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Software-only	based	security	is	not	enough	
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Hardware	Vulnerabilities	are	Widespread,		
Dangerous,	and	Costly		
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Hardware vulnerabilities cause system-level exploits 
These hardware vulnerabilities have: 
•  Exposed intellectual property 
•  Leaked customer information, violating vendor trust 
•  Broken system integrity, causing harmful malfunction 
•  Cost billions in recalls, market cap, and brand damage 
	

July 2017 January 2018 April 2018 



Making	security	a	unique	challenge	as	attacks/threats	vary	based	on	the	market	
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Aerospace/Defense AI / Machine learning Datacenter 

IoT Edge Automotive 

Hardware	Manages	Security	For	Many	Markets	
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Aerospace/Defense AI / Machine learning Datacenter 

Vulnerabilities:  
Changing of weights and other meta data to 
cause misclassification 
 
Hardware Attacks:  
•  Firmware extraction and device re-flashing 
•  External debug access 

Vulnerabilities:  
Infrastructure vulnerabilities to allow 
unauthorized access to information 
 
Hardware Attacks:  
Baseboard management controller (BMC) 
compromises allowing malware execution, 
firmware flashing, or bricking it entirely 

Vulnerabilities:  
1.  Trusted microelectronics 
2.  Theft of mission information 
3.  Mission critical malfunction 
 
Hardware Attacks:  
•  Hardware trojans  
•  FIB attacks to connect eFuses 
•  Fault injection 
•  Clock glitching 
•  Differential Power Analysis (DPA) 
•  Firmware extraction and device re-

flashing 
•  External debug access 

Hardware	Manages	Security	For	Many	Markets	
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IoT Edge Automotive 

Vulnerabilities:  
1.  Unauthorized access to customer data 
2.  Harmful device malfunction 
3.  Theft of intellectual property 
 
Hardware Attacks:  
•  Fault injection 
•  Clock glitching 
•  Differential Power Analysis (DPA)  
•  Firmware extraction and device re-flashing 
•  External debug access 

Vulnerabilities:  
1.  Disabling essential driver assist features 
2.  Fob hacking 
3.  Remote access to safety features 
4.  Stolen personal information 

Hardware Attacks:  
•  Fault injection 
•  Clock glitching 
•  Differential Power Analysis (DPA)  
•  Firmware extraction and device re-flashing 
•  External debug access 

Hardware	Manages	Security	For	Many	Markets	
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Example	Vulnerabilities	–	AI/ML	
 
Booming area for the semiconductor industry and will introduce new attacks on hardware  

–  Really good reference here: https://elie.net/blog/ai/attacks-against-machine-learning-an-overview/ 
 
1. Adversarial inputs:  

 Injecting inputs into the system with intention of them being misclassified 
 
2. Data poisoning: 

 Malicious changes to training data to produce invalid and unsafe results 
 
3. Model stealing: 

 Copying proprietary training data to get a market advantage 
 

All such assets will be stored on modern hardware and will need to be protected 
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Example	Vulnerabilities	-	Datacenter	
•  Baseboard Management 

Controller (BMC): server 
motherboard component 
allowing remote monitoring and 
maintenance of hardware 

•  BMC can power cycle system, 
update or re-install the OS etc.  

•  Enables server admin to 
perform tasks previously 
requiring physical access to the 
server 
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https://www.servethehome.com/explaining-the-
baseboard-management-controller-or-bmc-in-servers/ 
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Example	Vulnerabilities	-	Datacenter	
•  Aspeed	ast2400	and	ast2500	BMC	chips	connect	to	host	via	Advanced	
High-performance	Bus	(AHB)	bridges	

•  Private	physical	memory	and	I/O	ports	exposed	directly	through	AHB	
interface	with	no	authentication	or	access	control	mechanisms	

•  Malware	on	the	host	processor	with	root	privileges	or	rogue	server	
administrator	can:	
–  Completely	replace	the	BMC	firmware	with	malware	
–  Dump	BMC	firmware	to	host	processor	
–  Continuously	power	cycle	the	machine	or	brick	the	BMC	and	entire	server	
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https://www.theregister.co.uk/2019/01/24/bmc_pantsdown_bug/ 
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-6260 
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Example	Vulnerabilities	-	Datacenter	

