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Abstract— Complex protocol checks in Universal Verification 
Methodology Verification Components are often implemented 
using SystemVerilog Assertions; however, concurrent assertions 
are not allowed in SystemVerilog classes, so these assertions must 
be implemented in the only non-class based "object" available, 
the interface construct. This creates problems of encapsulation 
(since the verbose assertion code clutters the interface definition) 
and isolation (since the assertions depend on aspects of class 
configuration and operation). This paper demonstrates several 
pragmatic solutions for encapsulation and operation of assertions 
including mechanisms to make the assertions aware of the 
configuration and phases of the class-based verification 
environment.   
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I. INTRODUCTION 
Complex protocol checks in Universal Verification 
Methodology (UVM) Verification Components (UVC) are 
often implemented using SystemVerilog Assertions (SVA) 
[1]; however, concurrent assertions are not allowed in 
SystemVerilog classes [2], so these assertions must be 
implemented in the only non-class based "object" available - 
the UVC interface. While this is not a disaster, since the 
protocol checks are usually closely related to interface signal 
activity, it does represent pretty poor software encapsulation.  
 
Interfaces can get very cluttered with clocking blocks, signal 
declarations, modport definitions, interface access methods 
and so on. Adding what are usually quite verbose and 
specialized property definitions and assertion statements can 
overload the interface file content. In addition this assertion 
code is not really intended for the interface user, since the 
primary function of the interface is to encapsulate signal 
communication between the testbench classes and the Device 
Under Test (DUT) in a clear and concise manner – so the 
assertion code represents noise in that respect since it is really 
just part of the overall UVC checker functionality.  
 
Furthermore, for the assertions to be constantly in tune with 
the rest of the class-based verification environment settings, 
the actual assertion code may need to be aware of 
configuration settings (such as checks_enable and 

configuration object field settings) and UVM phases (in order 
to use the configuration settings correctly).  
 
This paper presents a thorough overview of these requirements 
for powerful and adaptive SVA encapsulation and 
demonstrates several practical solutions based on the 
SystemVerilog interface construct that can be made to be 
UVM phase aware and automatically make use of the UVM 
configuration settings in the associated class-based 
environment.   
 

II. UVM ENVIRONMENT 

A. Testbench Overview 
In order to put the checker responsibilities into context, let us 
first consider the generic setup for a UVM verification 
environment as shown in Figure 1.   
  

 
Figure 1.  UVM Verification Environment 

Figure 1 illustrates a basic verification environment, which 
comprises of two interface verification components (the actual 
protocol for which is not specified here since it is not relevant 
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to the discussion). In this case the sub-components have the 
following responsibilities:  
 

• stimulus is provided by sequencers and drivers 

• functional checks are performed by scoreboards, 
monitors & interfaces 

• functional coverage is collected by monitors  

• debug messages are generated by all components 

 

B. Check Requirements 
In addition to providing constrained-random stimulus, 
functional coverage and debug mechanisms such as 
messaging, UVCs must also provide automatic functional 
checking in order to meet corresponding verification 
requirements and validate DUT behavior. There are three 
types of checks typically performed in UVCs and each type is 
handled by a different component in the environment: 
 

• Signal protocol checks using concurrent property 
assertions written in SVA and located in interfaces 

• Transaction content, decoding and functional checks 
are performed by monitors 

• Transaction comparison and relationship checks are 
done in scoreboards 

 
Note that two scoreboards are shown in Figure 1, one is 
checking a relationship between transactions published by two 
interface UVCs, and the other is entirely contained within a 
single UVC, for example to validate the relationship between 
the transmit and receive transactions in a full duplex interface. 
 
Local scoreboard transaction comparisons, functional checks 
for transaction content, signal protocol behavior and timing 
checks all belong to the UVC even though SystemVerilog 
language limitations mean that we cannot encapsulate the 
concurrent property assertions for the protocol timing checks 
inside the class world. This distribution of check 
responsibilities is indicated in Figure 2.  
 

 
Figure 2.  Distributed UVC Checks 

 

C. Configuration and Control of Checks 
Since UVM verification components and environments are 
highly configurable and the signal protocol checks are 
responsible for implementing part of the verification 
requirements and capability of the UVC, the protocol checks 
may also have to adapt to configuration settings in the 
environment to produce the expected behavior.  
 
