
© Synopsys 2013 1

Switch the Gears of the UVM Register
Package to cruise through

the street named “Register Verification”.

Gaurav Gupta
Freescale Semiconductors

gauravG@freescale.com

Parag Goel
Amit Sharma,

Varun S,
Abhisek Verma

Synopsys
paragg@synopsys.com
amits@synopsys.com

svarun@synopsys.com
abhiv@synopsys.com

mailto:gauravG@freescale.com
mailto:paragg@synopsys.com
mailto:amits@synopsys.com
mailto:svarun@synopsys.com
mailto:abhiv@synopsys.com

Advanced Register Verification

Register
Coverage

Convergence
Sequences

//modified backdoor register PRT_LCK class.
class reg_PRT_LCK_bkdr extends

uvm_reg_backdoor;

virtual host_regmodel_intf __reg_vif;

function new(string name);
super.new(name);
// initializing the virtual interface with
// the real interface
uvm_resource_db#
(virtual host_regmodel_intf)::

read_by_name(…, "uvm_reg_bkdr_if",
__reg_vif);

endfunction

virtual task read(uvm_reg_item rw);
do_pre_read(rw);

// performing a read access to register
__reg_vif.host_regmodel_PRT_LCK_bkdr_read(rw);

rw.status = UVM_IS_OK;
do_post_read(rw);

endtask

endclass

Optimized Register Backdoor Access

interface host_regmodel_intf;
import uvm_pkg::*;
// Tying the interface to the virtual
// interfaces being used in the
// UVM reg backdoor infrastructure
initial uvm_resource_db#
(virtual host_regmodel_intf)::

set("*", "uvm_reg_bkdr_if",
interface::self());

task reg_PRT_LCK_bkdr_read(…);
rw.value[0] = `HOST_TOP_PATH.lck;

endtask

task task reg_PRT_LCK_bkdr_write(…);
`HOST_TOP_PATH.lck = rw.value[0];

endtask
endinterface

Interface with read/write tasks for
backdoor

Modified backdoor class using the
interface tasks

UVM REG Coverage

Address map
• Have all address location in

the map been accessed?
• Pre-defined sequences

covers this.

Bit -level
• A regressive coverage that

covers values for each bit
position

• Pre-defined UVM register
sequence will cover this too.

Field value
• Configuration value coverage

for register fields.
• User written configuration

sequences. A bottle neck!

Why need fast lane sequence?

Fast lane sequence (config aware)

100% field
coverage
targeted

Add-on to
pre-

defined
plus user

sequences

Custom user sequences

Pre defined UVM RAL sequences

100% address map
coverage targeted

100% register bit coverage
targeted

Aiding the fast lane sequence

Generate the field coverage models
by mapping the respective bins to
individual coverpoints. This ensures
that more attributes of the model can
be queried dynamically through the
SV constructs

Hierarchical model of the
coverage architecture

enables traversal of the
entire coverage model

Let your register spec do the talking

• Embed configuration information into your register spec

• Enable the model generator to generate configuration
sequences to cover all the cases.

field f2 {
bits 2;
enum {bus_mode, switch_mode};
coverpoint {

bins bus_mode = {0};
bins switch_mode = {1};
bins reserved = {2, 3};

}
}

Switch gears

Run the fast
lane sequence
to converge on

coverage

Generate
the fast

lane
sequence

pre-defined
register

sequences

On the Fast Lane

Coverage before using
Fast Lane sequence

Coverage After using
Fast Lane sequence

UVM library provided base
sequences were run
and coverage was cumulatively
collected over these runs.

This was followed up with the
auto-generated sequence
which checked for the
uncovered points and
generated accesses to cover
the remaining coverage
holes.

SystemVerilog
Testbench

To be compiled and executed as
a standalone C++ code
on the target processor

REUSING TESTS

Firmware

C++ DPI interface

To be interfaced to the SystemVerilog
register model using DPI-C
to be simulated on a HDL simulator

C++ Register library

The need of the hour is to ensure
that the sequences can be reused
in post-silicon validation from RTL
simulation.

reqs=snps_reg::regRead(usbdev.status());

snps_reg::regWrite(usbdev.intMask(),0xFFFF);

extern “C” int
usb_dev_isr_entry(int context)
{

usbdev_t usb(context);
return usb_dev_isr(usb);

}

REUSING TESTS

static slave_t Sys("Sys", 0);

int
main(int argc, char* argv[])
{

return slave_driver::dev_drv(Sys);
}

Environment for an interrupt-driven C++ interaction

C++ test entry taking context as an input

Device driver accepting
reference of the reg model

void slave_driver::dev_drv(slave_t dev)
{

uint32 mode_status;
regWrite(dev.SESSION.SRC(), 0x0000FA);
regWrite(dev.SESSION.DST(), 0x000E90);
regRead(dev.MODE_STATUS);

switch (mode_status)
{
case 0x0001: regWrite(dev.IDX(), 0x5aa5);

break;
case 0x0080: regWrite(dev.IDX(), 0xa55a);

break;
default: regWrite(dev.IDX(), 0x0000);

}
};

import "DPI-C" context task dev_drv(int ctxt);

class cpp_test extends uvm_test;
int context_val;
`uvm_component_utils(cpp_test)

virtual function void connect_phase(…);
super.connect_phase(phase);
context_val =

snps_reg::create_context(env.model);
endfunction: connect_phase

virtual task run_phase(uvm_phase phase);
super.run_phase(phase);
phase.raise_objection(this);

// C++ device driver called via DPI-C
dev_drv(context_val);

phase.drop_objection(this);
endtask: run_phase

endclass: cpp_test

C++ device driver code

Device driver scheduled
for execution as software

The C++ Device driver
being used in

simulation test

class host_isr_sequence extends
host_base_sequence #(uvm_sequence #(host_data));

function bit is_relevant();
return (p_sequencer.state == INTERRUPT);

endfunction
task wait_for_relvant();

// Waits for the interrupt assertion
@(dut_top.inta);
p_sequencer.state = INTERRUPT;

endtask

virtual task body();
forever begin

grab(p_sequencer);
// Task that contains the routine set
// register accesses relevant to the
// interrupt
isr();
ungrab(p_sequencer);
p_sequencer.state = NORMAL;

end
endtask : body

endclass

class host_base_sequence extends
uvm_reg_sequence #(uvm_sequence #(host_data));

function bit is_relevant();
return (p_sequencer.state == NORMAL);

endfunction

task wait_for_relvant();
p_sequencer.state = NORMAL;

endtask
endclass

MODELING ISR

Base sequence to checking
the sequence priority

ISR sequence waiting
for the interrupt

Running the ISR concurrently
with other sequences

class top_sequencer extends uvm_sequencer;
…

host_isr_sequence interrupt_handler;

virtual task run_phase(uvm_phase phase);
interrupt_handler =

host_isr_sequence::type_id::create("interrupt_se
q");

// Forking off the interrupt thread
fork

interrupt_seq.start(this);
join_none

super.run();
endtask : run

endclass

	Switch the Gears of the UVM Register Package to cruise through�the street named “Register Verification”.
	Slide Number 2
	� Optimized Register Backdoor Access
	UVM REG Coverage
	Why need fast lane sequence?
	Aiding the fast lane sequence
	Let your register spec do the talking
	Switch gears
	On the Fast Lane
	REUSING TESTS
	REUSING TESTS
	MODELING ISR

