
Transient Out-of-Order Execution.“ USENIX Security. 2018.

Copyright Tortuga Logic 2019

Example	Vulnerabilities	–	Aerospace/Defense	
•  Security and trustworthiness of

commercial off the shelf (COTS)
digital components integrated in
military applications is critical

•  Microsemi military grade FPGA
bitstream read/overwritten via
undocumented JTAG commands
–  Intentional or accidental backdoor?
–  Regardless, protecting HW debug

infrastructure critical

Copyright	Tortuga	Logic,	Inc.	2019	 12	

S. Skorobogatov and C. Woods, “Breakthrough Silicon Scanning
Discovers Backdoor in Military Chip.” in CHES, LNCS, E. Prouff and
P. Schaumont, Eds., vol. 7428. Springer, 2012, pp. 23–40.

Example	Vulnerabilities	–	IoT		
•  Bluetooth	Low	Energy	(BLE)	common	in	

medical	devices	and	network	access	points	
•  Texas	Instruments	(TI)	multi-protocol	wireless	

SoC	chips	integrated	into	Cisco,	Meraki,	and	
Aruba	wireless	access	points	

•  BLE	“advertising”	packets	parsed	by	TI	firmware	
and	reside	in	chip	memory		

•  BleedingBit	Vulnerability:	malicious	advertising	
packets	can	overflow	the	software	stack	
allowing	an	attacker	to	gain	control	of	the	chip	

13

http://www.ti.com/general/docs/
datasheetdiagram.tsp?
genericPartNumber=CC2640&diagramId=
SWRS176B

https://go.armis.com/bleedingbit

Copyright Tortuga Logic 2019

Example	Vulnerabilities	–	Automotive	
•  Modern cars control

safety-critical functionality
with digital components

•  Problem: safety-critical
components connected via
CAN Bus to infotainment
and communication
systems with internet
connectivity; all reliant on
their hardware for security

14	

Checkoway, Stephen, et al. "Comprehensive experimental analyses of automotive attack surfaces." USENIX Security Symposium. 2011.

Copyright Tortuga Logic 2019

Example	Vulnerabilities	–	Automotive	
•  In	2014	security	researchers	remotely	

disable	the	brakes	in	a	Jeep	Cherokee	
•  Attack	first	installs	malicious	firmware	

for	entertainment	hardware.	
Hardware-assisted	secure	boot	could	
be	used	to	avoid	this.	

•  Malicious	firmware	capable	of	
injecting	arbitrary	CAN	bus	
commands	to	transmission	and	
breaking	systems	

15
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

Hardware-based security required to reduce the likelihood of safety-critical
vulnerability exploitation. Security begins with hardware.

Copyright Tortuga Logic 2019

Hardware	complexity	increasing	number	of	
exploitable	vulnerabilities	

•  Higher	demands	for	hardware	acceleration	increasing	
complexity	and	decreasing	security	

•  More	complexity	means	more	threat	vectors	and	
exploitable	vulnerabilities	

•  Makes	reasoning	about	security	of	the	system	complex,	
time	consuming,	and	often	overwhelming	

•  Traditionally	security	burden	did	not	fall	on	companies	
building	hardware,	now	initiatives	for	hardware	to	
provide	the	“Root	of	Trust”	

16

Higher'Performance

Greater'Complexity

Lo
w
er
'S
ec
ur
ity

Figure courtesy of our partner Rambus

Hardware	Roots	of	Trust	Fundamental	for	Security	

Copyright Tortuga Logic, Inc. 2019 17

•  Industry	shift	to	utilize	Hardware	as	the	
Roots	of	Trust	(HRoT)	
–  A	hardware	subsystem	focused	exclusively	on	

security	to	reduce	complexity	and	attack	
surface.	

•  These	systems	perform	the	following:	
1.  Facilitate	a	secure	boot	
2.  Store	secure	IDs	
3.  Accelerate	and	isolate	cryptographic	functions	
4.  Protect	cryptographic	keys	
5.  Store	and	protect	customer	access	
6.  Runtime	integrity	checks	

Secure&Processing

Secure&Functionality:
• Secure&boot
• Secure&IDs
• Secure&

communication
• Runtime&integrity
• Etc.

