SysML based Architecture Definition and Platform Generation Flow

Ralph Görgen, NXP Semiconductors Erwin de Kock, NXP Semiconductors

SECURE CONNECTIONS FOR A SMARTER WORLD

Motivation

- High complexity of connected electronics systems in cars
- Functional Safety is ...
 - a very important aspect in development of automotive semiconductor products
 - fulfilled by a system providing functionality and not individual components
- Model-based top-down flow enables traceability and model based safety analyses
- Executable virtual prototype enables analysis of HW/SW interaction
- VP shall represent architecture as defined

Outline

- Introduction
- Automotive Battery System and Safety
- SysML-based Top-Down Flow for Functional Safety
- IP-XACT-based Architecture Description
- Model Generation and Integration Flow
- Evaluation based on Battery Controller IC
- Conclusion
- Summary and Outlook

Automotive Battery System ELECTROLYTE SEPARATOR ANODE (-) COPPER CURRENT CATHODE (+) COLLECTOR ALUMINIUM CURRENT COLLECTOR **Battery Cell Controller** Isolated Monitors cell voltages, Communication temperatures, ... Link LI-META LITHIUM ION LI-METAL **ELECTRON** OXIDES **BMS BCC BCC** BCC **MCU** Module Module Module **ECU HV Battery** Low voltage ¹ High voltage !

SysML-based Safety Flow 1

Functional Safety Requirements

Functional decomposition and architecture

Annotated malfunctions

Derive initial FTA

SysML-based Safety Flow 2

- Add safety mechanism to prevent SPF
- Split requirements in internal (HW) and external (SW)
- Allocate FSRs to HW architecture elements

Platform Model in SysML

- Actual IC hardware architecture
- Decomposed hardware resources and communication links
- Real pinout

Model Generation Flow Steps

Architecture Description in IP-XACT

- Split between architecture and implementation
- Architecture description
 - Logical component interface, parameters, registers
 - Component instances and logical connectivity
 - Connectivity based on abstract interface connections
 - Reusable over all abstraction/implementation levels
- Implementation description
 - Addition of implementation specific details to architecture description
 - Ports, file sets
 - Communication refinement by bus abstraction definitions and port maps
 - Explicit for each abstraction level/implementation

SysML to IP-XACT Architecture

- Export plugin in SysML tool
- Reuse of existing TCL infrastructure to create IP-XACT
- Plugin traverses SysML model and generates TCL scripts
- Basic SysML to IP-XACT mapping:
 - block definition → IP-XACT component
 - block ports → bus interfaces
 - port types → bus definitions
 - Internal Block Diagrams → hier. component + interface connections
- Registers and memory map added from external source (XLS)

SysML to IP-XACT Architecture (2)

```
source ${nxp::workarea}/chip control/magillem/run assemble architecture.tcl
source ${nxp::workarea}/chip registers/magillem/run package architecture.tcl
                                                                                                                  control
nxp::createHierarchicalComponent nxp.com bms chip 0.0 architecture "" \
${nxp::workarea}/chip/METADATA/
                                                                                                                                              → out1
                                                                                                                           out1
component::createElement busif in1
                                                                                                                                              → out2
                                                                                                                           out2
                                                                                                                  reg_if
component::setElementProperty busif in1 bus type list nxp.com types my type t
component::setElementProperty busif in1 bus direction slave
component::createElement busif in2
component::setElementProperty busif in2 bus type [ list nxp.com types my other type t
                                                                                                                               registers
component::setElementProperty busif in2 bus direction slave
component::createElement busif out1
component::setElementProperty busif out1 bus type [ list nxp.com types ky type t 1.0 ]
                                                                                                                       reg if
component::setElementProperty busif out1 bus direction master
design::addComponentInstance [ list nxp.com bms chip control 0.0 ] control
design::addComponentInstance [ list nxp.com bms chip registers 0.0 ] registers
                                                                                                    Recursive call for subcomponents
design::createHierarchicalConnection control out1 out1
design::createHierarchicalConnection control in1 in1
                                                                                                            Create component
design::createHierarchicalConnection control in2 in2
design::createInterconnection control reg if registers reg if
                                                                                                   Create interfaces + assign bus type
if { [ file exists ${nxp::workarea}/chip/magillem/post run assemble architecture.tcl
  source ${nxp::workarea}/chip/magillem/post run assemble architecture.tcl
                                                                                                          Instantiate and connect
                                                                                                              subcomponents
```


