SysML based Architecture Definition and Platform Generation Flow

Ralph Görgen, NXP Semiconductors
Erwin de Kock, NXP Semiconductors
Motivation

- High complexity of connected electronics systems in cars
- Functional Safety is ...
 - a very important aspect in development of automotive semiconductor products
 - fulfilled by a system providing functionality and not individual components
- Model-based top-down flow enables traceability and model based safety analyses
- Executable virtual prototype enables analysis of HW/SW interaction
- VP shall represent architecture as defined
Outline

• Introduction
• Automotive Battery System and Safety
• SysML-based Top-Down Flow for Functional Safety
• IP-XACT-based Architecture Description
• Model Generation and Integration Flow
• Evaluation based on Battery Controller IC
• Conclusion
• Summary and Outlook
Automotive Battery System

Battery Cell Controller
- Monitors cell voltages, temperatures, ...

Isolated Communication Link

ECU

BMS

MCU

Low voltage

High voltage

HV Battery
SysML-based Safety Flow 1

• Functional Safety Requirements
• Functional decomposition and architecture
• Annotated malfunctions
• Derive initial FTA
SysML-based Safety Flow 2

- Add safety mechanism to prevent SPF
- Split requirements in internal (HW) and external (SW)
- Allocate FSRs to HW architecture elements
Platform Model in SysML

- Actual IC hardware architecture
- Decomposed hardware resources and communication links
- Real pinout
Model Generation Flow Steps

- SysML Platform Model
- SysML Functional Model
- Basic IP-XACT Architecture Description
 - Register and Memory Map Definition
 - Pre-existing IP components
- Full IP-XACT Architecture Description
- IP-XACT ESL Design Description
 - IP-XACT RTL Design Description
 - SW Header for Register Access
 - Documentation of Platform and Registers
 - SystemC Virtual Platform
 - RTL Platform

Out of scope of this paper
Architecture Description in IP-XACT

• Split between architecture and implementation
• Architecture description
 – Logical component interface, parameters, registers
 – Component instances and logical connectivity
 – Connectivity based on abstract interface connections
 – Reusable over all abstraction/implementation levels
• Implementation description
 – Addition of implementation specific details to architecture description
 – Ports, file sets
 – Communication refinement by bus abstraction definitions and port maps
 – Explicit for each abstraction level/implementation
SysML to IP-XACT Architecture

• Export plugin in SysML tool
• Reuse of existing TCL infrastructure to create IP-XACT
• Plugin traverses SysML model and generates TCL scripts
• Basic SysML to IP-XACT mapping:
 – block definition → IP-XACT component
 – block ports → bus interfaces
 – port types → bus definitions
 – Internal Block Diagrams → hier. component + interface connections
• Registers and memory map added from external source (XLS)
SysML to IP-XACT Architecture (2)

- Recursive call for subcomponents
- Create component
- Create interfaces + assign bus type
- Instantiate and connect subcomponents
- Call post processing script (if available)
Handling SysML Multiplicity

- **system_A**
 - subblock

- **system_B**
 - subblock [4]
 - out → out [4]

- **system_C**
 - subblock [2]

- **system_D**
 - subblock
 - out [4]
 - con1
 - in0
 - con2
 - in0
 - foo
 - i_one
 - bar
 - pin

© Accellera Systems Initiative 2019
Generate ESL View

```
source $(nxp::workarea)/chip_control/magillem/runassemble_esl.tcl
source $(nxp::workarea)/chip_registers/magillem/runassemble_esl.tcl

nxp::copyHierarchicalComponent
    nxp.com bms chip 0.0 architecture architecture_cfg
    nxp.com bms chip 2.0 ESL ESL_cfg
$(nxp::workarea)/chip/METADATA/ systemc

component::setElementProperty busif inl abstraction_type [ list nxp.com types my_type_t_esl 1.0 ]
component::setElementProperty busif out1 abstraction_type [ list nxp.com types my_type_t_esl 1.0 ]
nxp::createWirePort in1 pi in ""
nxp::createWireTypeDefs in1 pi [ list bms::my_type_t [ list ESL ] false [ list my_type_t.h ] ]
nxp::createWirePort out1_po out ""
nxp::createWireTypeDefs out1_po [ list bms::my_type_t [ list ESL ] false [ list my_type_t.h ] ]
component::setElementProperty busif in1 port_maps [ list [ list port "" in1_pi "" ] ]
component::setElementProperty busif out1 port_maps [ list [ list port "" out1_po "" ] ]

design::setComponentInstanceComponentRef control -v 2.0
design::setComponentInstanceComponentRef registers -v 2.0

nxp::createFileSet ESL
    [ list \n      [ list controllib \n        [ list \n          ../SLMODEL/inc/chip_control.h \n          ../SLMODEL/src/chip_control_base.cpp \n          ../SLMODEL/src/chip_control.cpp \n        ]\n      ]\n    ]
component::setElementProperty fileset ESL dependency [ list ../SLMODEL/inc ]
```

Recursive call for subcomponents
Copy base component
Set bus abstraction
Create ports and port maps
Create fileset
Generate SystemC Model

- Leaf components
 - NXP internal tool generate modules incl. interface and registers
 - Register models based on SCML
 - Base module for generated elements and derived module to add behavior
- Hierarchical components
 - Commercial SystemC Netlister (Magillem tool suite)
- Data types for ports/signals
 - Header file containing default typedef to int
- Build files for SystemC compilation based on filesets
Flow Evaluation based on Battery Controller IC

Battery Cell Controller
- High accuracy measurement
- 14 cells + GP channels
- Integrated balancing

SysML Model:
- More than 80 blocks
 - unique and re-used
 - analog, digital, mixed, memory
- More than 700 connectors
 - shared bus, point-to-point

Generator Result:
- SystemC model + build scripts
- Compile and run out of the box
- Good starting point for refinement and adding behavior
Flow Limitations

- Different syntax rules (e.g. identifier, whitespace, keywords)
 - Checkers to check rules in SysML
- Missing information (e.g. vendor, library, version)
 - Can be added by generator (default values)
- Connectivity
Conclusion

• Good productivity gain
 – Creation of 65 IP-XACT components (15 hierarchical, >700 connections, excl. IP)
 – Saved effort aprox. 2 to 3 WWs

• Well-defined relation of SysML to architecture and model
 – Ensures consistency between safety analyses and implementation

• Incorporates well with existing flow (gen doc, SW headers, …)

• Flow requires modeling guidelines for SysML
Summary and Outlook

- Model based flow for safety critical semiconductor products
- System architecture definition and automated generation of VP skeleton
- Evaluation based on automotive battery controller IC

Outlook
- Refine and align modeling rules and extend automated checkers
- Sync updates in IP-XACT to SysML
- Improve AMS support
Questions