CryptoManager&Root&of&Trust

Custom'
RISC+V'
CPU

Secure'Memory

Crypto'
Accelerators
(AES,'SHA,'others…)

General@purpose&
Processing

Figure courtesy of our partner Rambus

18

A	HRoT	is	a	powerful	security	feature	but	must	be	made	a	
secure	feature	
	
Many	reasons	HRoTs	can	produce	system	vulnerabilities		

–  Security	of	specific	states	not	considered	
–  Indirect	leakages	of	information	
–  System	architecture	and	configuration	mistakes	

Example	issues:	
–  Mismanagement	of	assets	during	a	secure	boot	
–  Memory	protection	unit	(MPU)	misconfiguration	
–  Improper	clearing	of	keys	or	configuration	registers	
–  Debug	modes	not	properly	configured/disabled	
–  Crypto	key	leakage	(either	directly	or	side	channels)	

More	Security	Features	in	Hardware		
Makes	Security	Validation	Challenging	

Copyright Tortuga Logic 2019

Simplified	CMRT	RT360	diagram	courtesy	of	Rambus	

19

Beyond	just	validation	of	a	HRoT	itself,	integration	into	
larger	systems	introduces	another	big	challenge	

Example	issues:	
–  Proper	management	of	system	debug	and	test	interfaces	
–  Misconfigured	access	control	to	system	bus	master	
–  External	(to	the	HRoT)	NVM	key	storage	
–  Software	misconfigurations	of	secure	CPU	
–  Unauthorized	system	access	to	OTP	
–  System	software	bugs		
–  Vulnerabilities	cross	hardware	AND	software	

More	Security	Features	in	Hardware		
Makes	Security	Validation	Challenging	

Copyright Tortuga Logic 2019

CryptoManager,
Root,of,Trust

Security)
CPU

RAM

Chip)
System)
Memory

Chip)
Crypto)HW

Chip)
Features,)
Alerts,)etc

OTP

Chip)Host)
CPU,)

JTAG,)etc

Chip)DFT)
Logic

AHB

Key)Bus

AHB

Test)I/F

I/O

Register)Interface

Test)Interface

System)bus)master

External)secure)key)bus

Control/monitor)
external)logic

CPU)secure)
memory

Private)
OTP

Figure courtesy of our partner Rambus

•  Architecture	design	review	
–  Manual	
–  Rarely	looks	are	real	system-level	implementation	

•  Manual	Red/Blue	teaming	
–  Important	part	of	analyzing	security	of	final	product	
–  Does	not	find	security	vulnerabilities	pre-silicon	
–  Difficult	to	measure/assess	

	
	

Existing	Security	Approaches	Don’t	Solve	the	Problem	

Tortuga Logic’s products are scalable, low overhead, and finds unknown vulnerabilities
while running hardware AND software together

•  Formal	verification	
•  Good	as	part	of	a	bigger	security	strategy	
•  Does	not	scale	to	large	design	w/	HW+SW	

	
•  Directed	functional	tests	

•  High	effort	to	develop	stimulus	to	target	known	
vulnerabilities	

•  Rarely	finds	new	vulnerabilities	
	
	

Copyright Tortuga Logic 2019

Solution:	
Tortuga	Logic’s	Root	of	Trust	Security	Verification	Solutions	

Prevent	security	vulnerabilities	in	the	pre-silicon	design	and	system	integration	of	Roots	of	Trust.		
	
Tortuga	Logic’s	products	provide	value	in:	

1.  Identification	of	security	vulnerabilities	in	HW/SW	system	architecture	

2.  Identification	of	implementation	errors	violating	security	requirements	

3.  Tortuga	Logic’s	Radix-S™	Product	
–  Finds	unknown	vulnerabilities	using	current	functional	verification	efforts	for	Roots	of	Trust	
–  Reduces	time	and	effort	for	current	security	verification	efforts	for	Roots	of	Trust	
–  Scales	to	SoC	system-level	analysis	around	Roots	of	Trust	
–  Is	low	effort	to	deploy	

21 Copyright Tortuga Logic 2019

Step	1	–	Define	the	Threat	Model	and	attack	surface	
–  Understand	assets	that	are	to	be	protected	

	
Step	2	–	Hardware	design	(RTL)	and	Threat	Model	are	analyzed	to	produce	our	Security	
Model	Design	(SMD),	a	synthesizable	hardware	IP.	
	
