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Abstract

This paper describes our efforts to supplement dy-
namic simulation of an Infineon microcontroller
flash memory subsystem with formal verification.
We verify the functional correctness of the er-
ror correction circuits (ECC) and the flash-array
redundancy structures. We use a methodology
involving specific steps, including capturing re-
quirements, formulating assertions, reducing com-
plexity, decomposing properties and executing a
tool. We present in detail each of these steps
and describe how the steps are integrated with a
simulation-based coverage flow.

1 Introduction

In recent years, formal verification [5, 7] has
emerged as means to address the limitations of
simulation: the ability to check only a small frac-
tion of the behaviors of non-trivial hardware de-
signs. Formal verification can be employed to ver-
ify that a given design satisfies a given requirement,
usually captured using industry standard assertion
languages [1, 2] for all legal input patterns. Use
of this approach is on the rise and a substantial
amount of work [8, 9, 11, 12] has been done to char-
acterize the verification problems that are more ap-
propriate for formal verification. As a result, in re-
cent years, more and more companies are deploying
formal verification for components of designs that
are difficult to verify sufficiently with dynamic sim-
ulation [6, 10].

In this paper we discuss a practical approach
to applying formal verification to supplement dy-
namic simulation of a flash-memory subsystem,
specifically to check the functional correctness of
the error correction circuits (ECC) and the flash-
array redundancy structures.

The paper is organized as follows: Section 2 de-
scribes the design under verification and defines the
overall context of our work. Section 3 and Section 4
describe the sub-blocks subject to formal analysis.

Section 5 discusses the achieved results and draws
some conclusions. We close in Section 6 with a
short outlook for future deployment of formal ver-
ification at Infineon.

2 Design Under Verification

The design under verification (DUV) is a flash sub-
system in the Infineon AURIX automotive micro-
controller (see Figure 1). It consists of a flash ana-
log macro and control logic, the Flash Standard
Interface, or FSI. The FSI consists mainly of an
8-bit RISC CPU with its own RAM/ROM, con-
trol and configuration registers, error correction
circuits, and redundancy blocks. The design is
complex and hugely data intensive.

A UVM testbench environment exists for the
DUV. The testbench includes most standard UVM
components like scoreboards, monitors, sequences,
and drivers. The verification plan includes the
different functional requirements of all sub-blocks.
We are using Questa Sim [4] to run the dynamic
verification, capture the coverage results in its Uni-
fied Coverage Database (UCDB), analyze the re-
sults, and track coverage of our verification plan.
We are using Questa Formal [3] for formal verifica-
tion of the DUV.

In the next sections, we will focus on the error
correction circuits (ECC’s) and redundancy blocks.
We will describe their behaviors, traditional func-
tional verification and its limitation and present
our formal verification approach.

3 Error Correction Circuit

ECC’s detect and correct errors introduced during
storage or transmission of data. A given ECC has
two modes of operation: a generation mode, where
it computes the so called error detection code; and
a correction mode, where it uses the error detection
code to detect and correct the error bits.

In this application, the complexity of the block
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Figure 1: Flash Subsystem
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is the major hurdle we are facing in functional
verification using traditional simulation-based ap-
proaches. We have two sources of complexity
here: the first factor is the magnitude of the in-
put data (over 200 bits wide) and the second fac-
tor is the large number of possibilities where bit
corruption could occur. These factors lead to a
huge number of reachable design states. With tra-
ditional simulation-based approach using directed
tests, only a negligible portion of the state space is
covered and the usage of constrained-random sim-
ulation gives only marginally better results. To
achieve complete coverage here, the number of tests
should coincide with the number of all legal input
patterns and thus all these tests could never be
generated or run unless time and money were of no
concern.

This limitation, along with the need to have the
ECC’s fully verified, created a strong incentive for
the use of formal verification. In the remaining
section, we will elaborate on this approach in more
detail.

3.1 Formal Verification of ECC

In our DUV, there are two kinds of error correction
circuits: one circuit is employed for the program
flash (PF-ECC) and a second circuit for the data
flash (DF-ECC). The two ECCs differ in the data-
width, hamming distance and number of error bits
to be detected and corrected. The two perform
the same functionality, but are based on different
algorithms and implementations.

