
SVA	
 Encapsulation	
 in	
 UVM	
 	

enabling	
 phase	
 and	
 configuration	
 aware	
 assertions	

Mark Litterick
Verilab GmbH.

Munich, Germany
mark.litterick@verilab.com

Abstract— Complex protocol checks in Universal Verification
Methodology Verification Components are often implemented
using SystemVerilog Assertions; however, concurrent assertions
are not allowed in SystemVerilog classes, so these assertions must
be implemented in the only non-class based "object" available,
the interface construct. This creates problems of encapsulation
(since the verbose assertion code clutters the interface definition)
and isolation (since the assertions depend on aspects of class
configuration and operation). This paper demonstrates several
pragmatic solutions for encapsulation and operation of assertions
including mechanisms to make the assertions aware of the
configuration and phases of the class-based verification
environment.

Keywords—UVM; SVA; SystemVerilog; Interface;

I. INTRODUCTION
Complex protocol checks in Universal Verification
Methodology (UVM) Verification Components (UVC) are
often implemented using SystemVerilog Assertions (SVA)
[1]; however, concurrent assertions are not allowed in
SystemVerilog classes [2], so these assertions must be
implemented in the only non-class based "object" available -
the UVC interface. While this is not a disaster, since the
protocol checks are usually closely related to interface signal
activity, it does represent pretty poor software encapsulation.

Interfaces can get very cluttered with clocking blocks, signal
declarations, modport definitions, interface access methods
and so on. Adding what are usually quite verbose and
specialized property definitions and assertion statements can
overload the interface file content. In addition this assertion
code is not really intended for the interface user, since the
primary function of the interface is to encapsulate signal
communication between the testbench classes and the Device
Under Test (DUT) in a clear and concise manner – so the
assertion code represents noise in that respect since it is really
just part of the overall UVC checker functionality.

Furthermore, for the assertions to be constantly in tune with
the rest of the class-based verification environment settings,
the actual assertion code may need to be aware of
configuration settings (such as checks_enable and

configuration object field settings) and UVM phases (in order
to use the configuration settings correctly).

This paper presents a thorough overview of these requirements
for powerful and adaptive SVA encapsulation and
demonstrates several practical solutions based on the
SystemVerilog interface construct that can be made to be
UVM phase aware and automatically make use of the UVM
configuration settings in the associated class-based
environment.

II. UVM ENVIRONMENT

A. Testbench Overview
In order to put the checker responsibilities into context, let us
first consider the generic setup for a UVM verification
environment as shown in Figure 1.

Figure 1. UVM Verification Environment

Figure 1 illustrates a basic verification environment, which
comprises of two interface verification components (the actual
protocol for which is not specified here since it is not relevant

www.verilab.com

to the discussion). In this case the sub-components have the
following responsibilities:

• stimulus is provided by sequencers and drivers

• functional checks are performed by scoreboards,
monitors & interfaces

• functional coverage is collected by monitors

• debug messages are generated by all components

B. Check Requirements
In addition to providing constrained-random stimulus,
functional coverage and debug mechanisms such as
messaging, UVCs must also provide automatic functional
checking in order to meet corresponding verification
requirements and validate DUT behavior. There are three
types of checks typically performed in UVCs and each type is
handled by a different component in the environment:

• Signal protocol checks using concurrent property
assertions written in SVA and located in interfaces

• Transaction content, decoding and functional checks
are performed by monitors

• Transaction comparison and relationship checks are
done in scoreboards

Note that two scoreboards are shown in Figure 1, one is
checking a relationship between transactions published by two
interface UVCs, and the other is entirely contained within a
single UVC, for example to validate the relationship between
the transmit and receive transactions in a full duplex interface.

Local scoreboard transaction comparisons, functional checks
for transaction content, signal protocol behavior and timing
checks all belong to the UVC even though SystemVerilog
language limitations mean that we cannot encapsulate the
concurrent property assertions for the protocol timing checks
inside the class world. This distribution of check
responsibilities is indicated in Figure 2.

Figure 2. Distributed UVC Checks

C. Configuration and Control of Checks
Since UVM verification components and environments are
highly configurable and the signal protocol checks are
responsible for implementing part of the verification
requirements and capability of the UVC, the protocol checks
may also have to adapt to configuration settings in the
environment to produce the expected behavior.