In the examples shown in this paper it is assumed that the 
virtual interface and configuration object are created and 
added to the configuration database by some higher-level 
components, for example enclosing environment or base-test 
component, as shown in Figure 3.  
 
class my_base_test extends uvm_test; 
  ... 
  virtual my_interface vif;  
  my_config cfg; 
  ... 
  function void build_phase(...);  
    super.build_phase(phase); 
    ... 
    // propagate vif from tb to env 
    if (!uvm_config_db# 
     (virtual my_interface)::get 
       (this, "", "TBIF", vif)) 
    `uvm_fatal(“VIFERR”, 
      ”no my_interface TBIF in db”)     
    uvm_config_db# 
     (virtual my_interface)::set 
       (this, "*", "vif", vif); 
   
    // create cfg using the factory  
    cfg = my_config::type_id::create 
     ("cfg", null);  
    if (!cfg.randomize())  
    `uvm_warning("RNDFLD",”...”); 
   
    // propagate cfg down hierarchy 
    uvm_config_db#(my_config)::set 
     (this, "*", "cfg", cfg); 
  endfunction 
  ... 
endclass 

Figure 3.  Base-Test Architecture 

In addition the checks_enable flag may be added to the 
configuration database by some higher-level component, such 
as an actual test that requires to do stress testing or error 
injection. The corresponding database configuration code 
would be similar to that shown in Figure 4.   
 



class my_stress_test  
  extends my_base_test; 
  ... 
  function void build_phase(...);  
    super.build_phase(phase); 
    ... 
    // disable checks for this test 
    uvm_config_db#(bit)::set 
     (this, "*", "checks_enable", 0); 
  endfunction 
  ... 
endclass 

Figure 4.  Example Test Override 

III. SVA ENCAPSULATION 

A. Why Encapsulate? 
The primary reasons for encapsulation are to co-locate all the 
SVA code in a single place and to avoid cluttering the UVC 
interface specification with the homeless protocol checks that 
cannot live elsewhere in the class hierarchy. Rather than use 
tick-include for the assertion code it is better to put it in a code 
construct that can be instantiated inside the interface.  
 

B. Interface Encapsulation 
In order to instantiate the checker inside the interface 
construct, the checker itself must be implemented as a 
SystemVerilog interface and not a module, since modules 
cannot be instantiated inside interfaces but other interfaces 
can.  
 
The SVA checker template shown in Figure 5 defines only the 
required ports for the checker and has placeholders for 
additional attributes that are discussed later in the paper. Bear 
in mind that normally there are many sequences, properties 
and assertions definitions as well as supporting code to make 
the assertions easier to write, debug and maintain. 
 
interface my_protocol_checker(  
  // signal port definitions  
  input logic       CLK,  
  input logic       REQ,  
  input logic       ACK,  
  input logic [7:0] DATA 
);  
  // local variable definitions  
  // support code for assertions  
  // property definitions  
  // concurrent assertions 
endinterface 

Figure 5.  Protocol Checker Template 

If the ports for the checker are defined as inputs using the 
same names as the host interface logic definitions, then the 
checker can be instantiated using implicit port connections 
(i.e. the ".*" notation). Note that the protocol checker ports can 

be a subset of the local signal definitions in the enclosing 
interface and implicit port connection still works – the actual 
subset used remains hidden from the enclosing interface 
definition. The interface definition for the UVC can therefore 
focus on signal and modport definitions and instantiate the 
checker in a single line as shown in Figure 6. 
 
interface my_interface;  
  // local signal definitions  
  logic       CLK;  
  logic       REQ;  
  logic       ACK;  
  logic [7:0] DATA;  
  logic       OTHER;  
  ...  
  // modport signal groups and directions  
  modport driver  
     (..., output REQ, input ACK, ...);  
  modport monitor 
     (..., input  REQ, input ACK, ...);   
   
  // instantiate protocol checker 
  my_protocol_checker  
     protocol_checker(.*);  
 
endinterface 

Figure 6.  Interface With Protocol Checker Instance 

IV. CONFIGURATION AWARENESS 

A. Configuration & Control Fields 
In reality, many protocol checkers will also need access to 
factory controlled UVC knobs (such as checks_enable) and 
configuration object fields in order to behave correctly. 
Specifically we need to use these configuration settings inside 
property definition and assertion statements. Notice however 
that concurrent assertions cannot directly use class member 
variables or methods (but supporting code can) so we need to 
copy the required configuration object fields to local variables 
in the interface and use these variables in the properties.  
 
