
Switch the Gears of the UVM Register Package to cruise through 
the street named “Register Verification”. 

 
  
 

 

 
 
 

I. INTRODUCTION 
“Register verification” could seemingly be a simple task but in 

reality it tends to have an adverse effect on project schedules on 

account of factors such as changes to the RTL specification, 

design changes/optimizations, migration efforts from block to sub-

system or system level and so on. Traditionally design houses had 

their own methodologies to reduce the time and effort spent in 

creating and maintaining register tests. The UVM register package 

advocates best practices like object oriented abstraction, 

automation etc. to provide a robust platform for register 

verification. This package easily automates the creation of object-

oriented abstract model of the registers/memories inside a design 

and has been adopted by a lot of users in the industry. In this 

paper, we present some techniques which could be used to 

leverage the existing package efficiently for advanced register 

verification. We also present an auxiliary package to exploit the 

abstraction levels provided by the library to ease the process of 

software validation which is closely tied to registers and memories 

in a system. 

 

Categories and Subject Descriptors  
Verification, Validation, Registers, Memories, Coverage, 

Automation  

 

Keywords  
DPI-C, UVM, SystemVerilog. 

 

II. REGISTER BACKDOORS 
Backdoor access to registers and memories is very crucial because 

it is a very useful way to check the correct operation on the 

physical interface. It also improves the efficiency of verification as 

the accesses can be completed in little or no simulation time. Once 

the interface is proven to be working correctly, one can use the 

register backdoors to load the register reducing the time to 

configure the DUT, which can sometime be a lengthy process. 

Backdoor access operates by accessing the simulation constructs 

that implement the register or memory model through a 

hierarchical reference within the hierarchy of the design. The 

challenges with backdoor accesses are the identification and 

maintenance of the hierarchical backdoor paths and also the nature 

of the constructs that are used to implement the registers or 

memory models.  To access a register or memory directly into the 

design, it is necessary to know how to get at it. The UVM register 

library can specify arbitrary hierarchical path components for 

blocks, register files, registers and memories that, when strung 

together, provide a unique hierarchical reference to a register or 

memory. For example, a register with a hierarchical path 

component defined as X, inside a block with a hierarchical path 

component defined as Y, inside a block with a hierarchical path 

component defined as Z has a full hierarchical path defined as 

Z.Y.X.” [1] 

The input specification of a register contains all of the necessary 

information to generate the UVM register model leveraging the 

UVM-1.1 base class library.  This includes the information w.r.t 

the backdoor paths of individual elements in the register model. 

‘ralgen’ takes in the input register specification through RALF or 

IP-XACT and generates the final UVM register model including 

the backdoor classes associated with the individual registers and 

memory elements. 

 

DPI-C Based Backdoor Access: The UVM register library has 

a set of routines defined within in that act as an interface to access 

the simulation constructs of the design using DPI-C. This is a very 

powerful feature, because in practice the user simply has to specify 

a set of string values while configuring the elements of the register 

model and the library would automatically create a DPI-C 

implementation to access the register construct or the memory 

model construct. The task gets simpler if you were to be using a 

register model generator in which case the user would have the 

backdoor construct specified in an abstract description (such as 

RALF, IP-XACT) of the register space of the design. Then a 

register model generator like ‘ralgen’ enables the generation of the 

backdoor classes leveraging the SV DPI accesses as well as 

through hierarchical XMRs.  The generated model with the DPI 

based backdoor accesses is quite portable as such a model can 

easily be compiled into a SystemVerilog package and imported 

where the model is required.  

 
 

 

 

 

 

 

 

 

 
Fig 1: DPI-C based backdoor using add_hdl_path 

 
This mechanism however could prove costly in terms of 

simulation overhead because of the PLI interactions, which 

typically slows down simulation. Enabling read and writes access 

in the design through the DPI accesses can also potentially prevent 

the simulator for enabling some aggressive optimizations across 

the design hierarchy.  Also if an incorrect path was specified the 

user wouldn’t be notified until a backdoor access is performed 

resulting in a runtime error. This could prove costly in terms of 

verification cycles because the user will have to check backdoor 

path for validity and with really huge designs this might not be 

desirable.  

