
Switch the Gears of the UVM Register Package to cruise through
the street named “Register Verification”.

I. INTRODUCTION
“Register verification” could seemingly be a simple task but in

reality it tends to have an adverse effect on project schedules on

account of factors such as changes to the RTL specification,

design changes/optimizations, migration efforts from block to sub-

system or system level and so on. Traditionally design houses had

their own methodologies to reduce the time and effort spent in

creating and maintaining register tests. The UVM register package

advocates best practices like object oriented abstraction,

automation etc. to provide a robust platform for register

verification. This package easily automates the creation of object-

oriented abstract model of the registers/memories inside a design

and has been adopted by a lot of users in the industry. In this

paper, we present some techniques which could be used to

leverage the existing package efficiently for advanced register

verification. We also present an auxiliary package to exploit the

abstraction levels provided by the library to ease the process of

software validation which is closely tied to registers and memories

in a system.

Categories and Subject Descriptors
Verification, Validation, Registers, Memories, Coverage,

Automation

Keywords
DPI-C, UVM, SystemVerilog.

II. REGISTER BACKDOORS
Backdoor access to registers and memories is very crucial because

it is a very useful way to check the correct operation on the

physical interface. It also improves the efficiency of verification as

the accesses can be completed in little or no simulation time. Once

the interface is proven to be working correctly, one can use the

register backdoors to load the register reducing the time to

configure the DUT, which can sometime be a lengthy process.

Backdoor access operates by accessing the simulation constructs

that implement the register or memory model through a

hierarchical reference within the hierarchy of the design. The

challenges with backdoor accesses are the identification and

maintenance of the hierarchical backdoor paths and also the nature

of the constructs that are used to implement the registers or

memory models. To access a register or memory directly into the

design, it is necessary to know how to get at it. The UVM register

library can specify arbitrary hierarchical path components for

blocks, register files, registers and memories that, when strung

together, provide a unique hierarchical reference to a register or

memory. For example, a register with a hierarchical path

component defined as X, inside a block with a hierarchical path

component defined as Y, inside a block with a hierarchical path

component defined as Z has a full hierarchical path defined as

Z.Y.X.” [1]

The input specification of a register contains all of the necessary

information to generate the UVM register model leveraging the

UVM-1.1 base class library. This includes the information w.r.t

the backdoor paths of individual elements in the register model.

‘ralgen’ takes in the input register specification through RALF or

IP-XACT and generates the final UVM register model including

the backdoor classes associated with the individual registers and

memory elements.

DPI-C Based Backdoor Access: The UVM register library has

a set of routines defined within in that act as an interface to access

the simulation constructs of the design using DPI-C. This is a very

powerful feature, because in practice the user simply has to specify

a set of string values while configuring the elements of the register

model and the library would automatically create a DPI-C

implementation to access the register construct or the memory

model construct. The task gets simpler if you were to be using a

register model generator in which case the user would have the

backdoor construct specified in an abstract description (such as

RALF, IP-XACT) of the register space of the design. Then a

register model generator like ‘ralgen’ enables the generation of the

backdoor classes leveraging the SV DPI accesses as well as

through hierarchical XMRs. The generated model with the DPI

based backdoor accesses is quite portable as such a model can

easily be compiled into a SystemVerilog package and imported

where the model is required.

Fig 1: DPI-C based backdoor using add_hdl_path

This mechanism however could prove costly in terms of

simulation overhead because of the PLI interactions, which

typically slows down simulation. Enabling read and writes access

in the design through the DPI accesses can also potentially prevent

the simulator for enabling some aggressive optimizations across

the design hierarchy. Also if an incorrect path was specified the

user wouldn’t be notified until a backdoor access is performed

resulting in a runtime error. This could prove costly in terms of

verification cycles because the user will have to check backdoor

path for validity and with really huge designs this might not be

desirable.

Verilog Cross-module Reference (XMR) Based

Backdoor Access: The UVM base classes also enables the

user to create extensions of the uvm_reg_backdoor class and have

the write() and read() tasks overloaded with the implementations

to access the design construct that models the register/memory.