In order to illustrate the use of configuration object fields we 
will make use of the configuration object class declaration 
(partially) shown in Figure 7. In this case there are four fields 
in the configuration object, but we only intend to use a subset 
of these. It is assumed that the configuration object is 
randomized with additional constraints or an appropriate 
factory type overload in order to constrain the configuration 
object field values appropriately for a particular instance of the 
UVC. 
 



class my_config extends uvm_object; 
  // configuration fields 
  rand my_speed_enum speed_mode; 
  rand int unsigned  max_value; 
  rand bit           data_en; 
  rand bit           etc; 
  // constraints 
  constraint c_max_value { 
    max_value <= 255; 
  } 
  // utility and field macros 
  `uvm_object_utils_begin(my_config) 
    `uvm_field_enum(..,speed_mode,...) 
    `uvm_field_int (max_value,...) 
    `uvm_field_int (data_en,...) 
    `uvm_field_int (etc,...) 
  `uvm_object_utils_end 
endclass 

Figure 7.  Configuration Object 

The corresponding local configuration variables in the 
protocol checker interface code are shown in Figure 8, with 
two sections still to be clarified. In this case the protocol 
checker makes use of only some of the fields from the 
configuration object, i.e. the required fields. This level of 
detail is correctly encapsulated within the protocol checker 
construct and is hidden from whatever external constructs are 
communicating with the checker – the external code does not 
care which subset of the configuration fields are used. 
 
interface my_protocol_checker(...);  
  // control knobs   
  bit checks_enable = 1;  
  // local vars for required cfg fields 
  my_speed_enum cfg_speed_mode; 
  int unsigned  cfg_max_value; 
  bit           cfg_data_en; 
 
  // (1) properties and assertions 
 
  // (2) update local variables from cfg 
 
endinterface 

Figure 8.  Protocol Checker Local Variables 

B. Example Concurrent Assertions 
In order to illustrate the use of configuration settings inside the 
assertions, let us also assume the following property 
specifications are part of the verification requirements for the 
verification component: 
 

• REQ always gets ACK before another REQ is 
observed and the ACK must come within a specified 
range depending on the configured speed mode. 

o fast-mode = ACK must be between 1 and 4 
CLK delays 

o slow-mode = ACK must be between 3 and 
10 CLK delays 

• DATA must never exceed the configurable 
max_value during ACK if data_en is configured. 
When data_en is negated, or at anytime other than 
ACK, there are no restrictions on DATA. 

 
In addition to the functional requirements, we will disable all 
assertions if the checks_enable flag is negated in the same way 
we do for other checks in the UVC. 
 
For the first of these protocol checks, we require different 
timing behavior based on the current configuration settings. 
Note however that range values in cycle delay (##N) and 
repetition [*A:B] operators must be constants. One possible 
solution here is to specify different timing sequence 
definitions and choose the appropriate one based on the 
cfg_speed_mode condition as shown in Figure 9. 
 
sequence s_fast_transfer; 
  REQ ##1 !REQ[*1:4] ##0 ACK; 
endsequence 
 
sequence s_slow_transfer; 
  REQ ##1 !REQ[*3:10] ##0 ACK; 
endsequence 
 
property p_transfer; 
  @(posedge CLK) 
    disable iff (!checks_enable) 
      REQ |->  
        if (cfg_speed_mode ==  
                MY_SPEED_FAST) 
          s_fast_transfer; 
        else // MY_SPEED_SLOW 
          s_slow_transfer; 
endproperty 
 
a_transfer:  
  assert property (p_transfer) 
    else $error(“illegal transfer”); 

Figure 9.  Property Assertion For Transfer Check 

Note that the concurrent property definition is using the local 
variables from the interface and not an actual configuration 
object class since dynamic class members are not allowed in 
SystemVerilog Assertions. There is more detail on this in 
subsequent sections of the paper. 
 
The second protocol check requires us to validate the data 
range but only during ACK cycles and when data responses 
are enabled. This can be implemented by using the 
cfg_max_value field in the property consequent (the right-
hand-side of implication operator “|->”) to check the range 
values, and by adding the cfg_data_en field to disable the 
property as shown in Figure 10.  
 



property p_data_max; 
  @(posedge CLK) 
    disable iff (!checks_enable ||  
                 !cfg_data_en) 
      ACK |->  
       (DATA <= cfg_max_value); 
endproperty 
 
a_data_max:  
  assert property (p_data_max) 
    else $error(“illegal ACK data”); 

Figure 10.  Property Assertion For Data Check 

C. Updating Configuration 
Now we need to consider how to get the configuration 
information out of the class world and into the protocol 
checker interface variables. Care is required here since the 
interfaces themselves are not UVM phased-components, and 
we need to access the configuration database after the 
necessary build phases have completed in order to get the 
correct values. Several possibilities exist to achieve this 
including applying a software API to set the values of the 
fields hierarchically after the build phase is complete and also 
adding code to the interface to control the phasing 
automatically - both of which are described in the following 
sections. 
 

