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• Industry trends

– Trends reveal more general purpose configurable designs.

– Support broader range of applications with the same silicon.

– Increasing number of use-cases and many unknown future applications.

• System level verification

– Typically restricted to connectivity checks between sub-blocks. 

– Additionally, use-cases scenario verification using directed test approach. 

• Constraint random verification(CRV)

– Widely accepted standard approach for block level verification.

– Helps in exercising known/unknown scenarios.



Design block diagram
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• ~2000 major known use-cases

and many more possible use-

cases for the future.

• Each use-case results in 10

unique possible combinations of

data flow configuration.

• Each data flow configuration have

the 100s of other parameters for

randomization.

• Required end to end checks for

each configuration for signal

integrity and deterministic latency.

More than 

20,000,000 known 

design 

configurations to 

verify at system 

level
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• For massive number of known use-cases, directed test approach is extremely

inefficient.

• Complex data path clocking scheme makes DUT unsuitable for formal runs.

– Require complex properties and huge computation power.

• Signal processing and integrity checks for data path.

• Requirement for gate level simulation to catch synthesis constraints and multicycle

issues.

• System level CRV approach is a must for thorough verification.
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• Development

– Extensive sets of constraints.

– Require systematic planning.

• Execution

– Huge solution space for constraint solver.

– Significant debug efforts.

• Sign off

– Adaptation to late design changes and new use-cases.

– Appropriate coverage bins for functional coverage.
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• Development

– Extensive sets of constraints.

– Require systematic planning.

• Execution

– Huge solution space for constraint solver.

– Significant debug efforts.

• Sign off

– Adaptation to late design changes and new use-cases.

– Appropriate coverage bins for functional coverage.

How much of the 

development efforts 

will be reusable in 

future projects?



Agenda

12

• Introduction 

 Constraint development 

• Tool performance optimization

• Control and debug

• Guideline for reuse

• Result and summery



Use of constraint macros

13

C
ro

s
s
b

a
r

P
ro

g
ra

m
m

a
b
le

 M
u

x

C
ro

s
s
b

a
r

P
ro

g
ra

m
m

a
b
le

 M
u

x

C
ro

s
s
b

a
r

Transmit 

Protocol

Sub filters

Main filters

C
ro

s
s
b

a
r

C
ro

s
s
b

a
r

High Speed

Sensors

General 

Filter
Sub filters

Special FilterProgrammable Mux

`size_const(a_inst_arr,a_size);

`en_const(a_size,a_en);

`onehot_const(a_arr);

Number of enabled instances should 

match with size variable.

Size should be zero, if disabled.

One hot  constraint for mux select



Use of constraint macros
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– Platform approach for uniformity in coding.

– Avoid typo and copy paste errors.

– Easy to update and audit.
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rand bit a;

rand bit b;

constraint a_to_b {a -> b;}

constraint a_to_b {a == b;}

Logical equivalent to (!a)|b

Logical equivalent to (ab)|(!a!b)

a b a -> b a == b

0 0 True True

0 1 True False

1 0 False False

1 1 True True



Understanding of language limitation will enable reduction of global

development and debug time.

Recognize SV language 

limitations
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rand bit[a_max-1:0] a_inst_arr;

a_size == $countones(a_inst_arr);

a_inst_arr[n].rand_mode(0);

Packed array of random bits.

$countones return integer value.

 Not possible for packed array.

rand bit a_inst_arr[a_max-1:0];

a_size == a_inst_arr.sum();

a_inst_arr[n].rand_mode(0);

Unpacked array of random bits.

 Sum function will return bit and not 

integer type.

Control for individual element works.
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((A==2) & ((B==1) | (C==0))) | 

((A==3) & ((B==1) | (C==1)))

== (D == 1);

Looks good !!
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Avoid ambiguous constraints
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– Are you able find the difference between the two?

• X | Y == Z means (X | Y ) == Z   or   X | ( Y == Z )

• Both are correct and interpretation depends on tool.

– Can we debug such issues quickly?

– Eliminate ambiguities with proper brackets as per 

intends.