In the examples shown in this paper it is assumed that the
virtual interface and configuration object are created and
added to the configuration database by some higher-level
components, for example enclosing environment or base-test
component, as shown in Figure 3.

class my_base_test extends uvm_test;
 ...
 virtual my_interface vif;
 my_config cfg;
 ...
 function void build_phase(...);
 super.build_phase(phase);
 ...
 // propagate vif from tb to env
 if (!uvm_config_db#
 (virtual my_interface)::get
 (this, "", "TBIF", vif))
 `uvm_fatal(“VIFERR”,
 ”no my_interface TBIF in db”)
 uvm_config_db#
 (virtual my_interface)::set
 (this, "*", "vif", vif);

 // create cfg using the factory
 cfg = my_config::type_id::create
 ("cfg", null);
 if (!cfg.randomize())
 `uvm_warning("RNDFLD",”...”);

 // propagate cfg down hierarchy
 uvm_config_db#(my_config)::set
 (this, "*", "cfg", cfg);
 endfunction
 ...
endclass

Figure 3. Base-Test Architecture

In addition the checks_enable flag may be added to the
configuration database by some higher-level component, such
as an actual test that requires to do stress testing or error
injection. The corresponding database configuration code
would be similar to that shown in Figure 4.

class my_stress_test
 extends my_base_test;
 ...
 function void build_phase(...);
 super.build_phase(phase);
 ...
 // disable checks for this test
 uvm_config_db#(bit)::set
 (this, "*", "checks_enable", 0);
 endfunction
 ...
endclass

Figure 4. Example Test Override

III. SVA ENCAPSULATION

A. Why Encapsulate?
The primary reasons for encapsulation are to co-locate all the
SVA code in a single place and to avoid cluttering the UVC
interface specification with the homeless protocol checks that
cannot live elsewhere in the class hierarchy. Rather than use
tick-include for the assertion code it is better to put it in a code
construct that can be instantiated inside the interface.

B. Interface Encapsulation
In order to instantiate the checker inside the interface
construct, the checker itself must be implemented as a
SystemVerilog interface and not a module, since modules
cannot be instantiated inside interfaces but other interfaces
can.

The SVA checker template shown in Figure 5 defines only the
required ports for the checker and has placeholders for
additional attributes that are discussed later in the paper. Bear
in mind that normally there are many sequences, properties
and assertions definitions as well as supporting code to make
the assertions easier to write, debug and maintain.

interface my_protocol_checker(
 // signal port definitions
 input logic CLK,
 input logic REQ,
 input logic ACK,
 input logic [7:0] DATA
);
 // local variable definitions
 // support code for assertions
 // property definitions
 // concurrent assertions
endinterface

Figure 5. Protocol Checker Template

If the ports for the checker are defined as inputs using the
same names as the host interface logic definitions, then the
checker can be instantiated using implicit port connections
(i.e. the ".*" notation). Note that the protocol checker ports can

be a subset of the local signal definitions in the enclosing
interface and implicit port connection still works – the actual
subset used remains hidden from the enclosing interface
definition. The interface definition for the UVC can therefore
focus on signal and modport definitions and instantiate the
checker in a single line as shown in Figure 6.

interface my_interface;
 // local signal definitions
 logic CLK;
 logic REQ;
 logic ACK;
 logic [7:0] DATA;
 logic OTHER;
 ...
 // modport signal groups and directions
 modport driver
 (..., output REQ, input ACK, ...);
 modport monitor
 (..., input REQ, input ACK, ...);

 // instantiate protocol checker
 my_protocol_checker
 protocol_checker(.*);

endinterface

Figure 6. Interface With Protocol Checker Instance

IV. CONFIGURATION AWARENESS

A. Configuration & Control Fields
In reality, many protocol checkers will also need access to
factory controlled UVC knobs (such as checks_enable) and
configuration object fields in order to behave correctly.
Specifically we need to use these configuration settings inside
property definition and assertion statements. Notice however
that concurrent assertions cannot directly use class member
variables or methods (but supporting code can) so we need to
copy the required configuration object fields to local variables
in the interface and use these variables in the properties.