Verifying an ECC is a two-stage process. In the
generation mode, a verification engineer must con-
firm that the computed error detection code co-
incides with the expected code. In the correction
mode, the engineer must confirm that the error de-
tection and correction operations are correct. In
practice, this means verifying that the right bit er-
ror flags are set and that data correction is per-
formed correctly.

Here we focus only on PF-ECC; the approach is
similar for DF-ECC. Setting up the formal verifi-
cation environment was an easy task. We created
a simple SystemVerilog ECC-wrapper that instan-
tiated the ECC, which is in VHDL, and contains
the checkers and modeling layer code. For Questa
Formal no setup was needed as the tool automati-
cally recognizes all clocks, resets, and port domains
without directives. In the next two subsections, we
will describe how we model and prove the verifica-
tion requirements for both modes.

3.2 Verification of ECC Generation
Mode

The implemented ECC generation mode, where we
check for correct generation of error detection code
(ecc code), is based on a reference matrix M that
specifies the expected error detection code. Simpli-
fying small details away, the ecc code satisfies the
following equation

{ecc code, d} = M · d,

where M is a m×n-matrix, and d is an n-width
input data.

The equation above is easily implemented in our
wrapper:

function l o g i c [ n−1:0] r e f mode l ( l o g i c [m−1:0] d ) ;
integer i ;
r e f mode l = 0 ;
for ( i =0; i <= m; i++) begin

r e f mode l = re f mode l xor (d [ i ] ? matrix [ i ] : 0 ) ;
end

return re f mode l ;
endfunction
assign { r e f e c c , r e f d a t a o } = re f mode l ( da t a i ) ;

The correctness check means proving that the er-
ror detection code ref ecc computed by the matrix
coincides with that computed by the ECC. More-
over, as the ECC generates error flags that deter-
mine whether and where bits are corrupted, it is
also important to establish that all error flags are
deasserted. Because the ECC forwards the input
data to the next block without modification in this
mode, we should check that data input and output
are the same.

Modeling these requirements is done using Sys-
temVerilog Assertions (SVA). Figure 2 shows the
complete set of assertions used here. Our approach
is functionally complete. That is, all functional as-
pects of this mode are captured as assertions and
formally proved. Moreover, in contrast to sim-
ulation, which will never be able to fully cover
these requirements, formal verification completes
this verification task within a few seconds. From
a cost-benefit perspective, this application shows
that with minimal setup and resource consumption,
we obtain optimal results.

3.3 Verification of ECC Correction
Mode

Figure 3: ECC Correction Mode
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//Check Error Flags
integer i ;
for ( i =0; i <= c ; i++) begin

c h e c k e r r o r f l a g i s l ow : a s s e r t property ( ! e r r o r f l a g [ i ] ) ;
end
//Check ECC Code and Data I /O
ch e c k c o r r e c t e c c g en : a s s e r t property ( ecc code == r e f e c c ) ;
c h e c k d a t a o i s r e f d a t a o : a s s e r t property ( r e f d a t a o == data o ) ;
c h e c k d a t a i i s g e n d a t a o : a s s e r t property ( data o == da ta i ) ;
c h e c k e r r d e t e c t o i s l ow : a s s e r t property ( ! e r r d e t e c t o ) ;

Figure 2: Assertions for ECC in Generation Mode

assign data ecc code = {data , e cc code } ;
assign buggy data ecc code = {buggy data , buggy ecc code } ;
a s sume in j : assume property ( $countones ( da ta ecc code xor buggy data ecc code ) <= n ) ;

Figure 4: Constraining Number of Bit Errors

In the correction mode, the ECC should detect
and flag corrupted bits, and then perform a correc-
tion of the affected bits. In this mode, our wrapper
contains two instances of ECC and a further mod-
ule to model data corruption and error injection.
Figure 3 displays the structure of our wrapper. The
ECC on the left-hand side is used to generate the
error detection code. The ECC placed on the right-
hand side is used to detect and correct data corrup-
tion. The error injection block is used to modify
the data coming from the first ECC and forward it
in modified form to the next ECC block. In the er-
ror injection module, we use a constraint ensuring
that its output data is the same as its input data,
except for some flipped bits. This constraint is im-
plemented with the assumption given in Figure 4.