Amit Sharma,
Varun S, Abhisek Verma

Synopsys
amits@synopsys.com

svarun@synopsys.com
abhiv@synopsys.com

Gaurav Gupta
Freescale Semiconductors
gauravG@freescale.com

virtual function void build();

this.PRT_LCK=reg_PORT_LCK::type_id::create(…);

this.PRT_LCK.configure(this, null, "");

this.PRT_LCK.build();

//Adding the HDL path information for register

this.PRT_LCK.add_hdl_path('{'{"lck", -1, -1}});

endfunction

mailto:amits@synopsys.com
mailto:svarun@synopsys.com
mailto:abhiv@synopsys.com
mailto:gauravG@freescale.com

The user would then have to register each of these class extensions

with the corresponding register/memory block element of the

UVM register model. If these classes are extended and registered

to the corresponding hierarchy, then the register package uses this

extension instead of the default DPI methods for its backdoor

accesses. ‘ralgen’ uses this feature provided in the base class

library to enable the generation of the backdoor classes leveraging

hierarchical cross module references (XMRs).

This option in theory would be relatively more efficient in terms of

simulation performance as it doesn’t involve any PLI interactions.

Also the static compile time checks done by the HDL simulator for

the existence of the HDL cross-module references helps improve

the TAT when incorrect strings are specified for the backdoor

paths. The user-wouldn’t have to test for the validity of the HDL

paths anymore as the HDL compiler would perform that check.

The primary limitation of the HDL XMR based accesses is that the

generated classes cannot be compiled into a reusable

SystemVerilog package as SystemVerilog packages don’t allow

the use of cross module paths or hierarchical paths within the

package scope. This can impact the portability of the block level

verification environments using the generated register model.

Fig 2: HDL XMR based backdoor using set_backdoor

Optimized Backdoor Access: Looking at the pros and cons

of both the backdoor access modes, a flow is desired which will

ensure that the backdoor paths are checked for correctness at

compile time, provide for improved simulation performance as

well as help generate a model which can be compiled into a

package. Thus, the proposed solution would generate the

backdoor classes without XMRs, but with an interface instance

through which the register model would access a top level

interface which will compiled in the unit scope. The top level

interface would be tied in automatically to all the backdoor class

instances through the UVM Resource database and its associated

functions.

The usage of the backdoor classes and the signatures will not

change which will allow existing user code to work seamlessly

with the newly generated model. There would be one interface

which would be created for the entire register model. The interface

would contain tasks defined within it to access the constructs that

are used to model registers/memories in the RTL of the DUT.

An instance of the newly defined SystemVerilog virtual interface

is then declared within the register model and initialized with the

static interface instance. By doing this we now get access to the

HDL design constructs via the API’s defined within the interface.

The backdoor classes are then re-modeled to call the interface

API’s instead of directly referring to the HDL design constructs.

Fig 3: Interface with read/write tasks for backdoor.

Fig 4: Modified backdoor class using the interface tasks.

// backdoor class for register PRT_LCK.

class reg_PRT_LCK_bkdr extends

uvm_reg_backdoor;

 // Task to write via backdoor

 virtual task read(uvm_reg_item rw);

 do_pre_read(rw);

 rw.value[0] = `HOST_REGMODEL_TOP_PATH.lck;

 rw.status = UVM_IS_OK;

 do_post_read(rw);

 endtask

 // Task to read via backdoor

 virtual task write(uvm_reg_item rw);

 do_pre_write(rw);

 `HOST_REGMODEL_TOP_PATH.lck = rw.value[0];

 rw.status = UVM_IS_OK;

 do_post_write(rw);

 endtask

endclass

// build() – of the uvm_reg_block

virtual function void build();

 …

begin

 reg_PRT_LCK_bkdr bkdr = new(…);

 // Setting backdoor

 this.PRT_LCK.set_backdoor(bkdr);

end

endfunction

interface host_regmodel_intf;

 import uvm_pkg::*;

 // Tying the interface to the virtual

 // interfaces being used in the

 // UVM reg backdoor infrastructure

 initial uvm_resource_db#

 (virtual host_regmodel_intf)::

 set("*", "uvm_reg_bkdr_if",

 interface::self());

 task reg_PRT_LCK_bkdr_read(…);

 rw.value[0] = `HOST_TOP_PATH.lck;

 endtask

 task task reg_PRT_LCK_bkdr_write(…);

 `HOST_TOP_PATH.lck = rw.value[0];

 endtask

endinterface

//modified backdoor register PRT_LCK class.

class reg_PRT_LCK_bkdr extends

 uvm_reg_backdoor;

 virtual host_regmodel_intf __reg_vif;

 function new(string name);

 super.new(name);