In order to illustrate the use of configuration object fields we
will make use of the configuration object class declaration
(partially) shown in Figure 7. In this case there are four fields
in the configuration object, but we only intend to use a subset
of these. It is assumed that the configuration object is
randomized with additional constraints or an appropriate
factory type overload in order to constrain the configuration
object field values appropriately for a particular instance of the
UVC.

class my_config extends uvm_object;
 // configuration fields
 rand my_speed_enum speed_mode;
 rand int unsigned max_value;
 rand bit data_en;
 rand bit etc;
 // constraints
 constraint c_max_value {
 max_value <= 255;
 }
 // utility and field macros
 `uvm_object_utils_begin(my_config)
 `uvm_field_enum(..,speed_mode,...)
 `uvm_field_int (max_value,...)
 `uvm_field_int (data_en,...)
 `uvm_field_int (etc,...)
 `uvm_object_utils_end
endclass

Figure 7. Configuration Object

The corresponding local configuration variables in the
protocol checker interface code are shown in Figure 8, with
two sections still to be clarified. In this case the protocol
checker makes use of only some of the fields from the
configuration object, i.e. the required fields. This level of
detail is correctly encapsulated within the protocol checker
construct and is hidden from whatever external constructs are
communicating with the checker – the external code does not
care which subset of the configuration fields are used.

interface my_protocol_checker(...);
 // control knobs
 bit checks_enable = 1;
 // local vars for required cfg fields
 my_speed_enum cfg_speed_mode;
 int unsigned cfg_max_value;
 bit cfg_data_en;

 // (1) properties and assertions

 // (2) update local variables from cfg

endinterface

Figure 8. Protocol Checker Local Variables

B. Example Concurrent Assertions
In order to illustrate the use of configuration settings inside the
assertions, let us also assume the following property
specifications are part of the verification requirements for the
verification component:

• REQ always gets ACK before another REQ is
observed and the ACK must come within a specified
range depending on the configured speed mode.

o fast-mode = ACK must be between 1 and 4
CLK delays

o slow-mode = ACK must be between 3 and
10 CLK delays

• DATA must never exceed the configurable
max_value during ACK if data_en is configured.
When data_en is negated, or at anytime other than
ACK, there are no restrictions on DATA.

In addition to the functional requirements, we will disable all
assertions if the checks_enable flag is negated in the same way
we do for other checks in the UVC.

For the first of these protocol checks, we require different
timing behavior based on the current configuration settings.
Note however that range values in cycle delay (##N) and
repetition [*A:B] operators must be constants. One possible
solution here is to specify different timing sequence
definitions and choose the appropriate one based on the
cfg_speed_mode condition as shown in Figure 9.

sequence s_fast_transfer;
 REQ ##1 !REQ[*1:4] ##0 ACK;
endsequence

sequence s_slow_transfer;
 REQ ##1 !REQ[*3:10] ##0 ACK;
endsequence

property p_transfer;
 @(posedge CLK)
 disable iff (!checks_enable)
 REQ |->
 if (cfg_speed_mode ==
 MY_SPEED_FAST)
 s_fast_transfer;
 else // MY_SPEED_SLOW
 s_slow_transfer;
endproperty

a_transfer:
 assert property (p_transfer)
 else $error(“illegal transfer”);

Figure 9. Property Assertion For Transfer Check

Note that the concurrent property definition is using the local
variables from the interface and not an actual configuration
object class since dynamic class members are not allowed in
SystemVerilog Assertions. There is more detail on this in
subsequent sections of the paper.

The second protocol check requires us to validate the data
range but only during ACK cycles and when data responses
are enabled. This can be implemented by using the
cfg_max_value field in the property consequent (the right-
hand-side of implication operator “|->”) to check the range
values, and by adding the cfg_data_en field to disable the
property as shown in Figure 10.

property p_data_max;
 @(posedge CLK)
 disable iff (!checks_enable ||
 !cfg_data_en)
 ACK |->
 (DATA <= cfg_max_value);
endproperty

a_data_max:
 assert property (p_data_max)
 else $error(“illegal ACK data”);

Figure 10. Property Assertion For Data Check

C. Updating Configuration
Now we need to consider how to get the configuration
information out of the class world and into the protocol
checker interface variables. Care is required here since the
interfaces themselves are not UVM phased-components, and
we need to access the configuration database after the
necessary build phases have completed in order to get the
correct values. Several possibilities exist to achieve this
including applying a software API to set the values of the
fields hierarchically after the build phase is complete and also
adding code to the interface to control the phasing
automatically - both of which are described in the following
sections.