The verification requirements in this mode are
very similar to those in the generation mode. The
correction mode has an additional requirement to
check that the ECC is properly correcting the cor-
rupted bits, but the assertions used to verify this
requirement are very similar to those used in the
generation mode.

Capturing the requirements as SystemVerilog as-
sertions is relatively easy, but verifying them via
formal techniques turns out to be difficult. This
should not be surprising as ECCs are not optimal
for model checking. Indeed, though ECCs gener-
ally do a good job of data manipulation, they lack
the regular structure that is usually an indication
of a good candidate for model checking. To achieve
our goal, we decompose large verification tasks into
smaller ones, aiming for sub-tasks with a limited
level of complexity that is manageable for formal
verification.

We used a simple SVA assumption to model
error injection in the ECC. This assumption cap-

tures all the error scenarios: no error is occurring,
one error is occurring, etc. It also implicitly
models all bit positions in data where errors can
be injected. One way to decompose this problem
is to consider each error case separately. Below is
the decomposition scheme for the case where two
errors are injected.

for (p=0; p++; p < DATAWIDTH)
begin
assign buggy data ecc code [ p ] =

(p == pos 1 | | p == pos 2 )?
not data ecc code [ p ]
: da ta ecc code [ p ]

end

where pos 1 and pos 2 are parameters indicating
the positions where the errors are injected. This
decomposition can be seen as explicit assignment
of the number of errors and positions where the er-
rors have to occur. From a technical point of view,
the decomposition reduces a large source of non-
determinism introduced by the assumption used
above.

When formal verification tools run into complex-
ity limitations, users tend to reduce the complexity
of the verification task by analyzing only parts of
the original state space and abstracting a large part
of the state space. In contrast to this approach, our
decomposition strategy was complete in the sense
that we have handled (1) all the error cases, (2)
all possible error positions, and (3) all verification
requirements.

The decomposition results in a larger number
of verification tasks of substantially smaller com-
plexity. We used Questa Verification Run Manager
(VRM) [4] to organize and manage all these formal
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Figure 5: Verification Run Manager for Running Formal Multiple Runs

verification tasks. The greatest benefit from us-
ing VRM is the ability to launch multiple runs in
parallel on a grid system, monitor progress, and au-
tomatically collect the results with minimal setup.
Figure 5 shows the selected tasks to run in VRM:
FORMAL REGRESSION is the regression name
and consists of sub-tasks: gen correct code stands
for the generation mode, case 0 stands for cor-
rection mode where no errors are injected, case 1
stands for correction mode where one error is in-
jected, etc.

4 Bitline Redundancy

Redundancy is used to improve the yield of the
flash component. With additional redundant bit-
lines, whole bitlines can be replaced if they are de-
fective. There is a configuration register in the re-
dundancy bank (redbank) for each redundant bit-
line per sector. Each configuration register con-
tains information about (1) whether the bitline is
already defective, (2) whether it is in use, and (3)
the address of the defective bitline. Depending on
the value of the configuration register, a redundant
bitline can replace any defective bitline using a re-
dundancy multiplexer. When the flash is accessed,
the data bits are correctly assembled using the re-

dundancy multiplexer and taken from initial posi-
tions or from redundant bitlines depending on the
configuration in the redbank.

The register bank information can be written
only through the CPU, which negatively impacts
the simulation of the redundancy structure. Nor-
mally, the value of redundancy registers is set only
once during start-up. For the sake of verification,
we should consider different register values, thus
the importance of being able to change these val-
ues on the fly during simulation. To do so, special
CPU microcode is needed to reach high levels of
coverage for the registers. Moreover, verifying all
writes to the flash subsystem requires additional
simulation time, since writing to flash memory is
generally time consuming.