 // initializing the virtual interface with

 // the real interface

 uvm_resource_db#

 (virtual host_regmodel_intf)::

 read_by_name(…, "uvm_reg_bkdr_if",

 __reg_vif);

 endfunction

 virtual task read(uvm_reg_item rw);

 do_pre_read(rw);

// performing a read access to register

__reg_vif.host_regmodel_PRT_LCK_bkdr_read(rw);

 rw.status = UVM_IS_OK;

 do_post_read(rw);

 endtask

 virtual task write(uvm_reg_item rw);

 do_pre_write(rw);

// performing a write access to register

__reg_vif.host_regmodel_PRT_LCK_bkdr_write(rw)

;

 rw.status = UVM_IS_OK;

 do_post_write(rw);

 endtask

endclass

III. FAST LANE SEQUENCES
Coverage Convergence using Fast Lane Sequence:
Coverage is another added benefit the UVM register package

brings to the table. In this section we discuss the coverage options

defined in the methodology: bit-based coverage, address map

coverage & field coverage. We then present a case study that

shows how bit and address map coverage’s are fully

addressed/covered by the pre-packaged sequences that are readily

available in the library. We specifically discuss field coverage as

this covers different device configurations. As we move from

block to cluster to subsystem verification, the accesses which we

would want to track would vary and would be defined by different

flavors of coverage models for the registers in the design. The

different permutations of coverage bins for the multitude of

registers at each step make it a challenging scenario for coverage

convergence. We also provide a case study where the UVM REG

model generator is enabled to automatically generate sequences.

We show how these sequences can be easily applied at different

stages of the verification cycle by dynamic extraction of coverage

holes to meet coverage goals minimizing user efforts in writing

test sequences.

UVM provides guidelines to implement appropriate functional

coverage models to verify and track that the different

combinations of values being driven to the DUT registers. As we

move from block to cluster to subsystem verification, the accesses

which we would want to track would vary and would be defined

by different flavors of coverage models for the registers in the

design. The different permutations of coverage bins for the

multitude of registers at each step make it a challenging scenario

for coverage convergence. We demonstrate how one can enable

the UVM REG model generators extract the required information

from the register specifications to automatically generate

‘coverage converging’ sequences. These sequences when applied

at different stages in the verification cycles can help users

dynamically extract the coverage holes and enable the required

accesses to meet the verification goals.

UVM REG defines the following three functional coverage models

for register and memories but it doesn’t provide any rules for

implementing them:

Register bit coverage: This is used to confirm that every specified

bit in a register abstraction model has been thoroughly exercised

and is implemented as specified. This functional model can be

quite large and is, therefore, best used at the block level. At the

SOC level, we need to ensure that different addresses ranges are

hit along with a combination of specific field values across

different registers. This is to ensure all the IPs have been accessed

and has been configured with appropriate values for the SOC

simulations. This brings in the other two coverage models

Field coverage: This model is designed to confirm that every

configuration of a design has been verified. It is best used at the

top-level. Additionally, the user can define specific bins explicitly

as shown in the code snippet below:

field f2 {

 bits 8;

 enum {AA, BB,CC=15};

 coverpoint {

 bins AAA = {0, 12};

 bins BBB[] = {1, 2, AA, CC};

 bins CCC[3] = {14,15,[BB:10]};

 bins DDD = default;

 }

}

Fig 5: Embedding field coverage in register specification.

The generator creates the coverage bins automatically based on the

field values and constraint model or as specified through the input

specification.

Address Map coverage: This model is designed to confirm that the

address map of a design has been thoroughly exercised. This is

valid for registers. A register coverage point contains only one bin

named "accessed". The bin is covered whenever the register is

accessed using either a read or a write operation.

The pre-defined UVM REG sequences would help to target a

significant percentage of the coverage bins as specified in the

coverage models. Some of the important ones in the context of

coverage are:

Register bit-bash sequence: This test verifies the implementation

of a single register by attempting to write 1’s and 0’s to every bit

in it via every address map.

Register access sequence: Verifies the accessibility of the register

by writing via the default map and then reading via the backdoor.

Memory walking-ones sequence: Performs the walking-ones

algorithm on the memory for each map in which the memory is

defined.

Shared register access test sequence: Verifies the accessibility of

register/memories that are shared between multiple physical

interfaces.