V. METHOD API

A. API for SVA Configuration
The simplest approach to ensuring that the configuration and
control fields in the interface SVA checker are accurate after
the factory controlled build of the UVM environment is to
provide a method-based API. The UVC class-based
components have a responsibility to maintain the checker
configuration at appropriate stages in the lifetime of the test.

As shown in Figure 11, each of the checker components (e.g.
monitor and scoreboard), agents and the UVC environment
has access to configuration object fields and control knobs,
shown by the © symbol. During factory-controlled build of
the class-based components these configuration fields are
setup using factory creation, type overrides, and the
configuration database tables. Each component calls get(),
either implicitly via the field macros, or explicitly using the
uvm_config_db, in order to get a handle to the correct
configuration settings show by the thin (red) dashed arrows.
Once build is complete, the class-world can push the
configuration over to the corresponding instance of the SVA
protocol checker in the module domain, as shown by the thick
(blue) arrow in Figure 11, and discussed in detail in the
following sections.

Figure 11. SVA Configuration Using API

B. API Implementation
Initializing the checker knobs and configuration objects using
the software API is straightforward; the first step is to add
set_config and set_checks_enable methods to the protocol
checker as shown in Figure 12.

import ovm_pkg::*;
import my_pkg::*;

interface my_protocol_checker(...);
 ...
 // set required local fields
 function void set_config(my_config cfg);
 cfg_speed_mode = cfg.speed_mode;
 cfg_max_value = cfg.max_value;
 cfg_data_en = cfg.data_en;
 endfunction

 // set checks_enable flag
 function void set_checks_enable(bit en);
 checks_enable = en;
 endfunction
 ...
endinterface

Figure 12. Property Checker With Method API

Note that it is not enough to just add a declaration of the
configuration object and to procedurally reference it to an
external configuration object since the uvm_object class fields
cannot be used directly in the assertions; we need to tell the
checker when to update its local configuration fields based on
completion of the UVM build phase in the class domain. Note
also that by passing the complete configuration object in the
method call we effectively isolate the checker-specific subset
of configuration fields inside the API, which is desirable for
software encapsulation.

Likewise, although we have a checks_enable field in the
protocol checker, this is not registered with the factory and
will not automatically update based on any set_config_int()
method calls in the parent UVC environment. Hence we need
to tell the checker interface when to update the value after
build phase is complete.

We also require similar methods in the actual UVC interface
as shown in Figure 13, since this is the virtual interface
assigned in the parent verification component (i.e. the UVC
does not know about the SVA encapsulation in a lower level
sub-interface).

interface my_interface;
 ...
 function void set_config(my_config cfg);
 protocol_checker.set_config(cfg);
 endfunction

 function void set_checks_enable(bit en);
 protocol_checker.set_checks_enable(en);
 endfunction
 ...
endinterface

Figure 13. Interface API

C. Using API to Control SVA Configuration
Then we are in a position to set the checker configuration field
values anytime after the build phase is complete and the
virtual interfaces are connected (but before any related signal
activity occurs) - for UVM this is most logically done in the
end_of_elaboration_phase for the associated monitor as
shown in Figure 14.

Note that the monitor has some additional work to do in order
to propagate the configuration settings into the interface via
the virtual interface handle (“vif”).

D. Handling Configuration Changes With API
If the configuration object is not static throughout the run-
phase, but contains some pseudo-static configuration fields
which are updated in response to run-time stimulus, then we
also need to adapt the local configuration fields in the checker
accordingly. With a method API approach, the monitor has
responsibility for calling the corresponding set_config method
in the interface when required.