 

Verilog Cross-module Reference (XMR) Based 

Backdoor Access: The UVM base classes also enables the 

user to create extensions of the uvm_reg_backdoor class and have 

the write() and read() tasks overloaded with the implementations 

to access the design construct that models the register/memory. 
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virtual function void build(); 
 

this.PRT_LCK=reg_PORT_LCK::type_id::create(…); 

this.PRT_LCK.configure(this, null, ""); 

this.PRT_LCK.build(); 

 

//Adding the HDL path information for register 

this.PRT_LCK.add_hdl_path('{'{"lck", -1, -1}}); 

 

endfunction 
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The user would then have to register each of these class extensions 

with the corresponding register/memory block element of the 

UVM register model. If these classes are extended and registered 

to the corresponding hierarchy, then the register package uses this 

extension instead of the default DPI methods for its backdoor 

accesses. ‘ralgen’ uses this feature provided in the base class 

library to enable  the generation of the backdoor classes leveraging 

hierarchical cross module references (XMRs).  

This option in theory would be relatively more efficient in terms of 

simulation performance as it doesn’t involve any PLI interactions. 

Also the static compile time checks done by the HDL simulator for 

the existence of the HDL cross-module references helps improve 

the TAT when incorrect strings are specified for the backdoor 

paths. The user-wouldn’t have to test for the validity of the HDL 

paths anymore as the HDL compiler would perform that check. 

The primary limitation of the HDL XMR based accesses is that the 

generated classes cannot be compiled into a reusable 

SystemVerilog package as SystemVerilog packages don’t allow 

the use of cross module paths or hierarchical paths within the 

package scope. This can impact the portability of the block level 

verification environments using the generated register model. 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2: HDL XMR based backdoor using set_backdoor 
 

Optimized Backdoor Access: Looking at the pros and cons 

of both the backdoor access modes, a flow is desired which will 

ensure that the backdoor paths are checked for correctness at 

compile time, provide for improved simulation performance as 

well as help generate a model which can be compiled into a 

package.  Thus, the proposed solution would generate the 

backdoor classes without XMRs, but with an interface instance 

through which the register model would access a top level 

interface which will compiled in the unit scope. The top level 

interface would be tied in automatically to all the backdoor class 

instances through the UVM Resource database and its associated 

functions. 

The usage of the backdoor classes and the signatures will not 

change which will allow existing user code to work seamlessly 

with the newly generated model. There would be one interface 

which would be created for the entire register model. The interface 

would contain tasks defined within it to access the constructs that 

are used to model registers/memories in the RTL of the DUT. 

An instance of the newly defined SystemVerilog virtual interface 

is then declared within the register model and initialized with the 

static interface instance. By doing this we now get access to the 

HDL design constructs via the API’s defined within the interface. 

The backdoor classes are then re-modeled to call the interface 

API’s instead of directly referring to the HDL design constructs. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig 3: Interface with read/write tasks for backdoor. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 4: Modified backdoor class using the interface tasks. 

 

 

 

 

 

// backdoor class for register PRT_LCK. 

class reg_PRT_LCK_bkdr extends 

uvm_reg_backdoor; 

 

  // Task to write via backdoor 

  virtual task read(uvm_reg_item rw); 

     do_pre_read(rw); 

     rw.value[0] = `HOST_REGMODEL_TOP_PATH.lck; 

     rw.status = UVM_IS_OK; 

     do_post_read(rw); 

  endtask 

 

  // Task to read via backdoor 

  virtual task write(uvm_reg_item rw); 

     do_pre_write(rw); 

     `HOST_REGMODEL_TOP_PATH.lck = rw.value[0]; 

     rw.status = UVM_IS_OK; 

     do_post_write(rw); 

  endtask 

endclass 

 

// build() – of the uvm_reg_block 

virtual function void build(); 

   … 

begin 

   reg_PRT_LCK_bkdr bkdr = new(…); 

 