These ensure that coverage bins specified in the Register Bit

Coverage and Address Mapped coverage models are targeted.

The next step is to create the required stimulus for the field

coverage. The number of bins can be significant here as we are

looking at multiple permutations of values of fields across various

registers. The built-in sequences do not necessarily help in this

front beyond an initial threshold. Analyzing all the myriad holes

and creating specific sequences to target all such bins would

require significant amount of effort, disk space and additional

resources. Sequences might have to be rewritten for changes in the

register model. This led to the creation of a utility for generating

the coverage converging sequences.

Since the generator has all the information on the hierarchical

functional models that were created. It was further enhanced to

generate sequences which will have a collection of register

accesses required to achieve closure on the functional coverage.

The SystemVerilog language provides capabilities to query the

functional coverage results dynamically. Thus the sequence

generated would query individual coverpoints to determine

whether a register write/read operation is required to achieve full

coverage, following which it would perform the same as shown

below:

Fig 6: Embedding field coverage in register specification.

task body();

model.ID.cg_vals.R_ID_value.get_inst_coverage(c

overed, total);

if(total!=covered) begin

 model.ID.R_ID.read(status, data,

.parent(this));

 model.ID.sample_values();

end

endtask

The other important aspect that should be kept in mind while

generating the field coverage models is to map the respective bins

to individual coverpoints. This ensures that more attributes of the

model can be queried dynamically through the SV constructs as

shown below:

Fig 7: Generated covergroup for field coverage.

IV. REUSING TESTS
The register package of UVM coupled with vendor tools provide

ways to automate the generation of register models and register

accesses from input specifications. The need of the hour is to

ensure that the same sequences can be reused in post-silicon

validation and in simulation. A convenient way for verification

engineers to develop firmware code which can be debugged on a

RTL simulation of the design would significantly help in reducing

the validation cycles.

Typically firmware runs a set of pre-defined sequences of

writes/reads to the registers on a device performing functions for

boot-up, servicing interrupts etc. These functions are generally

coded in C/C++, and these would need to access the registers in

the DUT. Using the UVM Register Model with the appropriate

C++ DPI interface, these functions can be generated so that the

firmware can now perform the register access through the

SystemVerilog register model. Thus, this allows firmware and

application-level code to be developed and debugged on a

simulation platform and the same functions can later be used as

part of the device drivers to perform the same tasks on the

hardware.

Fig 8 : Block diagram of the C++/SV test environment

To facilitate this, C++ library would be required which would

allow users to define register accesses as C++ functions. Using the

functions defined within this library, the user can create C++ sub-

routines that perform control functions on a device-under-test.

The library has been defined in a way that it can be used to:

I. Be compiled and executed as a standalone C++ code on

the target processor or

II. To be interfaced to the SystemVerilog register model

using DPI-C to be simulated on a HDL simulator.

When executing the C++ code within a simulation, it is necessary

for the C++ code to be called by the simulation to be executed and

hence the application software’s main() routine must be replaced

by one or more entry points known to the simulation. The C++

side reference is then used by the C++ API to access required

fields, registers or memories. The C++ code is executed natively

on the same workstation that is running the SystemVerilog

simulation, eliminating the need for an instruction set simulator or

a RTL model of the processor.

The C++ function serves as the service entry point which is called

from the SV simulation which provides the reference of the object

based register model. When the C++ code executes, the simulation

freezes until the control is shifted to the SV side. That DPI-C

entry point creates an instance of the register model based on the

context specified by the UVM simulation.

Fig 9: C++ test entry taking context as an input

The C++ code can then be called from a UVM simulation by

calling its corresponding entry point and specifying the context of

the register model.

Fig 10: Environment for an interrupt-driven C++ interaction

When executing within a simulation of the design, all C++ code

executes atomically. It is unlike the real application code running

as object code on a real processor, where the execution of the code

happens concurrently with other processing in the neighboring

hardware.