Note that if the monitor developer forgets to update the SVA
configuration, or does not do it at the right point in time, then
the resulting false assertion failures can be very hard to debug.

class my_monitor extends uvm_monitor;
 my_config cfg;
 bit checks_enable = 1;
 virtual my_interface vif;

 `uvm_component_utils(my_monitor)

function void build_phase(...);
 ...
 // virtual interface must be provided
 if (!uvm_config_db#
 (virtual my_interface)::get
 (this, "", "vif", vif))
 `uvm_fatal(“VIFERR”,
 ”no my_interface vif in db”)

 // config must be provided
 if (!uvm_config_db#(my_config)::get
 (this, "", "cfg", cfg))
 `uvm_fatal(“CFGERR”,
 ”no my_config cfg in db”)

 // checks_enable may be overloaded
 void'(uvm_config_db#(bit)::get
 (this, "",
 "checks_enable", checks_enable));
endfunction

function void end_of_elaboration_phase(..
 ...
 // set interface config after build
 vif.set_config(cfg);
 vif.set_checks_enable(checks_enable);
endfunction
...
endclass

Figure 14. API Use-Case

E. API Summary
The above approach is easy to implement and debug but can
get quite messy if there is a lot of configuration objects,
individual control knobs or many layers of hierarchy to deal
with. In addition it forces the higher-level classes to perform
additional tasks and be aware of the lower-level checker
interface API requirements.

VI. PHASE AWARE CONFIGURATION

A. Automatic SVA Configuration
An alternative approach is to construct the SVA protocol
checker such that the interface is phase-aware and can control
its own settings from the UVM environment with no
additional demands placed on the higher-level classes. This
achieves good encapsulation of the checker and isolation of
related checker requirements.

In Figure 15, the © symbols represent configuration object
fields and control knobs as before, but in this case the SVA
protocol checker automatically updates its own configuration
object based on the actual factory controlled build of the class-
based environment using phase-aware constructs in the
interface. The mechanism for achieving this is discussed in the
following sections.

Figure 15. Automatic SVA Configuration

B. Phase-Aware Interface
The SystemVerilog interface construct is not a UVM phased-
component; however, we can make a class declaration for a
phased-component inside the interface as shown in Figure 16.
Since this class is defined inside the interface it can see all the
member variables of the interface (such as cfg,
cfg_speed_mode and checks_enable). The phase methods for
this embedded class will execute along with other components'
phase methods in the UVC class world since it is derived from
uvm_component.

Note however that since this class is declared inside an
interface and the interface is ultimately instantiated in the
testbench module, then this class forms a top-level component
in the UVM instance hierarchy, under uvm_top, and in parallel
with the main testbench class hierarchy. Normally we rely on
the build_phase working in a top-down manner; this means we
can configure all of the child components in any order and the
current parent environment is completely built before child
components are created. However, the net result of this setup
is that the UVM phases in the two class environments under
uvm_top execute their phases in parallel and this can result in
a race scenario in that the interface class can complete the
build_phase before the associated UVC completes its
build_phase.

import ovm_pkg::*;
import my_pkg::*;

interface my_protocol_checker(...);
...
my_config cfg;
...

class checker_phaser
 extends uvm_component;

 function new(
 string name="",
 ovm_component parent=null
);
 super.new(name, parent);
 endfunction

 function void end_of_elaboration_phase(
 uvm_phase phase
);
 super.end_of_elaboration_phase(phase);

 // config must be provided
 if (!uvm_config_db#(my_config)::get
 (this, "", "cfg", cfg))
 `uvm_fatal(“CFGERR”,
 ”no my_config cfg in db”)

 // checks_enable may be overloaded
 void'(uvm_config_db#(bit)::get
 (this, "",
 "checks_enable", checks_enable));

 // copy required cfg fields
 cfg_speed_mode = cfg.speed_mode;
 cfg_max_value = cfg.max_value;
 cfg_data_en = cfg.data_en;
 endfunction

endclass

// create unique instance of phaser class
// (at the top-level under uvm_top)
checker_phaser m_phase =
 new($psprintf("%m.m_phase"));

...
endinterface

Figure 16. Phase-Aware Protocol Checker

Two possible workarounds for this parallel phasing problem
are available; the first is to configure the database from the
testbench module prior to calling the run_test task (which
starts the UVM phases) – but this is not really a good
encapsulation since we want to control settings from inside
class components not the testbench module. The alternative is
to wait until the class world has completed its build and

connect phases before the protocol checker class updates its
own configuration fields and control flags.