((A==2) & ((B==1) | (C==0))) | 

((A==3) & ((B==1) | (C==1)))

== (D == 1);

(((A==2) & ((B==1) | (C==0))) | 

((A==3) & ((B==1) | (C==1))))

== (D == 1);

((A==2) & ((B==1) | (C==0))) | 

(((A==3) & ((B==1) | (C==1)))

== (D == 1));

A B

X Y Z ( X | Y ) == Z X | ( Y == Z)

0 0 0 True True

0 0 1 False False

0 1 0 False False

0 1 1 True True

1 0 0 False True

1 0 1 True True

1 1 0 False False

1 1 1 True True
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• Large solution space for system will consume significant computation power.

– 100s of parameter to randomize.

• Inter blocks dependencies for valid combinations.

– Like number of monitors depend on sensors count.

• Implementation complexity/trade off driven design constraints.

– Ex. Max. data rate at filter input.

• Frequency planning for valid outputs.

– Depends on input bands and mixers.



Divide and conquer
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• Partition of randomization based on functionalities and dependencies.
– Protocol and external interaction (transmit lanes, lane rates…).

– Data path, crossbar and muxes (number of filters, data source & destination…).

– Frequency planning for system (input bands, mixer frequencies…).

– Non data path parameters (GPIOs, interrupts…).

• Implementation details
– Individual, layered transactions for each partition.

» Used layered approach for reuse.

– Transactions are randomized and passed to rest of transactions.

» System sequence will order randomization among transaction and share as required.

• Result 
– See ~30 times performance improvement.

– Help in debug for randomization failures.

– Easy to update and maintain.



Understanding the solution 
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rand bit a_en;

rand int unsigned a_size;

.

(a_size>0) -> constraint_statement;

(a_en) -> constraint_statement;

 Integer has many possible values.

 Bit has only 2 possible values.

Aim: do some constraint, if any enabled
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rand bit a_en;

rand int unsigned a_size;

.

(a_size>0) -> constraint_statement;

(a_en) -> constraint_statement;

 Integer has many possible values.

 Bit has only 2 possible values.

rand int a_inst_arr[];

rand bit a_inst_en[a_max];

.

foreach(a_inst_arr[i]){

a_inst_en[a_inst_arr[i]] == 1;}

.

foreach(a_inst_en[i]){

a_inst_en[i] -> i inside{a_inst_arr};}

 Order dependency for tool, may 

result in frequent tool crash.

 Tool friendly due to removing order 

for randomization.

Aim: do some constraint, if any enabled

Aim: randomly selected instances should be enabled



Optimizing for the solver 

performance
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• Recommendations

– Split system randomization in multiple steps.

– Search for possibilities in solution spaces reduction.

– Avoid indirect dependencies by rewriting constraints.

– Provide guidance to solver for order of randomization.

– Tools may have optimization for standard constraint statements.

– Redundant constraints may also help in performance improvement.

Solution space (not the number of constraints) determines randomization time

for the tool.
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• Problem

– Multiple request for the specific use-case scenarios during the project.

– Separate test for each request will be overkill.

– Require control over random variables and constraint blocks.

• Solution

– Enable or disable randomization in pre randomization phase.

– Use $plusargs based run-time options and uvm_config_db to receive commands.

– Sample commands: +set_sensor_mode=1 +set_main_filter_size=2 +set_bypass_path

– Ease to update and native method to provide support for various commands.

– Use macro defines for uniformity in run-time options.

– Separate constraint blocks for commonly required cases.



Run-time control over 

constraints
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• Run-time options based control became savior.

– Used by architecture, design, verification and silicon eval teams.

– Used for development, verification, mix signal cosim, coverage closure, power analysis, 

silicon debug and use-cases run.

• Result

– Help in serving many requested use-cases without writing alternative tests.

– Save compile time for each required use-case generation.

– Verification easiness

– Used to narrow down cause for randomization failures.

– Identifying constraints for the required functionality.

– Functional coverage analysis.



Functional coverage debug
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• Problem

– Functional coverage holes.

• Indicates given scenario is not covered.

• Cause 

– Overly or wrongly constrained conditions and blocks.

– Insignificant runs for functional coverage sampling.

• Strategy to debug

– Use run-time options to force required combination. 

– Conflicting constraint failure from tool help in identifying possible constraint issues.

– If no constraint failure means more runs are needed.