Step	3	–	Run	SMD	in	parallel	with	RTL	inside	existing	functional	verification	
environments	
	
Step	4	–	Analyze	results	and	identify	security	violations	

Copyright Tortuga Logic, Inc. 2019 22

How	to	use	Radix-S™	

Radix-S™	User	Flow	

Copyright Tortuga Logic, Inc. 2019 23

Security Model
Design Tortuga Logic Analysis Platform

Expressed in its
Sentinel™ rule set

Security Model
Generation

Security Rules

RTL

Existing Verification
Environment

Already Exists at User

Provided by Tortuga Logic

Step 1: Express
Threat Models

Step 2: Generate
Security Model

Step 3: Insert Security Model
into existing regressions/
emulation with original RTL

Step 4: Analyze results;
identify violations based on
Threat Models

Information	Flow	Security	Properties	

Copyright Tortuga Logic, Inc. 2019 24

Ensuring integrity
Integrity is violated when an
unauthorized logical (SW) or
physical (HW) asset can modify a
target register/memory state

Ensuring confidentiality
Confidentiality is violated when
an unauthorized logical (SW) or
physical (HW) asset can read the
state of a target register/memory

integrity

confidentiality

OK
(no information flowed in)

Security Violation
(information flowed in)

Security Violation
(information flowed out)

OK
(information did not flow out)

untrusted_signals =/=> trusted_signals

secret_signals =/=> output_signals
“source”! “destination”!

Additional	Security	Rules	

Copyright Tortuga Logic, Inc. 2019 25

Temporal Rules

A when X =/=> B
•  Starts tracking A when condition X is true and rule will fail if A then flows to B.

(A =/=> B) || X
•  Starts tracking A at t=0. Rule will pass if A doesn’t flow to B or X is true.!

!
!
!

A B
X == 0 X == 1

Fail

A B
Fail

X == 0 X == 1

Memory	Read	Protection	

Copyright Tortuga Logic, Inc. 2019 26

mem.out	when	(addr	==	secret)	=/=>	$all_outputs	
–  Secret	content	being	read	out	of	memory	should	not	reach	any	output	

MEM

out

addr

X

secret

Memory	Write	Protection	

Copyright Tortuga Logic, Inc. 2019 27

(key	=/=>	mem.in)	||	addr	==	secret	
–  Secret	content	(i.e.	key)	should	not	be	written	to	non-secure	memory	region.	Flow	
to	mem.in	allowed	if	addr	==	secret.		

	

MEM

in

addr

Key
X

! secret

Copyright Tortuga Logic, Inc. 2019 28

key	=/=>	$all_outputs	ignoring	aes.out	
–  Specifies	that	aes.out	is	“secure.”	Ignores	information	flow.	

key!

aes!

crypto_top!

X

✓out!

Ignoring	Condition	

Additional	Use	Cases	
•  SoC	Access	control	verification	
•  Secure	boot	analysis	
•  Timing	side	channels	
•  Encryption	key	leakage	
•  Configuration	register	read/write	protection	
•  Memory	Protection	Unit	(MPU)	configuration	
•  JTAG	disablement/analysis	
•  3rd	party/vendor	IPs	and	interfaces	

29 Copyright Tortuga Logic 2019

AES	Demo:	Key	Leakage	Vulnerability	
•  AES	Encryption	block	retrieved	unmodified	from	OpenCores.org		

–  Fully	functional.	Correctly	performs	encryption	for	thousand	of	test	vectors.	

•  Threat	Model	assumes	security	violated	if	key	or	data	leaks	to	the	
output	without	being	encrypted	

•  Tortuga	Logic’s	Radix-S™	identifies	vulnerability	that	causes	key	and	
data	to	leak	out	as	plain	text	

30 Copyright Tortuga Logic 2019

AES	Demo:	Key	Leakage	Vulnerability	

31

Property:
assert iflow (key_i =/=> data_o);
“key should not flow to output”

Result (demo):
Rule fails
Key XOR Data flows to data_o pin
Violates threat model

Key	Storage
Encryption	
Module

data_i

data_o

ready_o

Copyright Tortuga Logic 2019

Pathview	
•  Enumerates a path from source to destination	
	
	
	
	

•  Find more details through a mouse hover on any node 	
	

32

Cycle

H
ieracrchy

Copyright Tortuga Logic 2019

Waveform	view	

33

•  Right Mouse Click on any signal:

The ‘Red’ shade indicate that the
signal is carrying ‘secured’ information

The ‘secured’ information has arrived
at the destination

- Remove the selected signal from the waveform
- Make a copy of the signal in the display
- Display the immediate drivers of this signal
- Display all the drivers up to the user-specified level
- Display the path from the source up to this signal

Copyright Tortuga Logic 2019

34

Questions?

Jason@tortugalogic.com

Copyright Tortuga Logic 2019

