System-Level Register Verification and Debug

Utkarsh Bhiogade, Kautilya Joshi, Puneet Goel
IIIT Nagpur, IIIT Nagpur, Coverify Systems Technology
email: utkarsh@coverify.com, kautilya.joshi@ericsson.com, puneet@coverify.com

Abstract—The Register Abstraction Layer (RAL) forms the
bulk of interface between hardware design and systems software.
UVM reg layer package provides a convenient way to handle
verification of RAL interface in a System on Chip (SOC) test
environment. With the growing need for hardware-software cov-
erification, it becomes imperative to explore advanced verification
techniques that can facilitate a system-level perspective and
yet leverage the strengths of existing verification methodology
standards. Embedded UVM (EUVM) [1] (earlier known as
Vlang [2]) provides one such technical advancement. EUVM is a
multicore-enabled opensource implementation of the latest IEEE
2020 Universal Verification Methodology (UVM) standard [3].
EUVM testbenches compile to produce native binaries that can
be run directly on embedded systems, thus enabling a systems
perspective to functional verification. In this article we explore the
EUVM port of the System Verilog (SV) UVM reg-package from
an RTL designer’s, a device-driver developer’s, and a system
engineer’s perspective.

I. INTRODUCTION
A. UVM Reg Layer

I— UVM ENV
[[SEQUENCES ADAPTER
4 [
e
o
E MONITOR DRIVER
4 [
| v
{ VIRTUAL INTERFACE }—
CPU MEMORY | DT
< Tl t >
J t I J t I
PERIPHERAL 0 PERIPHERAL 1 PERIPHERAL 2 PERIPHERAL N

Fig. 1. UVM Reg Testbench Infrastructure

Complex SOCs may have scores of memory-mapped pe-
ripherals, integrated with one or more processors. Together
these peripherals may account for tens of thousands of reg-
isters. The integration of such a large number of peripherals
on the SOC bus fabric results in a complicated connectivity,
which is difficult if not impossible to verify through a manual
review of Register Transfer Language (RTL) code. A thorough

functional verification of register accesses across the peripher-
als becomes imperative to debug and fix any connectivity issue
that may have crept in during SoC integration of peripheral
Intellectual Property (Core) (IP)s. But the functional verifi-
cation of thousands of registers is itself a humongous task.
With continuously evolving design specifications, adding a few
registers in a peripheral may result in a shift in address space
of a large number of registers. Additionally, most configuration
and status registers consist of multiple fields with varying bit-
positions, access restrictions and functionality, thus denying
the possibility of a generic testbench architecture.

The UVM reg-package adds a higher abstraction layer to
model register accesses in order to make verification process
manageable. Figure 1 illustrates a typical UVM reg layer ver-
ification infrastructure. A reg model captures the complexity
of all the registers down to individual fields. Each register
is modelled by creating an individualized Object Oriented
Programming (OOP) class with different fields laid out as
instances therein. In turn, each field instance captures its bit-
position, reset value, access restriction and other function-
ality traits. The model also maps the registers to memory-
mapped addresses, enabling it to make read/write accesses
using generic hierarchical names of the registers (or fields)
rather than hard-coded addresses and bit offsets. When an
access is made to a particular field, the UVM reg-package
makes an access to the relevant register address and masks
out the bits that do not correspond to the field being accessed.
Consequently, any change in the address (or bit position)
specification of a register field is automatically managed by
the generated model, completely shielding the testbench code
from tedious changes. This aspect of the UVM reg package
is very useful for the testbench code meant for Design Under
Test (DUT) configuration.

There is another perspective to the UVM reg layer, wherein
it offers a standard mechanism to verify register address
decoding and access functionality at block and system level.
The UVM reg package contains a set of standard sequences
that test the RTL design implementation of register address
decoding and register access logic in a comprehensive manner.
This is made possible by a predictor that monitors and
interprets every register transaction on the memory-mapped
bus, and figures out its outcome based on a precise reg model.
A testbench coder is thereby fended off from the tedious effort
that would otherwise be required to code a reference model
of the register logic.

Further, the reg layer offers a means to abstract out the
intricacies of the underlying memory-mapped bus protocol.