V. METHOD API 

A. API for SVA Configuration 
The simplest approach to ensuring that the configuration and 
control fields in the interface SVA checker are accurate after 
the factory controlled build of the UVM environment is to 
provide a method-based API. The UVC class-based 
components have a responsibility to maintain the checker 
configuration at appropriate stages in the lifetime of the test. 
 
As shown in Figure 11, each of the checker components (e.g. 
monitor and scoreboard), agents and the UVC environment 
has access to configuration object fields and control knobs, 
shown by the © symbol. During factory-controlled build of 
the class-based components these configuration fields are 
setup using factory creation, type overrides, and the 
configuration database tables. Each component calls get(), 
either implicitly via the field macros, or explicitly using the 
uvm_config_db, in order to get a handle to the correct 
configuration settings show by the thin (red) dashed arrows. 
Once build is complete, the class-world can push the 
configuration over to the corresponding instance of the SVA 
protocol checker in the module domain, as shown by the thick 
(blue) arrow in Figure 11, and discussed in detail in the 
following sections. 
 

 
Figure 11.  SVA Configuration Using API 

B. API Implementation 
Initializing the checker knobs and configuration objects using 
the software API is straightforward; the first step is to add 
set_config and set_checks_enable methods to the protocol 
checker as shown in Figure 12.  
 
import ovm_pkg::*; 
import my_pkg::*; 
 
interface my_protocol_checker(...);  
 ... 
 // set required local fields  
 function void set_config(my_config cfg); 
  cfg_speed_mode = cfg.speed_mode; 
  cfg_max_value  = cfg.max_value; 
  cfg_data_en    = cfg.data_en; 
 endfunction  
   
 // set checks_enable flag  
 function void set_checks_enable(bit en); 
  checks_enable = en;  
 endfunction 
 ... 
endinterface 

Figure 12.  Property Checker With Method API 

Note that it is not enough to just add a declaration of the 
configuration object and to procedurally reference it to an 
external configuration object since the uvm_object class fields 
cannot be used directly in the assertions; we need to tell the 
checker when to update its local configuration fields based on 
completion of the UVM build phase in the class domain. Note 
also that by passing the complete configuration object in the 
method call we effectively isolate the checker-specific subset 
of configuration fields inside the API, which is desirable for 
software encapsulation. 
 
Likewise, although we have a checks_enable field in the 
protocol checker, this is not registered with the factory and 
will not automatically update based on any set_config_int() 
method calls in the parent UVC environment. Hence we need 
to tell the checker interface when to update the value after 
build phase is complete. 
 



We also require similar methods in the actual UVC interface 
as shown in Figure 13, since this is the virtual interface 
assigned in the parent verification component (i.e. the UVC 
does not know about the SVA encapsulation in a lower level 
sub-interface). 
 
interface my_interface;  
 ... 
 function void set_config(my_config cfg); 
  protocol_checker.set_config(cfg);  
 endfunction  
   
 function void set_checks_enable(bit en); 
  protocol_checker.set_checks_enable(en); 
 endfunction  
 ... 
endinterface 

Figure 13.  Interface API 

C. Using API to Control SVA Configuration 
Then we are in a position to set the checker configuration field 
values anytime after the build phase is complete and the 
virtual interfaces are connected (but before any related signal 
activity occurs) - for UVM this is most logically done in the 
end_of_elaboration_phase for the associated monitor as 
shown in Figure 14.  
 
Note that the monitor has some additional work to do in order 
to propagate the configuration settings into the interface via 
the virtual interface handle (“vif”).  
 

D. Handling Configuration Changes With API 
If the configuration object is not static throughout the run-
phase, but contains some pseudo-static configuration fields 
which are updated in response to run-time stimulus, then we 
also need to adapt the local configuration fields in the checker 
accordingly. With a method API approach, the monitor has 
responsibility for calling the corresponding set_config method 
in the interface when required.  
 