When the C++ code executes in simulation, only that code

performs any form of processing and the rest of the design is

frozen. The only way for the design simulation to proceed, is for

the C++ code to return or for the C++ code to perform a read or

write operation through the register model. In the latter case, once

the read or write operation completes and the control is returned

back to the C++ code, the simulation is again frozen. The entire

execution timeline in the C++ code thus occurs in zero-time in the

simulation timeline.

extern “C” int

usb_dev_isr_entry(int context)

{

 usbdev_t usb(context);

 return usb_dev_isr(usb);

}

covergroup cg_vals ();

 option.per_instance = 1;

 R_ID_value: coverpoint R_ID.value

 {

 bins value = { 8'h03 };

 }

 CHIP_ID_value: coverpoint CHIP_ID.value

 {

 bins value = { 8'h5A };

 }

 PROD_ID_value: coverpoint PRODUCT_ID.value

 {

 bins value = { 10'h176 };

 }

endgroup : cg_vals

Fig 11: Execution timeline for a C++ register test

If a polling strategy is used, the simulation will have the

opportunity to advance only during the execution of the repeated

polling read cycles. It would likely require many hundreds of such

read cycles for the design to reach a state that is relevant and

significant for the application software. With a physical device,

that is not an issue as this can happen in less than a microsecond.

However, in simulation, this would require a lot of processing for

simulating essentially useless read cycles and exchanging data

between the C++ world and the simulation world.

If an interrupt-driven strategy is used, the simulation will proceed

until something of interest to the application software has

happened before transferring control to the C++ code and only the

necessary read and write operations would need to be performed.

Therefore, it is important that you use a service-based approach as

much as possible.It is also very important that the execution of the

C++ code not be blocked by an external event—such as waiting

for user input or a file to be unlocked—as it will prevent the

simulation from moving forward while it is blocked. If the

application software requires such synchronization, it should

similarly use an asynchronous interrupt-driven approach.

To enable this infrastructure, there are two requirements. The first,

as mentioned earlier, would be the C++ library which would allow

users to define register accesses as C++ functions. The next

requirement would be to have representation of the register model

on the C++ side. This has to be facilitated by a register model

generator. It would generate a hierarchical model of the registers

in a design that are accessible via a specific address map.

Device driver code should be written in functions accepting a

reference to the register model corresponding to the device. That

register model is then used to identify the registers to be accessed.

 Fig 12: Device driver accepting reference of the reg model

The code illustration below shows the API’s which invoke

accesses on registers defined in an example design module.

regWrite() and regRead() are library functions which takes a

reference of the register model of the device registers to access

them in one of either modes mentioned above.

Fig 13: C++ device driver code.

Fig 14: Device driver scheduled for execution as software.

In the illustration above we have the C++ function dev_drv being

scheduled for execution within the main(). And the same function

is being called as a DPI-C function within the SystemVerilog

UVM test as shown below. Please note that the function takes the

object reference of the register model as an input from the

SystemVerilog side.

Fig 15: The C++ Device driver being used in simulation test

As mentioned earlier, there are two versions of the UVM register

C++ API that can be used. One is designed to interface to the

UVM register model running in the SystemVerilog simulator using

the Direct Programming Interface. The other is pure stand-alone

C++ code and is designed to be compiled on the target processor in

the final application. The version of the C++ API that will be used

is determined at compile time by including the appropriate header

file. The illustrations mentioned above show how the same piece

of code can be used once over without having to change anything

while going from simulation to validation without going into the

details of how these API’s calls translate either to a simulation

level register accesses or a software instruction.

V. MODELING ISR’S IN UVM
In a verification environment, different components may be trying

to access the DUT registers and memories. For example, the BFM

might be programming some registers while the bus monitor might

be sampling the values of these registers. In specific cases, there

may be an interrupt monitor which triggers an Interrupt Service

Routine (ISR) whenever it sees an Interrupt pin toggling in the

interface. The ISR might end up having to read the Interrupt

registers and end up clearing the Interrupt bit/s through a front

door access.

The base register package assumes register accesses to be atomic

in nature and so any access will be completed (successfully/as an

error) before scheduling the next. Things have been set this way to

ensure register accesses are not corrupt. However, this atomic

void slave_driver::dev_drv(slave_t dev)

{

 uint32 mode_status;

 regWrite(dev.SESSION.SRC(), 0x0000FA);

 regWrite(dev.SESSION.DST(), 0x000E90);

 regRead(dev.MODE_STATUS);

 switch (mode_status)

 {

 case 0x0001:

 regWrite(dev.IDX(), 0x5aa5);

 break;

 case 0x0080:

 regWrite(dev.IDX(), 0xa55a);

 break;

 default:

 regWrite(dev.IDX(), 0x0000);