   // Setting backdoor 

   this.PRT_LCK.set_backdoor(bkdr); 

end 

endfunction 

interface host_regmodel_intf; 

   import uvm_pkg::*; 

   // Tying the interface to the virtual 

   // interfaces being used in the  

   // UVM reg backdoor infrastructure 

   initial uvm_resource_db# 

   (virtual host_regmodel_intf):: 

           set("*", "uvm_reg_bkdr_if",  

                 interface::self()); 

 

   task reg_PRT_LCK_bkdr_read(…); 

      rw.value[0] = `HOST_TOP_PATH.lck; 

   endtask 

 

   task task reg_PRT_LCK_bkdr_write(…); 

      `HOST_TOP_PATH.lck = rw.value[0]; 

   endtask 

endinterface 

//modified backdoor register PRT_LCK class. 

class reg_PRT_LCK_bkdr extends 

                             uvm_reg_backdoor; 

 

   virtual host_regmodel_intf __reg_vif; 

 

  function new(string name); 

    super.new(name); 

    // initializing the virtual interface with  

    // the real interface 

    uvm_resource_db# 

    (virtual host_regmodel_intf):: 

       read_by_name(…, "uvm_reg_bkdr_if",  

                                   __reg_vif); 

  endfunction 

 

  virtual task read(uvm_reg_item rw); 

     do_pre_read(rw); 

 

// performing a read access to register 

__reg_vif.host_regmodel_PRT_LCK_bkdr_read(rw); 

     rw.status = UVM_IS_OK; 

     do_post_read(rw); 

  endtask 

 

  virtual task write(uvm_reg_item rw); 

     do_pre_write(rw); 

 

// performing a write access to register 

__reg_vif.host_regmodel_PRT_LCK_bkdr_write(rw)

; 

     rw.status = UVM_IS_OK; 

     do_post_write(rw); 

  endtask 

endclass 

 

 



III. FAST LANE SEQUENCES  
Coverage Convergence using Fast Lane Sequence: 
Coverage is another added benefit the UVM register package 

brings to the table. In this section we discuss the coverage options 

defined in the methodology: bit-based coverage, address map 

coverage & field coverage. We then present a case study that 

shows how bit and address map coverage’s are fully 

addressed/covered by the pre-packaged sequences that are readily 

available in the library. We specifically discuss field coverage as 

this covers different device configurations. As we move from 

block to cluster to subsystem verification, the accesses which we 

would want to track would vary and would be defined by different 

flavors of coverage models for the registers in the design. The 

different permutations of coverage bins for the multitude of 

registers at each step make it a challenging scenario for coverage 

convergence. We also provide a case study where the UVM REG 

model generator is enabled to automatically generate sequences. 

We show how these sequences can be easily applied at different 

stages of the verification cycle by dynamic extraction of coverage 

holes to meet coverage goals minimizing user efforts in writing 

test sequences. 

UVM provides guidelines to implement appropriate functional 

coverage models to verify and track that the different 

combinations of values being driven to the DUT registers. As we 

move from block to cluster to subsystem verification, the accesses 

which we would want to track would vary and would be defined 

by different flavors of coverage models for the registers in the 

design. The different permutations of coverage bins for the 

multitude of registers at each step make it a challenging scenario 

for coverage convergence. We demonstrate how one can enable 

the UVM REG model generators extract the required information 

from the register specifications to automatically generate 

‘coverage converging’ sequences. These sequences when applied 

at different stages in the verification cycles can help users 

dynamically extract the coverage holes and enable the required 

accesses to meet the verification goals. 