•  Datacenter hardware shared by many 
customers, OS may not be trusted 

•  Secure Enclaves: execution 
environments with strong hardware-
enforced security guarantees (ex. Intel 
SGX) 
–  Isolation and protection from all other 

processes, including the operating system 
•  Problem: Secrets processed within 

SGX enclaves recoverable by the 
Foreshadow attack 
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https://software.intel.com/en-us/articles/intel-software-
guard-extensions-tutorial-part-1-foundation 
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Example	Vulnerabilities	-	Datacenter	
•  Foreshadow	Attack:	speculative	execution	attack	(similar	to	Meltdown)	
targeting	enclave	memory		
– Malicious	process	faults	when	accessing	enclave	memory	but	can	execute	
transient	instructions	before	fault	is	generated	(tip	race	condition	in	attacker’s	
favor	by	marking	enclave	memory	page	as	“not	present”)	

–  Load	data	into	cache	locations	based	on	secret	enclave	data	and	recover	using	
cache	access	timing	side	channel	

•  Foreshadow	used	to	extract	remote	attestation	keys,	effectively	
allowing	arbitrary	enclaves	to	be	vetted	as	trustworthy	by	the	Intel	
remote	attestation	ecosystem		
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Van Bulck, Jo, et al. "Foreshadow: Extracting the Keys to the Intel {SGX} Kingdom with 
Transient Out-of-Order Execution.“ USENIX Security. 2018. 
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Example	Vulnerabilities	–	Aerospace/Defense	
•  Security and trustworthiness of 

commercial off the shelf (COTS) 
digital components integrated in 
military applications is critical  

•  Microsemi military grade FPGA 
bitstream read/overwritten via 
undocumented JTAG commands 
–  Intentional or accidental backdoor? 
–  Regardless, protecting HW debug 

infrastructure critical 
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S. Skorobogatov and C. Woods, “Breakthrough Silicon Scanning 
Discovers Backdoor in Military Chip.” in CHES, LNCS, E. Prouff and 
P. Schaumont, Eds., vol. 7428. Springer, 2012, pp. 23–40.  

 



Example	Vulnerabilities	–	IoT		
•  Bluetooth	Low	Energy	(BLE)	common	in	

medical	devices	and	network	access	points	
•  Texas	Instruments	(TI)	multi-protocol	wireless	

SoC	chips	integrated	into	Cisco,	Meraki,	and	
Aruba	wireless	access	points	

•  BLE	“advertising”	packets	parsed	by	TI	firmware	
and	reside	in	chip	memory		

•  BleedingBit	Vulnerability:	malicious	advertising	
packets	can	overflow	the	software	stack	
allowing	an	attacker	to	gain	control	of	the	chip	
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http://www.ti.com/general/docs/
datasheetdiagram.tsp?
genericPartNumber=CC2640&diagramId=
SWRS176B 
 

https://go.armis.com/bleedingbit 
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Example	Vulnerabilities	–	Automotive	
•  Modern cars control 

safety-critical functionality 
with digital components 

•  Problem: safety-critical 
components connected via 
CAN Bus to infotainment 
and communication 
systems with internet 
connectivity; all reliant on 
their hardware for security 
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Checkoway, Stephen, et al. "Comprehensive experimental analyses of automotive attack surfaces." USENIX Security Symposium. 2011. 
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Example	Vulnerabilities	–	Automotive	
•  In	2014	security	researchers	remotely	

disable	the	brakes	in	a	Jeep	Cherokee	
•  Attack	first	installs	malicious	firmware	

for	entertainment	hardware.	
Hardware-assisted	secure	boot	could	
be	used	to	avoid	this.	

•  Malicious	firmware	capable	of	
injecting	arbitrary	CAN	bus	
commands	to	transmission	and	
breaking	systems	

15 
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/ 
 
 

Hardware-based security required to reduce the likelihood of safety-critical 
vulnerability exploitation. Security begins with hardware. 
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Hardware	complexity	increasing	number	of	
exploitable	vulnerabilities	

•  Higher	demands	for	hardware	acceleration	increasing	
complexity	and	decreasing	security	

•  More	complexity	means	more	threat	vectors	and	
exploitable	vulnerabilities	

•  Makes	reasoning	about	security	of	the	system	complex,	
time	consuming,	and	often	overwhelming	

•  Traditionally	security	burden	did	not	fall	on	companies	
building	hardware,	now	initiatives	for	hardware	to	
provide	the	“Root	of	Trust”	
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Hardware	Roots	of	Trust	Fundamental	for	Security	
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•  Industry	shift	to	utilize	Hardware	as	the	
Roots	of	Trust	(HRoT)	
–  A	hardware	subsystem	focused	exclusively	on	

security	to	reduce	complexity	and	attack	
surface.	