Conflicts and invalid 

conditions
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• Multiple times the bunch of commands result in invalid combinations.

– Result in randomization failure due to conflicting constraints.

– Significant unproductive efforts for various teams to understand and debug such 

failures.

• Early detection of run-time commands issue

– Error and conflicting conditions are known upfront to developers.

– Put conditional checks for them before randomization.

• Use rand_mode() return value for identification of run-time options.

– Result in very specific failure message for such conditions.
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Constraint reusability 

concerns
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• Identifying constraint for the functionalities in “a sea of constraints”.

• Refurbishing constraints for design changes.

• Missing constraint statements and blocks. 

• Constraint block override.

• Language supports and useful in few cases.

» Extended class can override base class constraints.

• Extremely error prone, if not intended.

• Difficult to avoid issue without upfront planning. constraint abc_const{

condition_1;

}

.

.

constraint abc_const{

condition_2;

}

constraint  block will be fully ignored by tool.

It will override previous constraint block.



Guideline for reuse
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Efficiency in finding & understanding

Helps in update & debug

 Enable wider adoption & reuse

Guideline Improvement

One constraint block for similar functionalities. • Reduce risk of missing constraints.
• Ease updating of code for design changes.

Name each constrained block using the dependent 
variables and specific functionality.

• Avoid constraintblocks override issue.
• Help in finding 

Ordering the constrained blocks as per order of 
programming or data flows in design.

• Mitigate missing constraints issues.
• Promising way to debug and search constraints.

Use enums and macros instead of hardcoding value • Easy understanding and debug for constraint.
• Require minimum change for spec changes

Appropriate comments before constrained blocks and 
code.

• Helps to understand and reuse.
• Effortless debug for constraint issues.
• Provide templates for similar functionality.
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• Challenges: There are significant challenges in system level randomization and 

require deep planning and a systematic approach to complete it.

• Quality within time: We have successfully used a system level randomization 

approach to achieve our verification goals

– Uncovered 60+ bugs in system before tape-out.

– We have unearthed many scenarios and design bugs using CRV, which were not 

thought before.

– Extensive silicon testing did not report any issues.

• Impact: Run-time option based use-case scenario generation is extensively used 

for silicon debug and decreases overall time for silicon bring up.



Summery
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• System level CRV approach provides significant automation to verification process.

• Optimal trade-off between Engineer time vs Computer resources.

Thank You !!
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Thank you !! 
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System level CRV approach 

v/s portable stimulus
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• Limited advantages
– Due to aggressive schedule and insignificant returns, block level approach is not used in project.

– Other teams (software, silicon eval) were not ready to invest efforts.

– PS was not industry standard and hence had doubt about reusability in subsequent projects.

• Immature tool support.
– A couple of PS tools were evaluated and experienced inadequate results.

– Anticipated various tool issues and time consuming tool debug during project cycle.

• Significant efforts
– PS require significant efforts for team to learn and understand.

– SV is well known and minimum efforts required for team to understand, develop and debug.

– Since we need to code large number of constraints in limited time, native approach is preferred.

Finally we are working to bring up PS setup for the project.
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rand int a_inst_arr[];

rand bit a_inst_en[a_max];

.

foreach(a_inst_arr[i]){

if(a_inst_en[i]) -> (a_inst_arr[i] <= a_max);

foreach(a_inst_arr[j]){

if(i!=j) & a_inst_en[i] & a_inst_en[j]{

a_inst_arr[i] != a_inst_arr[j];}

}

}

.

Unique(a_inst_arr);

foreach(a_inst_arr[i]){

(a_inst_arr[i] > max) -> a_inst_en[i] == 0;}

 Complex loops create issue and  

suffer with tool performance hit.

 Tool may have optimization for 

standard constraint blocks.

Aim: randomly selected instances should be unique and 

enabled.



Examples of redundant 
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rand int a_size,b_size,c_size,d_size;

rand bit a[max],b[max],c[max],d[max];

.

foreach(a[i]){

a[i] == (b[i] | c[i] | d[i]);

`onehot_constraint({b[i],c[i],d[i]});

}

a_size == (b_size + c_size +d_size);

Constraints for mux output and 

only one selection for input.

 Redundant constraint on size to 

help tool.

Aim: each mux output should have respective one 

and only one input.