UVM REG defines the following three functional coverage models 

for register and memories but it doesn’t provide any rules for 

implementing them: 

Register bit coverage: This is used to confirm that every specified 

bit in a register abstraction model has been thoroughly exercised 

and is implemented as specified. This functional model can be 

quite large and is, therefore, best used at the block level. At the 

SOC level, we need to ensure that different addresses ranges are 

hit along with a combination of specific field values across 

different registers. This is to ensure all the IPs have been accessed 

and has been configured with appropriate values for the SOC 

simulations. This brings in the other two coverage models 

Field coverage: This model is designed to confirm that every 

configuration of a design has been verified. It is best used at the 

top-level. Additionally, the user can define specific bins explicitly 

as shown in the code snippet below: 

 
field f2 { 

  bits 8; 

  enum {AA, BB,CC=15}; 

  coverpoint { 

    bins AAA = {0, 12}; 

    bins BBB[] = {1, 2, AA, CC}; 

    bins CCC[3] = {14,15,[BB:10]}; 

    bins DDD = default; 

  } 

} 

 

Fig 5: Embedding field coverage in register specification. 

 

 

The generator creates the coverage bins automatically based on the 

field values and constraint model or as specified through the input 

specification. 

Address Map coverage: This model is designed to confirm that the 

address map of a design has been thoroughly exercised. This is 

valid for registers. A register coverage point contains only one bin 

named "accessed". The bin is covered whenever the register is 

accessed using either a read or a write operation. 

The pre-defined UVM REG sequences would help to target a 

significant percentage of the coverage bins as specified in the 

coverage models. Some of the important ones in the context of 

coverage are: 

Register bit-bash sequence: This test verifies the implementation 

of a single register by attempting to write 1’s and 0’s to every bit 

in it via every address map. 

Register access sequence: Verifies the accessibility of the register 

by writing via the default map and then reading via the backdoor. 

Memory walking-ones sequence: Performs the walking-ones 

algorithm on the memory for each map in which the memory is 

defined. 

Shared register access test sequence: Verifies the accessibility of 

register/memories that are shared between multiple physical 

interfaces. 

These ensure that coverage bins specified in the Register Bit 

Coverage and Address Mapped coverage models are targeted.  

The next step is to create the required stimulus for the field 

coverage. The number of bins can be significant here as we are 

looking at multiple permutations of values of fields across various 

registers. The built-in sequences do not necessarily help in this 

front beyond an initial threshold. Analyzing all the myriad holes 

and creating specific sequences to target all such bins would 

require significant amount of effort, disk space and additional 

resources. Sequences might have to be rewritten for changes in the 

register model. This led to the creation of a utility for generating 

the coverage converging sequences. 

Since the generator has all the information on the hierarchical 

functional models that were created. It was further enhanced to 

generate sequences which will have a collection of register 

accesses required to achieve closure on the functional coverage. 

The SystemVerilog language provides capabilities to query the 

functional coverage results dynamically. Thus the sequence 

generated would query individual coverpoints to determine 

whether a register write/read operation is required to achieve full 

coverage, following which it would perform the same as shown 

below: 

 

 
 

 

 

 

 

 

 

Fig 6: Embedding field coverage in register specification. 

 

 

 

 

 

 

 

 

 

task body();      

model.ID.cg_vals.R_ID_value.get_inst_coverage(c

overed, total); 

if(total!=covered) begin 

   model.ID.R_ID.read(status, data,  

.parent(this)); 

   model.ID.sample_values(); 

end 

endtask 



The other important aspect that should be kept in mind while 

generating the field coverage models is to map the respective bins 

to individual coverpoints. This ensures that more attributes of the 

model can be queried dynamically through the SV constructs as 

shown below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig 7: Generated covergroup for field coverage. 

 

IV. REUSING TESTS  
The register package of UVM coupled with vendor tools provide 

ways to automate the generation of register models and register 

accesses from input specifications. The need of the hour is to 

ensure that the same sequences can be reused in post-silicon 

validation and in simulation. A convenient way for verification 

engineers to develop firmware code which can be debugged on a 

RTL simulation of the design would significantly help in reducing 

the validation cycles.  

Typically firmware runs a set of pre-defined sequences of 

writes/reads to the registers on a device performing functions for 

boot-up, servicing interrupts etc. These functions are generally 

coded in C/C++, and these would need to access the registers in 

the DUT. Using the UVM Register Model with the appropriate 

C++ DPI interface, these functions can be generated so that the 

firmware can now perform the register access through the 

SystemVerilog register model. Thus, this allows firmware and 

application-level code to be developed and debugged on a 

simulation platform and the same functions can later be used as 

part of the device drivers to perform the same tasks on the 

hardware. 