4.1 Formal Verification of Redun-
dancy Structure

Verifying redundancy structures requires checking
that the redundancy mapping is centrally disabled,
that all configuration registers are accessible for
read and write, and that the scrambling is happen-
ing according to the specification (i.e., that output
data is a scrambled form of the input data depend-
ing on the register values). Our challenge, which we
addressed using a customized assertion generator,
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was to independently prove the correct behavior for
each redundant structure.

For disabling the redundancy mapping, we have
to ensure that if the disable signal is active, then
the flash data input and output are identical. This
is realized with following simple assertion:

ch e c k d i s ab l i n g r ed :
a s s e r t property ( d i s a b l e i |−>

f d a t a i == fda ta o ) ;

For register write operation, we have to ensure
that the information in the redbank (defective ad-
dress, usage, fail) is correctly updated within one
clock cycle. Conversely, we should ensure that in-
formation update is always preceded by a writing
operation. For the read operation, we have to en-
sure that the output data contains the same in-
formation as the redbank. Figure 6 displays the
assertions used for these two operations.

In checking the scrambling, we use a nested ”for”
loop to generate the assertions addressing the cor-
rectness for each page. Five assertions are gener-
ated for each page, describing the scrambling be-
havior in both directions. The variables in these
assertions are the page number and the physical
sector number. Figure 7 summarizes these asser-
tions written in pseudo SVA code.

We write our assertions in a separate SystemVer-
ilog checker that is bound via SystemVerilog bind
command to the design, which is in VHDL. Bind-
ing SystemVerilog modules to VHDL designs is
well supported in Questa Formal. Using bind,
we are able to access all internal signals includ-
ing those signals with complex user-defined types.
The VHDL packages were made available to Sys-
temVerilog via the shared package support that our
formal verification tool provides.

Questa Formal ran on all redundancy checking
assertions (340 in total) and completed its run
within five hours using about 8G memory space
on a 64-bit 2.7 GHz RHEL machine.

Block-level functional verification can be ex-
ported to the same unified coverage database used
by simulation for tracking the coverage results. At
Infineon one of our objectives is to merge results in-
cluding coverage across all verification engines used
for IP/Block level verification and then track our
overall coverage automatically against our verifi-
cation plan. The UCDB in the Questa platform
provides such a capability.

4.2 Back-annotation of Formal Re-
sults in the Verification Plan

The redundancy verification requirements are in-
cluded in the flash subsystem verification plan,

which contains a section for the three redundancy
verification items previously discussed. Each item
is linked to a set of appropriate assertions. The ver-
ification plan itself resides in a collection of word
processing and spreadsheet documents, and once
created it can be imported into Questa Sim’s Uni-
fied Coverage Database (UCDB). In addition to
the verification plan, the UCDB is used to save all
coverage-related metrics (including code coverage,
functional coverage, and assertion data) as well as
formal coverage (created using Questa Formal) and
additional test and user metrics. Once imported,
the verification plan UCDB can be merged with the
simulation coverage data to allow the user to see
their verification plan items alongside their actual
coverage data. Our formal verification tool pro-
vides a utility that exports its results into a UCDB
file that can later be merged with other UCDBs
created by other tools/methodologies.

As stated before, all the redundancy checking
assertions are formally proved. We then run the
Formal export utility and obtained a UCDB which
we merge with our verification plan. The content
of the resulting UCDB is shown in Figure 8 and
there we can see that all the three verification re-
quirements are completely covered. Note that the
resulting UCDB does not contain simulation cover-
age data, which can be incrementally merged once
it is available.

Note that an important remark concerning the
validity of combining verification results from dif-
ferent tools should be made here. In our case, the
assertions of the redundancy block are proven in
a constraint-free context. That is, no input as-
sumptions are used. Therefore, these assertions
will remain valid if we add constraints to the proof
context. That means constraints coming from the
flash-subsystem and also added through wiring of
this block in the flash-subsystem will not change
the validity of these assertions. However, the proofs
of these assertions can become vacuous. Thus, we
can skip the verification of the functionality of the
redundancy block at the flash-subsystem but we
still must check in some sense that the redundancy
block is correctly driven.