Call post processing script (if available)

Handling SysML Multiplicity

Generate ESL View

```
source ${nxp::workarea}/chip control/magillem/run assemble esl.tcl
source ${nxp::workarea}/chip registers/magillem/run assemble esl.tcl
nxp::copyHierarchicalComponent \
  nxp.com bms chip 0.0 architecture architecture cfg \
  nxp.com bms chip 2.0 ESL ESL cfg \
  ${nxp::workarea}/chip/METADATA/ systemc
component::setElementProperty busif in1 abstraction type [ Nist nxp.com types mx type t esl 1.0 ]
component::setElementProperty busif out1 abstraction type [ list nxp.com types my type t esl 1.0 ]
nxp::createWirePort in1 pi in ""
nxp::createWireTypeDefs in1 pi [ list bms::my type t [ list ESL ] false [ list my type t.h ] ]
nxp::createWirePort out1 po out ""
nxp::createWireTypeDefs out1 po [ list bms::my type t [ list bsL ] false list my type t.h ] ]
component::setElementProperty busif in1 port maps [ list [ list part "" in1 pi
component::setElementProperty busif out1 port maps [ list [ list port "" out1 po
design::setComponentInstanceComponentRef control -v 2.0
design::setComponentInstanceComponentRef registers -v 2.0
nxp::createFileSet ESL \
  [ list \
    [ list controllib \
      [ list \
        ../SLMODEL/inc/chip control.h \
        ../SLMODEL/src/chip control base.cpp \
        ../SLMODEL/src/chip control.cpp \
      1\
    1\
component::setElementProperty fileset ESL dependency [ list ../SLMODEL/inc ]
```


Recursive call for subcomponents

Copy base component

Set bus abstraction

Create ports and port maps

Create fileset

Generate SystemC Model

- Leaf components
 - NXP internal tool generate modules incl. interface and registers
 - Register models based on SCML
 - Base module for generated elements and derived module to add behavior
- Hierarchical components
 - Commercial SystemC Netlister (Magillem tool suite)
- Data types for ports/signals
 - Header file containing default typedef to int
- Build files for SystemC compilation based on filesets

Flow Evaluation based on Battery Controller IC

Battery Cell Controller

- High accuracy measurement
- 14 cells + GP channels
- Integrated balancing

SysML Model:

- More than 80 blocks
 - unique and re-used
 - analog, digital, mixed, memory
- More than 700 connectors
 - shared bus, point-to-point

Generator Result:

- SystemC model + build scripts
- Compile and run out of the box
- Good starting point for refinement and adding behavior

Flow Limitations

- Different syntax rules (e.g. identifier, whitespace, keywords)
 - Checkers to check rules in SysML
- Missing information (e.g. vendor, library, version)
 - Can be added by generator (default values)
- Connectivity

Conclusion

- Good productivity gain
 - Creation of 65 IP-XACT components (15 hierarchical, >700 connections, excl. IP)
 - Saved effort aprox. 2 to 3 WWs
- Well-defined relation of SysML to architecture and model
 - Ensures consistency between safety analyses and implementation
- Incomporates well with existing flow (gen doc, SW headers, ...)
- Flow requires modeling guidelines for SysML

Summary and Outlook

- Model based flow for safety critical semiconductor products
- System architecture definition and automated generation of VP skeleton
- Evaluation based on automotive battery controller IC

Outlook

- Refine and align modeling rules and extend automated checkers
- Sync updates in IP-XACT to SysML
- Improve AMS support

Questions