 
Fig 8 : Block diagram of the C++/SV test environment 

 
To facilitate this,  C++ library would be required which would 

allow users to define register accesses as C++ functions. Using the 

functions defined within this library, the user can create C++ sub-

routines that perform control functions on a device-under-test. 

 

The library has been defined in a way that it can be used to: 

I. Be compiled and executed as a standalone C++ code on 

the target processor or 

II. To be interfaced to the SystemVerilog register model 

using DPI-C to be simulated on a HDL simulator. 

When executing the C++ code within a simulation, it is necessary 

for the C++ code to be called by the simulation to be executed and 

hence the application software’s main() routine must be replaced 

by one or more entry points known to the simulation. The C++ 

side reference is then used by the C++ API to access required 

fields, registers or memories. The C++ code is executed natively 

on the same workstation that is running the SystemVerilog 

simulation, eliminating the need for an instruction set simulator or 

a RTL model of the processor.  

The C++ function serves as the service entry point which is called 

from the SV simulation which provides the reference of the object 

based register model. When the C++ code executes, the simulation 

freezes until the control is shifted to the SV side.  That DPI-C 

entry point creates an instance of the register model based on the 

context specified by the UVM simulation. 

 

 

 

 

 

 
 

Fig 9: C++ test entry taking context as an input 

 
The C++ code can then be called from a UVM simulation by 

calling its corresponding entry point and specifying the context of 

the register model. 

 

 
 

Fig 10: Environment for an interrupt-driven C++ interaction 

 

When executing within a simulation of the design, all C++ code 

executes atomically. It is unlike the real application code running 

as object code on a real processor, where the execution of the code 

happens concurrently with other processing in the neighboring 

hardware. 

When the C++ code executes in simulation, only that code 

performs any form of processing and the rest of the design is 

frozen. The only way for the design simulation to proceed, is for 

the C++ code to return or for the C++ code to perform a read or 

write operation through the register model. In the latter case, once 

the read or write operation completes and the control is returned 

back to the C++ code, the simulation is again frozen. The entire 

execution timeline in the C++ code thus occurs in zero-time in the 

simulation timeline.  

extern “C” int 

usb_dev_isr_entry(int context) 

{ 

 usbdev_t usb(context); 

 return usb_dev_isr(usb); 

} 

covergroup cg_vals (); 

  option.per_instance = 1; 

 

  R_ID_value: coverpoint R_ID.value  

  { 

    bins value = { 8'h03 }; 

  } 

  CHIP_ID_value: coverpoint CHIP_ID.value  

  { 

    bins value = { 8'h5A }; 

  } 

  PROD_ID_value: coverpoint PRODUCT_ID.value   

  { 

    bins value = { 10'h176 }; 

  } 

endgroup : cg_vals 

 



 

 
Fig 11: Execution timeline for a C++ register test 

 
If a polling strategy is used, the simulation will have the 

opportunity to advance only during the execution of the repeated 

polling read cycles. It would likely require many hundreds of such 

read cycles for the design to reach a state that is relevant and 

significant for the application software. With a physical device, 

that is not an issue as this can happen in less than a microsecond. 

However, in simulation, this would require a lot of processing for 

simulating essentially useless read cycles and exchanging data 

between the C++ world and the simulation world. 

If an interrupt-driven strategy is used, the simulation will proceed 

until something of interest to the application software has 

happened before transferring control to the C++ code and only the 

necessary read and write operations would need to be performed. 

Therefore, it is important that you use a service-based approach as 

much as possible.It is also very important that the execution of the 

C++ code not be blocked by an external event—such as waiting 

for user input or a file to be unlocked—as it will prevent the 

simulation from moving forward while it is blocked. If the 

application software requires such synchronization, it should 

similarly use an asynchronous interrupt-driven approach. 