This is affected by the adapter block that needs to be
coded manually. Functionally, the adapter block translates
a generic uvm_reg_item transaction to the underlying
memory-mapped bus protocol specific transaction and vice
versa.

In practice, the register model is automatically generated
from a specification maintained on an Excel sheet, or coded
in a SystemRDL file. Normally, the same specification file
is used to generate RTL code for the registers. Note that at
architecture level, the reg model replicates the structure and
functionality of the RTL implementation of register logic.

B. Reg Layer Verification Challenges

It may be noted that the benefits of UVM reg package are
limited to RTL functional verification. With the ever-increasing
hardware complexity at module and system level, there are
new challenges that require a relook at reg-verification from
various perspectives, as illustrated in the following scenarios:

1) Hardware-Software Coverification Perspective: Devel-
opment of software drivers for complex hardware blocks re-
quire intricate maneuvers, wherein hundreds of registers need
to be configured reflecting the desired mode of operation. In
many cases registers are required to be configured in a specific
order, failing which the device is rendered completely dys-
functional. Moreover, time-to-market pressure on the project
timeline results in a cycle that requires parallel development of
hardware and software. Section II describes a reg layer based
technique that can enable coverification of RTL with device-
driver software on a Qemu based development platform.

2) Design Debug Perspective: Continued advancement of
deep sub-micron technology has resulted in very complex
IP level designs that run into millions of gates. During the
design-development cycle, a designer may need to experiment
a lot with the various reg layer configurations, just to ensure
the right mode of operation. But a testcase based reg layer
approach may not be quite debug friendly, since a singular
change in the register configuration code requires the designer
to recompile and re-elaborate the testbench and the design, a
process that takes significant amount of time. Section III ex-
pounds upon a testbench infrastructure that brings dynamism
into the reg layer testbench, making it possible to read and
write into registers at the designer’s will via a user-friendly
MS Excel based interface.

3) System Level Perspective — SoCFPGA: FPGA-based
hardware accelerators have gained a substantial share in the
processor domain. It is envisaged that in future even the
server-end processors would have huge programmable FPGA
resources available on chip. This brings a systems perspective
to the IP-level design cycle. Note that the basic interaction be-
tween the processor and FPGA mapped blocks is via memory
mapped register accesses, thus bringing a larger perspective to
reg layer at application layer software. Section IV explores an
EUVM-powered reg layer infrastructure that validates register
access functionality directly on an SOCFPGA platform.

System Level System Level

N\

DPI Interface Dlang
UVM EUVM

SystemVerilog

DPI/PLI Interface

RTL Simulator

N

Fig. 2. UVM Reg Testbench Infrastructure

RTL Simulator

C. A brief introduction to EUVM

EUVM is a multicore enabled UVM implementation coded
in The D Programming Language (Dlang) [4]. Like SV,
EUVM offers sophisticated constrained-random stimulus gen-
eration and an automatic garbage collector.

Unlike the SV implementation of UVM which is tightly
integrated with RTL simulation, EUVM offers a system-
centric top-down approach. An SV interface to the system-
level has to go through the DPI layer, which may offer a
significant performance penalty [5].

Another advantage of the EUVM implementation of UVM
is its portability across the various operating systems and ma-
chine architectures. EUVM testbenches can run on Windows,
Android, Mac OS and most versions of Linux. Additionally,
EUVM testbenches can be cross-compiled for embedded sys-
tem platforms, making it possible to port RTL testbenches to
embedded systems with a completely portable stimulus.

Under the hood, EUVM uses a rudimentary constraint solver
to handle elementary constraints. It uses a Binary Decision
Diagram (BDD) based solver to handle constraints of medium
complexity. Hard constraints that can not be handled by BDD,
are delegated to the Z3 [6] library that takes satisfiability
approach to predicate solving.

II. QEMU/REG LAYER COVERIFICATION

Qemu [7] enables a cross-platform virtual machine environ-
ment that emulates the machine’s processor through dynamic
binary translations. It also lets the developer model hardware
devices in order to facilitate development of hardware device
drivers. Since such virtual models of hardware devices may not
accurately reflect the actual functioning of hardware design, it
is prudent to co-verify the device-driver code against an RTL
simulation of the device. This section explores a simple setup
to interface Qemu with an RTL design simulation. With this
setup in place, when a developer executes his driver-code on
Qemu virtual machine, it results in register access transactions
in a simulation running on the host machine. On completion,
the outcome of the transactions is reflected back to the device-
driver code running on Qemu.