Note that if the monitor developer forgets to update the SVA 
configuration, or does not do it at the right point in time, then 
the resulting false assertion failures can be very hard to debug.  
 

class my_monitor extends uvm_monitor;  
  my_config cfg;  
  bit checks_enable = 1;  
  virtual my_interface vif;  
 
  `uvm_component_utils(my_monitor)     
 
function void build_phase(...); 
  ... 
  // virtual interface must be provided 
  if (!uvm_config_db#  
    (virtual my_interface)::get 
      (this, "", "vif", vif)) 
  `uvm_fatal(“VIFERR”, 
    ”no my_interface vif in db”) 
 
  // config must be provided  
  if (!uvm_config_db#(my_config)::get 
    (this, "", "cfg", cfg)) 
  `uvm_fatal(“CFGERR”, 
    ”no my_config cfg in db”) 
 
  // checks_enable may be overloaded  
  void'(uvm_config_db#(bit)::get 
   (this, "", 
    "checks_enable", checks_enable)); 
endfunction  
 
function void end_of_elaboration_phase(.. 
  ... 
  // set interface config after build 
  vif.set_config(cfg);    
  vif.set_checks_enable(checks_enable); 
endfunction 
... 
endclass 

Figure 14.  API Use-Case 

E. API Summary 
The above approach is easy to implement and debug but can 
get quite messy if there is a lot of configuration objects, 
individual control knobs or many layers of hierarchy to deal 
with. In addition it forces the higher-level classes to perform 
additional tasks and be aware of the lower-level checker 
interface API requirements.  
 

VI. PHASE AWARE CONFIGURATION 
 

A. Automatic SVA Configuration 
An alternative approach is to construct the SVA protocol 
checker such that the interface is phase-aware and can control 
its own settings from the UVM environment with no 
additional demands placed on the higher-level classes. This 
achieves good encapsulation of the checker and isolation of 
related checker requirements. 



 
In Figure 15, the © symbols represent configuration object 
fields and control knobs as before, but in this case the SVA 
protocol checker automatically updates its own configuration 
object based on the actual factory controlled build of the class-
based environment using phase-aware constructs in the 
interface. The mechanism for achieving this is discussed in the 
following sections. 
 

 
Figure 15.  Automatic SVA Configuration 

B. Phase-Aware Interface 
The SystemVerilog interface construct is not a UVM phased-
component; however, we can make a class declaration for a 
phased-component inside the interface as shown in Figure 16. 
Since this class is defined inside the interface it can see all the 
member variables of the interface (such as cfg, 
cfg_speed_mode and checks_enable). The phase methods for 
this embedded class will execute along with other components' 
phase methods in the UVC class world since it is derived from 
uvm_component. 
 
Note however that since this class is declared inside an 
interface and the interface is ultimately instantiated in the 
testbench module, then this class forms a top-level component 
in the UVM instance hierarchy, under uvm_top, and in parallel 
with the main testbench class hierarchy. Normally we rely on 
the build_phase working in a top-down manner; this means we 
can configure all of the child components in any order and the 
current parent environment is completely built before child 
components are created. However, the net result of this setup 
is that the UVM phases in the two class environments under 
uvm_top execute their phases in parallel and this can result in 
a race scenario in that the interface class can complete the 
build_phase before the associated UVC completes its 
build_phase.  

import ovm_pkg::*; 
import my_pkg::*; 
 
interface my_protocol_checker(...);  
... 
my_config cfg;  
... 
 
class checker_phaser  
 extends uvm_component;  
     
 function new( 
  string name="",  
  ovm_component parent=null 
 ); 
  super.new(name, parent);  
 endfunction  
 
 function void end_of_elaboration_phase( 
  uvm_phase phase 
 ); 
  super.end_of_elaboration_phase(phase); 
    
  // config must be provided  
  if (!uvm_config_db#(my_config)::get 
   (this, "", "cfg", cfg)) 
  `uvm_fatal(“CFGERR”, 
    ”no my_config cfg in db”) 
 
  // checks_enable may be overloaded  
  void'(uvm_config_db#(bit)::get 
    (this, "",  
    "checks_enable", checks_enable)); 
 
  // copy required cfg fields  
  cfg_speed_mode = cfg.speed_mode; 
  cfg_max_value  = cfg.max_value; 
  cfg_data_en    = cfg.data_en; 
 endfunction 
   
endclass 
 
// create unique instance of phaser class  
// (at the top-level under uvm_top)  
checker_phaser m_phase =  
  new($psprintf("%m.m_phase"));  
   
... 
endinterface 

Figure 16.  Phase-Aware Protocol Checker 

Two possible workarounds for this parallel phasing problem 
are available; the first is to configure the database from the 
testbench module prior to calling the run_test task (which 
starts the UVM phases) – but this is not really a good 
encapsulation since we want to control settings from inside 
class components not the testbench module. The alternative is 
to wait until the class world has completed its build and 



connect phases before the protocol checker class updates its 
own configuration fields and control flags.  
 