To enable this infrastructure, there are two requirements. The first, 

as mentioned earlier, would be the C++ library which would allow 

users to define register accesses as C++ functions. The next 

requirement would be to have representation of the register model 

on the C++ side. This has to be facilitated by a register model 

generator. It would generate a hierarchical model of the registers 

in a design that are accessible via a specific address map.  

Device driver code should be written in functions accepting a 

reference to the register model corresponding to the device. That 

register model is then used to identify the registers to be accessed. 

 

 

 

 
  Fig 12: Device driver accepting reference of the reg model 

 

The code illustration below shows the API’s which invoke 

accesses on registers defined in an example design module. 

regWrite() and  regRead() are library functions which takes a 

reference of the register model of the device registers to access 

them in one of either modes mentioned above. 

 
 

 

 

 

 

 

 

 

 

 

 
 

 
Fig 13: C++ device driver code. 

 

 

 

 

 

 

 

 
Fig 14: Device driver scheduled for execution as software. 

 

In the illustration above we have the C++ function dev_drv being 

scheduled for execution within the main(). And the same function 

is being called as a DPI-C function within the SystemVerilog 

UVM test as shown below. Please note that the function takes the 

object reference of the register model as an input from the 

SystemVerilog side. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig 15: The C++ Device driver being used in simulation test 

 
As mentioned earlier, there are two versions of the UVM register 

C++ API that can be used. One is designed to interface to the 

UVM register model running in the SystemVerilog simulator using 

the Direct Programming Interface. The other is pure stand-alone 

C++ code and is designed to be compiled on the target processor in 

the final application. The version of the C++ API that will be used 

is determined at compile time by including the appropriate header 

file. The illustrations mentioned above show how the same piece 

of code can be used once over without having to change anything 

while going from simulation to validation  without going into the 

details of how these API’s calls translate either to a simulation 

level register accesses or a software instruction.  

 

V. MODELING ISR’S IN UVM 
In a verification environment, different components may be trying 

to access the DUT registers and memories. For example, the BFM 

might be programming some registers while the bus monitor might 

be sampling the values of these registers. In specific cases, there 

may be an interrupt monitor which triggers an Interrupt Service 

Routine (ISR) whenever it sees an Interrupt pin toggling in the 

interface. The ISR might end up having to read the Interrupt 

registers and end up clearing the Interrupt bit/s through a front 

door access. 

The base register package assumes register accesses to be atomic 

in nature and so any access will be completed (successfully/as an 

error) before scheduling the next. Things have been set this way to 

ensure register accesses are not corrupt. However, this atomic 

void slave_driver::dev_drv(slave_t dev) 

{ 

    uint32 mode_status; 

    regWrite(dev.SESSION.SRC(), 0x0000FA); 

    regWrite(dev.SESSION.DST(), 0x000E90); 

    regRead(dev.MODE_STATUS); 

    switch ( mode_status ) 

    { 

       case 0x0001: 

         regWrite(dev.IDX(), 0x5aa5); 

         break; 

       case 0x0080: 

         regWrite(dev.IDX(), 0xa55a); 

         break; 

       default: 

         regWrite(dev.IDX(), 0x0000); 

    } 

}; 

static slave_t Sys("Sys", 0); 

 

int 

main(int argc, char* argv[]) 

{ 

    return slave_driver::dev_drv(Sys); 

} 

import "DPI-C" context task dev_drv(int ctxt); 

 

class cpp_test extends uvm_test; 

   int context_val; 

   `uvm_component_utils(cpp_test) 

 

   virtual function void connect_phase(…); 

      super.connect_phase(phase); 

      context_val =  

         snps_reg::create_context(env.model); 

   endfunction: connect_phase 

 

   virtual task run_phase(uvm_phase phase); 

      super.run_phase(phase); 

      phase.raise_objection(this); 

 

      // C++ device driver called via DPI-C 

      dev_drv(context_val); 

 

      phase.drop_objection(this); 

   endtask: run_phase 

 

endclass: cpp_test 

 

 

 

 

 

 

 

 

 

 

reqs=snps_reg::regRead(usbdev.status()); 

 

snps_reg::regWrite(usbdev.intMask(),0xFFFF); 

 



nature of a register access would impede the modeling a system 

interrupt which is a common occurrence in designs. And hence for 

the occurrence of an interrupt we have to have the pass the control 

over from an ongoing register access thread to a thread that 

services the interrupt. 