Since Qemu and RTL simulation run as separate Linux pro-
cesses, a pair of Linux fifos handle interprocess communication
between the two. One fifo manages register access commands
from the gemu to the simulation and the other one is used to

communicate status/read-data back to Qemu. As outlined in
[8], Qemu provides command-line options to enable sharing of
fifos between the host machine and the Qemu virtual machine.

HEADER (META) >

‘endian| pkt len |version| pktid |operation| status ‘

FRAME >

‘ data len | address | data ‘
Fig. 3. Reg Command Packet Frame

Note that a Linux fifo is a serial device. Data exchanges
via these devices take place as a stream of byte transfer
without any underlying packet structure. A protocol (or a
packet structure) is therefore required for the transaction of
register commands and status requests. In addition to data and
address, we need to add some meta information to the packet
in order to take care of variations in machine architectures
and to facilitate consolidation of structured data frames on
the host and the Qemu virtual machine platforms. A typical
command/status frame structure is outlined in figure 3. A
header is prefixed with every frame of transaction made across
the fifos.

Correspondingly, in the testbench code, the header and the
frame structures are laid out in form of packed structs ...

struct tr_header ({ 1
align(1l): 2
ubyte endian; 3
uint pkt_len; 4
ushort ver; 5
uint id; 6
kind_e op; 7
uint status; 8

9

}

struct tr_ frame { 1

align(1l): 12
uint length; 13
ulong addr; 14
uint data; 15

Fig. 4. Reg Header and Frame Structs in EUVM

Note that the pragma align on line number 2 and 12, is the
D way of telling the compiler that the fields in the structs are
packed (aligned at single byte boundaries).

When a reg command/status transaction is received from
Qemu, first the header part of the packet, which is always
of a fixed length, is cast to the tr_header. Consequently,
based on the interpretation of total pkt_len in the header, the
remainder of the frame is unpacked into a t r_frame. Figure
7 illustrates the process for a read command. Note that the flag
_swapRequired is based on the interpretation of the endian
field, to take care of the scenario where the endianness of
Qemu virtual machine does not match that of the host machine.

tr_framex read_data(File fifo,
ubyte[] trSizeBuf;
trSizeBuf.length = size;
fifo.rawRead (trSizeBuf) ;

uint size) {

tr_framex frame;

frame = cast (tr_framex)trSizeBuf.ptr;
if (_swapRequired) { 10
frame.length = swapEndian (frame.length); n
frame.addr = swapEndian (frame.addr); 12
frame.data = swapEndian (frame.data); 13
} 14
15
return frame; 16

Fig. 5. Mapping Read Data to Frame Structure

Qemu
| HAL LAYER

Linux fifos =

UVM ENV

.

< 4

VIRTUAL SEQUENCE

IIISEQUENCES ADAPTER
* [
MODEL /5 e
(8]
a
g MONITOR DRIVER

DUT

Fig. 6. Reg Layer and Qemu Interface

It is also pertinent to note that while the testbench executes
on a discrete event simulator, the driver software runs on
the Qemu virtual machine in a completely asynchronous
manner. A mechanism is therefore required to synchronize
the incoming reg access commands with the testbench. This
is done via a virtual sequence that waits on packets from the
Linux fifo interface. Once the sequence receives a command
from the fifo, it interprets the command and converts it to a
reg sequence item. These sequence items are then forwarded
to the simulation via a UVM sequencer and a bus protocol
driver. Figure 8 outlines the architecture and connectivity of
the virtual sequence. Note that there is little involvement of
the reg model in this scheme of things. It is the software driver
code, running on Qemu, that maintains an address map for the
registers it wishes to access.

override void body () {

1

req = 2

uvm_reg_item.type_id.create ("req " 3

~ get_name); 4

reg.kind = _kind; 5

reqg.addr = _addr; 6

reqg.data = _data; 7

8

start_item(req); 9

finish_item(req); 10

11

uvm_info ("APB SEQ", format ("\n%s", 12

reqg.sprint ()), UVM_DEBUG) ; 13

14

_data = reqg.data; 15

16

} // body 17
Fig. 7. Virtual Sequence for reg-qgemu interface

Note the complete absence of DPI like interface in the
EUVM testbench infrastructure that integrates with Qemu.
EUVM is fully ABI compliant with C/C++, thus allowing the
verification engineer to seamlessly interface with any C/C++
code and make operating system calls at will.