 }

};

static slave_t Sys("Sys", 0);

int

main(int argc, char* argv[])

{

 return slave_driver::dev_drv(Sys);

}

import "DPI-C" context task dev_drv(int ctxt);

class cpp_test extends uvm_test;

 int context_val;

 `uvm_component_utils(cpp_test)

 virtual function void connect_phase(…);

 super.connect_phase(phase);

 context_val =

 snps_reg::create_context(env.model);

 endfunction: connect_phase

 virtual task run_phase(uvm_phase phase);

 super.run_phase(phase);

 phase.raise_objection(this);

 // C++ device driver called via DPI-C

 dev_drv(context_val);

 phase.drop_objection(this);

 endtask: run_phase

endclass: cpp_test

reqs=snps_reg::regRead(usbdev.status());

snps_reg::regWrite(usbdev.intMask(),0xFFFF);

nature of a register access would impede the modeling a system

interrupt which is a common occurrence in designs. And hence for

the occurrence of an interrupt we have to have the pass the control

over from an ongoing register access thread to a thread that

services the interrupt.

To ensure that different components in a verification environment

can access the DUT registers at any given point in time, the

register model instantiated in the environment can be passed to

different UVM components through the UVM Resource Database.

These different components whose methods are executing in

separate parallel threads can now access the same set of registers

in the DUT through the RAL model. A question many folks ask is:

when there are multiple parallel register accesses, how do they get

scheduled through the register layer?

A Register read/write from different threads is comparable to an

atomic sequence being started on the sequencer associated with the

different threads. Hence it gets scheduled in the order of pipelining

of the threads. A write/read would basically consist of the

following atomic operations:

- A generic register (uvm_reg_item) transaction with its fields

(addr, data, kind etc.,) being populated and posted onto the

reg2bus() function of the register adapter.

- The transaction being translated in the reg2bus() function and

posted as a UVM sequence onto the associated sequencer for the

specified ‘map’.

- The transaction being retrieved in the User BFM main thread and

then subsequently driven to the DUT interface.

Thus ‘posting’ of register accesses whenever a

Read/Write/Mirror/Update is invoked is in the same order they are

issued. Subsequently, the Register Adapter translates the generic

UVM REG transaction to a User Sequencer comprehensible

sequence, and doesn’t change the order.

Now, how do we handle a scenario when specific register accesses

like those coming from an ISR need to be given a higher priority

than accesses coming from other threads in a verification

environment? The UVM base class library and the UVM register

package provide a way to achieve this by controlling the sequencer

to prioritize an interrupt subroutine sequence above other normal

sequences. Let us see how this can be done with UVM.

To start with we will need to model base register sequence to

devise an arbitration scheme and have all other register sequences

extend from this base sequence. The arbitration scheme will be

defined using function is_relevant() & task wait_for_relevant()

which is part of the UVM base sequence.

Fig 16: Base sequence to checking the sequence priority.

All sequences should be extended from the sequence defined

above in figure 15. The ISR sequence will have is_relevant() &

wait_for_relevant() methods defined to adjust the priority to the

sequence with the reception of an interrupt event.

The sequence defined in Fig 17 waits for the assertion of the

interrupt to before flagging relevance. With ISR sequence

becoming relevant all normal sequences will be pushed down in

the sequence queue of the sequencer. The sequencer would

schedule & execute the ISR sequence which would restore the

state of the sequencer to NORMAL when it is done servicing the

interrupt. Also note how the sequence grabs the sequencer on

which it executes to create an exclusive access preventing other

threads from intervening with the interrupt sub-routine process.

Fig 17: ISR sequence waiting for the interrupt.

Finally, the ISR sequence will have to be run concurrently with

other regular sequences on the sequencer that connects to the host

driver. The figure below shows how this can be done.

Fig 18: Running the ISR concurrently with other sequences

VI. RESULTS & CONCLUSIONS
We have discussed some key features of the UVM register

package across the length of this paper and in some sections we

have stressed on the impact the package can have on the

simulation. In particular, we have discussed the backdoors and

seen how one option is better than the other. We also presented a

way to pick the best out of the two options.