•  These	systems	perform	the	following:	
1.  Facilitate	a	secure	boot	
2.  Store	secure	IDs	
3.  Accelerate	and	isolate	cryptographic	functions	
4.  Protect	cryptographic	keys	
5.  Store	and	protect	customer	access	
6.  Runtime	integrity	checks	

Secure&Processing

Secure&Functionality:
• Secure&boot
• Secure&IDs
• Secure&

communication
• Runtime&integrity
• Etc.

CryptoManager&Root&of&Trust

Custom'
RISC+V'
CPU

Secure'Memory

Crypto'
Accelerators
(AES,'SHA,'others…)

General@purpose&
Processing

Figure courtesy of our partner Rambus 
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A	HRoT	is	a	powerful	security	feature	but	must	be	made	a	
secure	feature	
	
Many	reasons	HRoTs	can	produce	system	vulnerabilities		

–  Security	of	specific	states	not	considered	
–  Indirect	leakages	of	information	
–  System	architecture	and	configuration	mistakes	

Example	issues:	
–  Mismanagement	of	assets	during	a	secure	boot	
–  Memory	protection	unit	(MPU)	misconfiguration	
–  Improper	clearing	of	keys	or	configuration	registers	
–  Debug	modes	not	properly	configured/disabled	
–  Crypto	key	leakage	(either	directly	or	side	channels)	

More	Security	Features	in	Hardware		
Makes	Security	Validation	Challenging	
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Simplified	CMRT	RT360	diagram	courtesy	of	Rambus	
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Beyond	just	validation	of	a	HRoT	itself,	integration	into	
larger	systems	introduces	another	big	challenge	

Example	issues:	
–  Proper	management	of	system	debug	and	test	interfaces	
–  Misconfigured	access	control	to	system	bus	master	
–  External	(to	the	HRoT)	NVM	key	storage	
–  Software	misconfigurations	of	secure	CPU	
–  Unauthorized	system	access	to	OTP	
–  System	software	bugs		
–  Vulnerabilities	cross	hardware	AND	software	

More	Security	Features	in	Hardware		
Makes	Security	Validation	Challenging	
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•  Architecture	design	review	
–  Manual	
–  Rarely	looks	are	real	system-level	implementation	

•  Manual	Red/Blue	teaming	
–  Important	part	of	analyzing	security	of	final	product	
–  Does	not	find	security	vulnerabilities	pre-silicon	
–  Difficult	to	measure/assess	

	
	

Existing	Security	Approaches	Don’t	Solve	the	Problem	

Tortuga Logic’s products are scalable, low overhead, and finds unknown vulnerabilities 
while running hardware AND software together 

•  Formal	verification	
•  Good	as	part	of	a	bigger	security	strategy	
•  Does	not	scale	to	large	design	w/	HW+SW	

	
•  Directed	functional	tests	

•  High	effort	to	develop	stimulus	to	target	known	
vulnerabilities	

•  Rarely	finds	new	vulnerabilities	
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Solution:	
Tortuga	Logic’s	Root	of	Trust	Security	Verification	Solutions	

Prevent	security	vulnerabilities	in	the	pre-silicon	design	and	system	integration	of	Roots	of	Trust.		
	
Tortuga	Logic’s	products	provide	value	in:	

1.  Identification	of	security	vulnerabilities	in	HW/SW	system	architecture	

2.  Identification	of	implementation	errors	violating	security	requirements	

3.  Tortuga	Logic’s	Radix-S™	Product	
–  Finds	unknown	vulnerabilities	using	current	functional	verification	efforts	for	Roots	of	Trust	
–  Reduces	time	and	effort	for	current	security	verification	efforts	for	Roots	of	Trust	
–  Scales	to	SoC	system-level	analysis	around	Roots	of	Trust	
–  Is	low	effort	to	deploy	
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Step	1	–	Define	the	Threat	Model	and	attack	surface	
–  Understand	assets	that	are	to	be	protected	

	
Step	2	–	Hardware	design	(RTL)	and	Threat	Model	are	analyzed	to	produce	our	Security	
Model	Design	(SMD),	a	synthesizable	hardware	IP.	
	