Complete EUVM reg layer interface to Qemu is available
for download from the EUVM Github account [9].

IIT. INTERACTIVE REGISTER DEBUG

¢ Excel Tool

TCP Sockets

UVM ENV

}7

{ Python Plugin

—

—al

- B

VIRTUAL SEQUENCE

IIISEQUENCES

ADAPTER
f l

e

MONITOR DRIVER

MODEL

PREDICTOR

DUT

Fig. 8. reg layer and MS Excel Interface

As noted in section [-B2, during IP development, an RTL
designer may need to experiment a lot with configuration of
registers in order to correctly bring the design simulation up in
a particular functional mode. For complex multi-million gate
IP designs, a few mistakes in the configuration could mean

hours of wasted time in repeat fix, compile and elaboration
cycles.

In the previous section we explored how a simulation
can be made to follow register access commands sent from
another process running on the same Linux server that runs
the simulation. To achieve interactive register debug, the same
testbench architecture can be extended to interact with an
Excel tool.

Gnumeric [10] is a Linux tool to edit Excel files, and allows
the user to execute Python code that can be plugged in into
the tool. More recent advancements [11] have made it possible
to plugin Python code into the Microsoft Excel tool running
on a Windows server.

Considering that MS Excel could be running on a different
server than the design simulator, and that MS Excel would
execute mainly on Windows servers, Linux fifos offer little
help. TCP/IP socket [12] interface offers the most reliable
means of communication between applications running on
different servers connected on an Ethernet LAN.

As was the case with Qemu, reg model is of little use with
Excel driven simulations as well. A populated Excel sheet
must have all the registers and fields laid out along with
reset values, address, and bit positions. It is common for RTL
designers to maintain the list registers in an Excel sheet in
this manner, though a recent trend is to model the registers
in SystemRDL [13]. The advantage of using SystemRDL is
that it is an industry standard. There is also a wide availability
of commercial as well as opensource SystemRDL [14] tools.
Some SystemRDL tools also make it possible to convert the
register specification into a CSV file that can be used to
populate an Excel sheet with register specification.

Figure 9 lists the Python code snippet that enables reading
the value stored in a register from the simulation. When a
similar access is made on a reg-field instead, Python reg
layer plugin first makes a read access on the corresponding
register by creating a reg-command packet and sending it to
the simulation via TCP socket interface. Later when the read-
data is returned by the simulation, the Python plugin masks
out the bits that do not belong to the specified field based
on the bit positions of the specific field as listed in the Excel
sheet.

The virtual sequence for TCP Socket interface needs a bit
more attention since TCP payload arrives on the TCP sockets
in chunks unlike a Linux fifo which behaves as a streaming
serial device. When receiving a packet on a TCP socket, the
virtual sequence code first buffers the ingress data and only
when the buffer has sufficient number of bytes to interpret
a reg header, it processes the header. Later, the reg-frame is
similarly construed from the buffered data, based on the packet
length information received as one of the fields in the reg-
header packet structure.