To ensure that different components in a verification environment 

can access the DUT registers at any given point in time, the 

register model instantiated in the environment can be passed to 

different UVM components through the UVM Resource Database. 

These different components whose methods are executing in 

separate parallel threads can now access the same set of registers 

in the DUT through the RAL model. A question many folks ask is: 

when there are multiple parallel register accesses, how do they get 

scheduled through the register layer? 

A Register read/write from different threads is comparable to an 

atomic sequence being started on the sequencer associated with the 

different threads. Hence it gets scheduled in the order of pipelining 

of the threads. A write/read would basically consist of the 

following atomic operations: 

- A generic register (uvm_reg_item) transaction with its fields 

(addr, data, kind etc.,) being populated and posted onto the 

reg2bus()   function  of the register adapter. 

- The transaction being translated in the reg2bus() function and 

posted as a UVM sequence onto the associated sequencer for the 

specified ‘map’. 

- The transaction being retrieved in the User BFM main thread and 

then subsequently driven to the DUT interface. 

Thus ‘posting’ of register accesses whenever a 

Read/Write/Mirror/Update is invoked is in the same order they are 

issued. Subsequently, the Register Adapter translates the generic 

UVM REG transaction to a User Sequencer comprehensible 

sequence, and doesn’t change the order. 

Now, how do we handle a scenario when specific register accesses 

like those coming from an ISR need to be given a higher priority 

than accesses coming from other threads in a verification 

environment?  The UVM base class library and the UVM register 

package provide a way to achieve this by controlling the sequencer 

to prioritize an interrupt subroutine sequence above other normal 

sequences. Let us see how this can be done with UVM. 

To start with we will need to model base register sequence to 

devise an arbitration scheme and have all other register sequences 

extend from this base sequence. The arbitration scheme will be 

defined using function is_relevant() & task wait_for_relevant() 

which is part of the UVM base sequence. 

 

 

 

 

 

 

 

 

 

 
Fig 16: Base sequence to checking the sequence priority. 

 

All sequences should be extended from the sequence defined 

above in figure 15. The ISR sequence will have is_relevant() & 

wait_for_relevant() methods defined to adjust the priority to the 

sequence with the reception of an interrupt event. 

The sequence defined  in Fig 17 waits for the assertion of the 

interrupt to before flagging relevance. With ISR sequence 

becoming relevant all normal sequences will be pushed down in 

the sequence queue of the sequencer. The sequencer would 

schedule & execute the ISR sequence which would restore the 

state of the sequencer to NORMAL when it is done servicing the 

interrupt. Also note how the sequence grabs the sequencer on 

which it executes to create an exclusive access preventing other 

threads from intervening with the interrupt sub-routine process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig 17: ISR sequence waiting for the interrupt. 

 
Finally, the ISR sequence will have to be run concurrently with 

other regular sequences on the sequencer that connects to the host 

driver. The figure below shows how this can be done. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig 18: Running the ISR concurrently with other sequences 

 

VI. RESULTS & CONCLUSIONS 
We have discussed some key features of the UVM register 

package across the length of this paper and in some sections we 

have stressed on the impact the package can have on the 

simulation. In particular, we have discussed the backdoors and 

seen how one option is better than the other. We also presented a 

way to pick the best out of the two options.  