5 Conclusion

The formal verification of the ECC showed that
today’s model checking tools make it easier than
ever to use this technique, which in the past was
seen as needlessly complex. We completely cap-
tured the functional requirements with assertions
and completed full proofs, a major step towards
higher design quality. Using a simulation-based ap-
proach for the ECC will cover only a small portion
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property prop1 ( a ) ;
i n t x , y ;
( wr red i , x=addr red , y=d t a r e d i s ) |=> a [ x]==y ;

endproperty

check rw A 1 : a s s e r t property ( prop1 ( addr array ) ) ;
check rw A 2 : a s s e r t property ( prop1 ( f a i l s ) ) ;
check rw A 3 : a s s e r t property ( prop1 ( used ) ) ;

check rw B 1 : a s s e r t property (##1 ! $ s t ab l e ( redb )
|−> redb [ $past ( redb addr ) ] . f a i l e ) == $past ( r edb i [ J ] )

&& redb [ $past ( redb addr ) ] . used e ) == $past ( r edb i [ I ] )
&& redb [ $past ( redb addr ) ] . addr e ) == $past ( r edb i [K: 0 ] ) ) ;

check rw B 2 : a s s e r t property ( ! w r r ed i |=> $ s t ab l e ( redb ) ) ;

check rw C 1 : a s s e r t property ( redb o [K: 0 ] == redb [ redb addr ] . addr e ) ;
check rw C 2 : a s s e r t property ( redb o [ J ] == redb [ redb addr ] . f a i l e ) ;
check rw C 3 : a s s e r t property ( redb o [ I ] == redb [ redb addr ] . used e ) ;

Figure 6: Assertion Set for Register Read and Write Operations

for every s e c t o r
for every page in a word l ine
Assert :
IF (RD REG[ page ] . used and not RD REG[ page ] . f a i l )

and (Redundancy s t r u c tu r e used and not d e f e c t )
and ( other s t r u c t u r e s are d e f e c t or not used )

THEN rep l a c e RD REG[ page ] . addr by the redundant l i n e and a l l o the r s are passed
through

Assert :
IF ( no red used or red d e f e c t )
THEN ( data passed through )

Assert :
IF (more than one red used and addr to change d i f f e r e n t )
THEN rep l a c e RD REG[ page ] . addr by the redundant l i n e and a l l o the r s are passed

through

Assert :
IF (more than one red used and same addr to change )
THEN rep l a c e RD REG[ p r i o h i gh ] [ page ] . addr by the redundant l i n e and a l l o the r s are

passed through

Figure 7: Assertion Set for Correct scrambling

Figure 8: Formal Results Merged with Verification Plan in Questa’s Verification Tracker Window
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of the state space and consume a lot of run time.
One other important benefit is that during the

proof process the tool generated counter-examples
several times. Our debugging activities and close
work with the designer showed that the assertion
failures were due to specification ambiguities. That
is, the ECC proof process was also a means to clar-
ify and eliminate ambiguities from the specification
and enable a dialog between the design and veri-
fication teams to better understand system func-
tionality.

There are three main conclusions from this for-
mal verification pilot: First, formal verification en-
abled complete verification of a block, whereas sim-
ulation would only have yielded a fraction of the
coverage. Second, we saved time not only in run-
ning simulations but also in developing and debug-
ging specific assembler codes used by the CPU to
test the redundancy structures. Third, we showed
how formal verification and simulation can be seen
as complementary methodologies. Formal results
can be exported to a coverage database and such
results can be back-annotated to the verification
plan. The same verification plan is used by the sim-
ulator to back-annotate the simulation results. Ul-
timately, coverage computed by different method-
ologies is merged in one single coverage database.

6 Future Work

The formal verification approach presented in this
paper showed very promising results. This moti-
vated us to plan further formal verification tasks
in our department. In particular, we are planning
to formally analyze a sensitive CPU-interrupt han-
dler. We also are planning to extend our applica-
tion to SoC interconnectivity verification.
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