Complete EUVM and Python plugin code for the Excel
interface to reg layer is available for download from the
EUVM Github account [9].

def reg_read(cell_range):

1

ar=get_field(cell_range) 2
#checking if field is valid 3
if ar[0] == None: 4
return ’'INVALID FIELD' 5
else: 6
if ar[0].lower () [0:8] == "register’: 7
field_ar=get_fields (ar) 8
a='Wwo’ in str(field_ar) 9
if a == True: 10
return 'WO reg, unable to read’ 1
else: 12
addr=int (str(ar([2]),16) 13
read_data=read_val (addr) 14
return ’'DATA: ' + 15
str (int (read_data, 16)) 16

elif ar[0].lower () [0:5] == 'field’: 17
a='"Wo’ in str (ar) 18
if a == True: 19
return 'WO field, unable to read’ 20
else: 21
fg=True 2
i=nl-1 23
while fg == True: 2%
cell=s[ml+2,1i] 25
val=cell.get_value() 26
reg_cell=s[ml,i] 27
reg_name=reg_cell.get_value() 28

if (val != None and 29
reg_name.lower () == ’'register’): 3
addr=int (val, 16) 3l
fg=False 3

else: 3

i -=1 34
read_data=read_val (addr) 35
read_data= 36
"{0:032b}".format (int (read_data,

16)) 38

if len(str(ar[4])) <= 4 : 39
end=32 - int (ar[4]) 40
temp_data=1list (read_data) 41
data=temp_datal[end-1] 2
read_data="".Jjoin (data) 43
read_data=int (read_data, 2) 44
return ’'DATA: ’'+str(read_data) 45

else: 46
stl=(ar([4].strip (" [1")) .split (" :") =
start=32 - int (st1[0]) 48
end=32 — int(stl[1]) 49
temp_data=list (read_data) 50
data=temp_data[start-1:end] 51
read_data="".join (data) 52
read_data=int (read_data, 2) 53
return ’'DATA: '+ str(read_data) 54

else: 55
return ’'INVALID FIELD’ 56

Fig. 9. Python Plugin Code to infer a Read Access

IV. REG LAYER TESTBENCH FOR SOCFPGA
An SoCFPGA [15] integrates FPGA resources with a CPU
on the same ASIC. The ability to program an FPGA and
its tight integration with the CPU enables an end user to
implement hardware accelerator designs on the FPGA. Unlike

SoC SoCFPGA

CPU CPU
1013°

FPGA

ASIC

ASIC

Fig. 10. SoCFPGA Overview

the hard ASIC blocks that are mainly handled by device
drivers, FPGA based hardware accelerators interface with the
software at user or application level. Also note that in an
SoCFPGA, the CPU mainly interacts with the FPGA via
memory mapped bus protocols.

The advent of SOCFPGAs, brings forth an interesting verifi-
cation perspective. When an IP designer hands off an RTL or a
bitfile to a software engineer, there needs to be a way to ensure
that the RTL design has been integrated and mapped flawlessly
on the SOCFPGA. Since a hardware accelerator integrates
tightly with software, there is also a need to pragmatically
ensure that the logic mapped on the FPGA meets the functional
requirements listed in the specification document.

Since the interaction between the accelerator and the CPU
is limited to memory mapped accesses, reg layer plays an
important role in the verification of SOCFPGA systems. The
ability to cross-compile EUVM testbenches for embedded
CPU architectures ensures that we can run EUVM reg layer
testcases directly on the SOCFPGA systems.

Unlike a normal testbench meant to verify RTL designs,
an EUVM testbench running on SoCFPGA would not need
a driver because an SoCFPGA maps the memory-mapped
protocol driver directly to the hardware logic. In fact, the
testbench can be made completely protocol-agnostic with
uvm_reg_item transactions directly getting processed by
software reads and writes.

It is pertinent to note that before we can start making access
requests to the design mapped on the FPGA, we need to map
the register address space to virtual memory. This is done by
making a call to Linux mmap function as shown in the code
listing in Figure 11.

A complete golden reference testbench that runs reg layer
tests complete with reg model on a Cyclone V board can be
downloaded from [9].