Since each of the top-level build_phases exectue in parallel 
and they all complete, albeit in an unspecified order, before 
the connect_phase is started in any component, we can choose 
to update the configuration after build_phase but before the 
time-consuming run_phase (when we need the checks to be 
active). A logical solution therefore is to use 
end_of_elaboration_phase in the protocol checker class to do 
the configuration updates based on any class based 
modifications that occurred during the build_phase or 
connect_phase of the associated UVC as shown below.  
 
In order to support multiple instances of the associated UVC 
and interface, it is necessary to provide a unique name for 
each checker_phaser class in the uvm_top structure. This can 
be achieved by constructing the checker_phaser class with a 
unique name derived from the full hierarchical pathname for 
the enclosing interface using the %m format specifier as 
shown at the bottom of Figure 16. This also means that any 
UVM messages generated by the checker_phaser class have 
an accurate hierarchical pathname in the corresponding log 
files, which improves debug capability. 
 

C. Controlling SVA Configuration 
Since the uvm_component classes inside the checker interfaces 
are not inside a parent uvm_component, but are located at the 
top-level of the UVM hierarchy, the base-test (or derived 
tests) need to increase the scope of the configuration database 
lookup strings buy using “null” rather than “this” for the cntxt 
parameter when setting configuration object and 
checks_enable flags as shown in Figure 17. 
 
uvm_config_db#(my_config)::set 
  (null, "*", "cfg", cfg); 
 
uvm_config_db#(bit)::set 
  (null, "*m_phase", "checks_enable", 0); 

Figure 17.  Example uvm_config_db::set 

D. Handling  Configuration Changes Automatically 
If the configuration object is not static throughout the run-
phase, but contains some pseudo-static configuration fields 
which are updated in response to run-time stimulus, then we 
need to add a process to the protocol checker interface which 
automatically detects changes in the configuration class and 
updates the local fields accordingly.  
 
Since the configuration object is not yet constructed during 
elaboration of the static module code where the interface is 
instantiated, it is not possible to monitor the configuration 
object, cfg, directly in an always or always_comb construct 
(i.e. “always_comb cfg_speed_mode = cfg.speed_mode;” 
results in a run-time error). An alternative solution is to 
perform a similar operation inside the run_phase task for the 

checker_phaser class as shown in Figure 18. Note that since 
this code in the checker interface is not part of a concurrent 
assertion, it can directly look at the configuration object class 
fields to determine if any of the required fields have been 
modified and transfer these updates to the local variables for 
use in the assertions. 
 
class checker_phaser ...;  
  ... 
  task run_phase(uvm_phase phase); 
    super.run_phase(phase); 
    // monitor required cfg for updates 
    forever begin 
      @(cfg.speed_mode or 
        cfg.max_value  or 
        cfg.data_en)  
      begin 
        cfg_speed_mode = cfg.speed_mode; 
        cfg_max_value  = cfg.max_value; 
        cfg_data_en    = cfg.data_en; 
      end 
      `uvm_info(“CFGUPDATE”, 
        ”cfg update detected”, UVM_LOW) 
    end 
  endtask 
  ... 
endclass 

Figure 18.  Example Run-Time Configuration Snooping 

E. Phase-Aware SVA Summary 
With this technique no additional external API is required and 
the UVM components in the corresponding UVCs do not have 
to communicate with the protocol checker directly. In fact the 
protocol checker functionality is well encapsulated and hidden 
from the class-based components. 
 

VII. CONCLUSION 
 
This paper presented practical suggestions for encapsulating 
SVA-based protocol checkers in such a way that they can be 
instantiated into the UVM verification component interface 
and illustrated some suitable methods to allow the assertions 
to be aware of configuration and factory generated values in 
the class-based verification component. The techniques 
discussed in this paper have been successfully used on several 
OVM and UVM projects at different clients and using 
different simulation tools. Constructing SVA protocol 
checkers using these mechanisms results in much better 
software encapsulation for these important checks and 
provides no drawbacks over the other ad-hoc methods 
observed in operation at clients.  
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