The simulation profiling showed that the HDL XMR based 

backdoors provides a simulation speedup by a factor of nearly 

30%. And also the hybrid backdoor performs consistently with the 

HDL XMR based backdoor. This difference accumulated over 

multiple test sequences could be very costly. 

class host_base_sequence extends  

 uvm_reg_sequence #(uvm_sequence #(host_data)); 

 

    function bit is_relevant(); 

       return (p_sequencer.state == NORMAL); 

    endfunction 

 

    task wait_for_relvant(); 

       p_sequencer.state = NORMAL; 

    endtask 

endclass 

 

class host_isr_sequence extends  

host_base_sequence #(uvm_sequence #(host_data)); 

 

    function bit is_relevant(); 

       return (p_sequencer.state == INTERRUPT); 

    endfunction 

 

    task wait_for_relvant(); 

       // Waits for the interrupt assertion 

       @(dut_top.inta); 

       p_sequencer.state = INTERRUPT; 

    endtask 

 

    virtual task body();  

       forever begin  

          grab(p_sequencer);  

          // Task that contains the routine set 

          // register accesses relevant to the 

          // interrupt 

          isr(); 

          ungrab(p_sequencer); 

          p_sequencer.state = NORMAL; 

       end 

    endtask : body 

 

endclass 

class top_sequencer extends uvm_sequencer; 

  … 

 

  host_isr_sequence interrupt_handler;  

 

  virtual task run_phase(uvm_phase phase);  

    interrupt_handler =  

host_isr_sequence::type_id::create("interrupt_se

q"); 

 

    // Forking off the interrupt thread 

    fork  

       interrupt_seq.start(this);  

    join_none 

 

    super.run(); 

  endtask : run 

 

endclass 



Coverage is another topic that we broached upon and discussed 

strategies to converge quickly on to reach the coverage goals. We 

found that the auto-generated coverage converging sequence to be 

useful in filling up a lot of coverage holes in a very short span of 

time efficiently. Such an approach ensured that no additional code 

was written by the user. This could apply this at different stages in 

the verification cycle depending on the requirement. If applied 

earlier, it would generate more accesses while if it is applied later 

in the cycle, it would generate a lesser number based on the 

reduced number of holes in the register coverage model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 19: Coverage score from the pre-defined sequences. 

 

The sequences provided as part of the UVM base cumulatively 

generated coverage of 49.4% as shown in the coverage report 

above. When the auto-generated sequence was run following the 

pre-defined sequences we saw a steep curve in the coverage rise as 

summarized by the report shown below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 20: Coverage score after using the Fastlane sequences. 

 

The other common problem reported by users is with dynamic 

object allocation as encountered with any object based models. 

Devices with a sizable register space would limit the usage as 

simulators cannot handle beyond a certain threshold of objects. So 

it would be good to explore ways to limit object allocation on 

demand and not have them allocated by default. 
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Testbench Group List 

 

Total Groups Coverage Summary  

SCORE  INST SCORE WEIGHT  

 49.54  50.01     1       

 

 

Total groups in report: 9 

----------------------------------- 

SCORE  INSTANCES WEIGHT GOAL   NAME                                   

  0.00   0.00    1      100    STATUS::cg_vals    

  0.00   0.00    1      100    MASK::cg_vals      

  0.00   0.00    1      100    CHIP_ID::cg_vals   

  0.00   0.00    1      100    COUNTERS::cg_vals  

 66.67  66.67    1      100    CHIP_ID::cg_bits   

 79.17  86.96    1      100    STATUS::cg_bits    

100.00 100.00    1      100    slave::cg_addr         

100.00 100.00    1      100    MASK::cg_bits      

100.00 100.00    1      100    COUNTERS::cg_bits 

Testbench Group List 

 

Total Groups Coverage Summary  

SCORE  INST SCORE WEIGHT  

 92.39  99.88     1       

 

 

Total groups in report: 9 

---------------------------------- 

SCORE  INSTANCES WEIGHT GOAL NAME                                   

 66.67  66.67    1      100  CHIP_ID::cg_bits   

 79.17  86.96    1      100  STATUS::cg_bits    

 85.71  85.71    1      100  STATUS::cg_vals    

100.00 100.00    1      100  slave::cg_addr         

100.00 100.00    1      100  MASK::cg_vals      

100.00 100.00    1      100  CHIP_ID::cg_vals   

100.00 100.00    1      100  MASK::cg_bits      

100.00 100.00    1      100  COUNTERS::cg_vals  

100.00 100.00    1      100  COUNTERS::cg_bits 