Step	3	–	Run	SMD	in	parallel	with	RTL	inside	existing	functional	verification	
environments	
	
Step	4	–	Analyze	results	and	identify	security	violations	
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How	to	use	Radix-S™	



Radix-S™	User	Flow	
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Security Model 
Design Tortuga Logic Analysis Platform 

 

Expressed in its 
Sentinel™ rule set 

Security Model 
Generation 

Security Rules 

RTL 

Existing Verification 
Environment 

Already Exists at User

Provided by Tortuga Logic

Step 1: Express 
Threat Models 

Step 2: Generate 
Security Model 

Step 3: Insert Security Model 
into existing regressions/ 
emulation with original RTL 

Step 4: Analyze results; 
identify violations based on 
Threat Models 



Information	Flow	Security	Properties	
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Ensuring integrity
Integrity is violated when an 
unauthorized logical (SW) or 
physical (HW) asset can modify a 
target register/memory state

Ensuring confidentiality
Confidentiality is violated when 
an unauthorized logical (SW) or 
physical (HW) asset can read the 
state of a target register/memory

integrity 

confidentiality 

OK  
(no information flowed in) 

Security Violation  
(information flowed in)  

Security Violation 
(information flowed out) 

OK  
(information did not flow out) 

untrusted_signals   =/=>   trusted_signals

secret_signals   =/=>   output_signals
“source”! “destination”!



Additional	Security	Rules	
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Temporal Rules 
 

A when X =/=> B
•  Starts tracking A when condition X is true and rule will fail if A then flows to B. 

(A =/=> B) || X
•  Starts tracking A at t=0.  Rule will pass if A doesn’t flow to B or X is true.!

!
!
!

A B 
X == 0 X == 1 

Fail 

A B 
Fail 

X == 0 X == 1 



Memory	Read	Protection	
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mem.out	when	(addr	==	secret)	=/=>	$all_outputs	
–  Secret	content	being	read	out	of	memory	should	not	reach	any	output	

MEM 

out 

addr 

X 

secret 



Memory	Write	Protection	
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(key	=/=>	mem.in)	||	addr	==	secret	
–  Secret	content	(i.e.	key)	should	not	be	written	to	non-secure	memory	region.	Flow	
to	mem.in	allowed	if	addr	==	secret.		

	

MEM 

in 

addr 

Key 
X

! secret 
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key	=/=>	$all_outputs	ignoring	aes.out	
–  Specifies	that	aes.out	is	“secure.”	Ignores	information	flow.	

key!

aes!

crypto_top!

X

✓out!

Ignoring	Condition	



Additional	Use	Cases	
•  SoC	Access	control	verification	
•  Secure	boot	analysis	
•  Timing	side	channels	
•  Encryption	key	leakage	
•  Configuration	register	read/write	protection	
•  Memory	Protection	Unit	(MPU)	configuration	
•  JTAG	disablement/analysis	
•  3rd	party/vendor	IPs	and	interfaces	
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AES	Demo:	Key	Leakage	Vulnerability	
•  AES	Encryption	block	retrieved	unmodified	from	OpenCores.org		

–  Fully	functional.	Correctly	performs	encryption	for	thousand	of	test	vectors.	

•  Threat	Model	assumes	security	violated	if	key	or	data	leaks	to	the	
output	without	being	encrypted	

•  Tortuga	Logic’s	Radix-S™	identifies	vulnerability	that	causes	key	and	
data	to	leak	out	as	plain	text	
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AES	Demo:	Key	Leakage	Vulnerability	
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Property: 
assert iflow (key_i =/=> data_o); 
“key should not flow to output” 

Result (demo): 
Rule fails 
Key XOR Data flows to data_o pin 
Violates threat model 

Key	Storage 
Encryption	
Module 

data_i 

data_o 

ready_o 
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Pathview	
•  Enumerates a path from source to destination	
	
	
	
	

•  Find more details through a mouse hover on any node 	
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Cycle 

H
ieracrchy 
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Waveform	view	
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•  Right Mouse Click on any signal:  

The ‘Red’ shade indicate that the 
signal is carrying ‘secured’ information  

The ‘secured’ information has arrived 
at the destination 

- Remove the selected signal from the waveform 
- Make a copy of the signal in the display  
- Display the immediate drivers of this signal 
- Display all the drivers up to the user-specified level 
- Display the path from the source up to this signal 
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Questions? 
 

Jason@tortugalogic.com 

Copyright Tortuga Logic 2019 