The simulation profiling showed that the HDL XMR based

backdoors provides a simulation speedup by a factor of nearly

30%. And also the hybrid backdoor performs consistently with the

HDL XMR based backdoor. This difference accumulated over

multiple test sequences could be very costly.

class host_base_sequence extends

 uvm_reg_sequence #(uvm_sequence #(host_data));

 function bit is_relevant();

 return (p_sequencer.state == NORMAL);

 endfunction

 task wait_for_relvant();

 p_sequencer.state = NORMAL;

 endtask

endclass

class host_isr_sequence extends

host_base_sequence #(uvm_sequence #(host_data));

 function bit is_relevant();

 return (p_sequencer.state == INTERRUPT);

 endfunction

 task wait_for_relvant();

 // Waits for the interrupt assertion

 @(dut_top.inta);

 p_sequencer.state = INTERRUPT;

 endtask

 virtual task body();

 forever begin

 grab(p_sequencer);

 // Task that contains the routine set

 // register accesses relevant to the

 // interrupt

 isr();

 ungrab(p_sequencer);

 p_sequencer.state = NORMAL;

 end

 endtask : body

endclass

class top_sequencer extends uvm_sequencer;

 …

 host_isr_sequence interrupt_handler;

 virtual task run_phase(uvm_phase phase);

 interrupt_handler =

host_isr_sequence::type_id::create("interrupt_se

q");

 // Forking off the interrupt thread

 fork

 interrupt_seq.start(this);

 join_none

 super.run();

 endtask : run

endclass

Coverage is another topic that we broached upon and discussed

strategies to converge quickly on to reach the coverage goals. We

found that the auto-generated coverage converging sequence to be

useful in filling up a lot of coverage holes in a very short span of

time efficiently. Such an approach ensured that no additional code

was written by the user. This could apply this at different stages in

the verification cycle depending on the requirement. If applied

earlier, it would generate more accesses while if it is applied later

in the cycle, it would generate a lesser number based on the

reduced number of holes in the register coverage model.

Fig 19: Coverage score from the pre-defined sequences.

The sequences provided as part of the UVM base cumulatively

generated coverage of 49.4% as shown in the coverage report

above. When the auto-generated sequence was run following the

pre-defined sequences we saw a steep curve in the coverage rise as

summarized by the report shown below:

Fig 20: Coverage score after using the Fastlane sequences.

The other common problem reported by users is with dynamic

object allocation as encountered with any object based models.

Devices with a sizable register space would limit the usage as

simulators cannot handle beyond a certain threshold of objects. So

it would be good to explore ways to limit object allocation on

demand and not have them allocated by default.

VII. REFERENCES

[1] UVM User Guide

[2] Verification Martial Arts: A Verification Methodology

 Blog: http://www.vmmcentral.org/vmartialarts/

[3] UVM Reference Guide

[4] UVM RAL Primer, Janick Bergeron

[6] UVM Register Abstraction Layer Generator User Guide

[7] IEEE Standard for IP-XACT, Standard Structure for

 Packaging, Integrating, and Reusing IP within Tool flows

Testbench Group List

Total Groups Coverage Summary

SCORE INST SCORE WEIGHT

 49.54 50.01 1

Total groups in report: 9

SCORE INSTANCES WEIGHT GOAL NAME

 0.00 0.00 1 100 STATUS::cg_vals

 0.00 0.00 1 100 MASK::cg_vals

 0.00 0.00 1 100 CHIP_ID::cg_vals

 0.00 0.00 1 100 COUNTERS::cg_vals

 66.67 66.67 1 100 CHIP_ID::cg_bits

 79.17 86.96 1 100 STATUS::cg_bits

100.00 100.00 1 100 slave::cg_addr

100.00 100.00 1 100 MASK::cg_bits

100.00 100.00 1 100 COUNTERS::cg_bits

Testbench Group List

Total Groups Coverage Summary

SCORE INST SCORE WEIGHT

 92.39 99.88 1

Total groups in report: 9

SCORE INSTANCES WEIGHT GOAL NAME

 66.67 66.67 1 100 CHIP_ID::cg_bits

 79.17 86.96 1 100 STATUS::cg_bits

 85.71 85.71 1 100 STATUS::cg_vals

100.00 100.00 1 100 slave::cg_addr

100.00 100.00 1 100 MASK::cg_vals

100.00 100.00 1 100 CHIP_ID::cg_vals

100.00 100.00 1 100 MASK::cg_bits

100.00 100.00 1 100 COUNTERS::cg_vals

100.00 100.00 1 100 COUNTERS::cg_bits