Since each of the top-level build_phases exectue in parallel
and they all complete, albeit in an unspecified order, before
the connect_phase is started in any component, we can choose
to update the configuration after build_phase but before the
time-consuming run_phase (when we need the checks to be
active). A logical solution therefore is to use
end_of_elaboration_phase in the protocol checker class to do
the configuration updates based on any class based
modifications that occurred during the build_phase or
connect_phase of the associated UVC as shown below.

In order to support multiple instances of the associated UVC
and interface, it is necessary to provide a unique name for
each checker_phaser class in the uvm_top structure. This can
be achieved by constructing the checker_phaser class with a
unique name derived from the full hierarchical pathname for
the enclosing interface using the %m format specifier as
shown at the bottom of Figure 16. This also means that any
UVM messages generated by the checker_phaser class have
an accurate hierarchical pathname in the corresponding log
files, which improves debug capability.

C. Controlling SVA Configuration
Since the uvm_component classes inside the checker interfaces
are not inside a parent uvm_component, but are located at the
top-level of the UVM hierarchy, the base-test (or derived
tests) need to increase the scope of the configuration database
lookup strings buy using “null” rather than “this” for the cntxt
parameter when setting configuration object and
checks_enable flags as shown in Figure 17.

uvm_config_db#(my_config)::set
 (null, "*", "cfg", cfg);

uvm_config_db#(bit)::set
 (null, "*m_phase", "checks_enable", 0);

Figure 17. Example uvm_config_db::set

D. Handling Configuration Changes Automatically
If the configuration object is not static throughout the run-
phase, but contains some pseudo-static configuration fields
which are updated in response to run-time stimulus, then we
need to add a process to the protocol checker interface which
automatically detects changes in the configuration class and
updates the local fields accordingly.

Since the configuration object is not yet constructed during
elaboration of the static module code where the interface is
instantiated, it is not possible to monitor the configuration
object, cfg, directly in an always or always_comb construct
(i.e. “always_comb cfg_speed_mode = cfg.speed_mode;”
results in a run-time error). An alternative solution is to
perform a similar operation inside the run_phase task for the

checker_phaser class as shown in Figure 18. Note that since
this code in the checker interface is not part of a concurrent
assertion, it can directly look at the configuration object class
fields to determine if any of the required fields have been
modified and transfer these updates to the local variables for
use in the assertions.

class checker_phaser ...;
 ...
 task run_phase(uvm_phase phase);
 super.run_phase(phase);
 // monitor required cfg for updates
 forever begin
 @(cfg.speed_mode or
 cfg.max_value or
 cfg.data_en)
 begin
 cfg_speed_mode = cfg.speed_mode;
 cfg_max_value = cfg.max_value;
 cfg_data_en = cfg.data_en;
 end
 `uvm_info(“CFGUPDATE”,
 ”cfg update detected”, UVM_LOW)
 end
 endtask
 ...
endclass

Figure 18. Example Run-Time Configuration Snooping

E. Phase-Aware SVA Summary
With this technique no additional external API is required and
the UVM components in the corresponding UVCs do not have
to communicate with the protocol checker directly. In fact the
protocol checker functionality is well encapsulated and hidden
from the class-based components.

VII. CONCLUSION

This paper presented practical suggestions for encapsulating
SVA-based protocol checkers in such a way that they can be
instantiated into the UVM verification component interface
and illustrated some suitable methods to allow the assertions
to be aware of configuration and factory generated values in
the class-based verification component. The techniques
discussed in this paper have been successfully used on several
OVM and UVM projects at different clients and using
different simulation tools. Constructing SVA protocol
checkers using these mechanisms results in much better
software encapsulation for these important checks and
provides no drawbacks over the other ad-hoc methods
observed in operation at clients.

REFERENCES
[1] Universal Verification Methodology (UVM), www.uvmworld.org
[2] SystemVerilog, IEEE Std 1800-2009, www.ieee.org