V. CONCLUSION

Since the UVM reg layer relates to register and memory
accesses which almost always originate from software code
running on a CPU, it plays an important role in hardware-
software coverification which has been largely ignored. From
a systems perspective, the tight integration of SV UVM
with RTL simulators poses a hindrance in using SV UVM

void map_registers () { 1
fd = open ("/dev/mem", 2
O_RDWR | O_SYNC) ; 3

if (fd < 0) { 4
assert (false, 5
"Failed to open /dev/men"); 6

} 7

mem = mmap (null, HPS_TO_FPGA_LW_SPAN, 8
PROT_READ | PROT_WRITE, 9

MAP_SHARED, fd, 10
HPS_TO_FPGA_LW_BASE) ; 1

if (mem == MAP_FAILED) { 12
close (fd) ; 13
assert (false, "Can’t map memory"); 14

} 15
regs = cast (uintx) mem; 16

} 18

override void final_phase (uvm_phase phase) {

super.final_phase (phase) ; 21
munmap (mem, HPS_TO_FPGA_LW_SPAN) ; 2
close (fd); 23

Fig. 11. EUVM code to map FPGA registers physical addresses to Virtual
Memory

reg-package for system-level verification. EUVM provides a
complete port of IEEE UVM 2020 standard along with the reg
layer. EUVM testbenches can be cross-compiled and directly
run on embedded systems, thus providing a practical path to
system level reg layer verification and validation.

Since EUVM is build on Dlang, a systems programming
language, it provides a convenient way to integrate EUVM
testbenches directly with systems software development plat-
forms like Qemu.

VI. ACRONYMS

Dlang The D Programming Language
RAL Register Abstraction Layer
EUVM Embedded UVM

ABI Application Binary Interface

API Application Programming Interface
BDD Binary Decision Diagram

DPI Direct Programming Interface
DSL Domain Specific Language

DUT Design Under Test

GC
IP

Garbage Collector
Intellectual Property (Core)

OOP Object Oriented Programming

(O]
PLI

Operating System
Programming Language Interface

RTL Register Transfer Language

Sv

System Verilog

SoC System on Chip
UVM Universal Verification Methodology

VPI

—
—

[3]

[4]

[14]

[15]

Verilog Procedural Interface
REFERENCES

Embedded UVM Home Page. [Online]. Available: http://uvm.io

P. Goel and S. Adhikari, “Introduction to Next Generation Verification
Language - Vlang,” 2014.

“IEEE Standard for Universal Verification Methodology Language Ref-
erence Manual,” IEEE Std 1800.2-2020 (Revision of IEEE Std 1800.2-
2017), pp. 1-458, 2020.

W. Bright, A. Alexandrescu, and M. Parker, “Origins of the D
Programming Language,” Proc. ACM Program. Lang., vol. 4, no.
HOPL, Jun. 2020. [Online]. Available: https://doi.org/10.1145/3386323
A. S. Parag Goel and H. V. Balisetty, “““C” you on the faster side:
Accelerating SV DPI based co-simulation,” Proceedings of Design
Verification Conference, San Jose, 2014.

L. De Moura and N. Bjorner, “Z3: An Efficient SMT Solver,” in
Proceedings of the Theory and Practice of Software, 14th International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems, ser. TACAS’08/ETAPS’08. Berlin, Heidelberg: Springer-
Verlag, 2008, pp. 337-340.

X. Bian, “Implement a virtual development platform based on QEMU,”
in 2017 International Conference on Green Informatics (ICGI), 2017,
pp. 93-97.

How to setup QEMU output to console and automate using
shell script. https://fadeevab.com/how-to-setup-gemu-output-to-console-
and-automate-using-shell-script/. Accessed: 2021-07-26.

Embedded UVM Github Repositries. Accessed: 2021-07-26. [Online].
Available: https://github.com/euvm

O. Frommel, “Working with Gnome’s Gnumeric Spreadsheet,” Linux
Magazine, 2006.

Xlwings Documentation. [Online]. Available: https://docs.xlwings.org/
M. Donahoo and K. Calvert, TCP/IP Sockets in C:
Practical Guide for Programmers, ser. TCP/IP Sockets in
C Bundle. Elsevier Science, 2009. [Online]. Available:
https://books.google.co.in/books?id=dmt_mERzxV4C

“SystemRDL 2.0, Register Description Language,” 2018. [Online].
Available: https://accellera.org/images/downloads/standards/systemrdl/
SystemRDL_2.0_Jan2018.pdf

Free and Opensource SystemRDL tools. Accessed: 2021-07-26.
[Online]. Available: https://github.com/SystemRDL

What is an SoC FPGA? Accessed: 2021-07-26. [Online]. Available:
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/
literature/ab/ab1_soc_fpga.pdf

