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Abstract— Technology advances allows for the creation of 

larger and more complex designs. This poses new challenges, 

including efforts to balance verification completeness with 

minimization of overall verification effort and cycle time. It is 

practically impossible to enumerate all of the conditions and 

states to do an exhaustive test. Therefore, it is imperative to use 

well defined criteria to measure and check when the verification 

is sufficiently complete and meets a reasonable quality 

threshold. Code coverage is a popular measure of design quality. 

This paper focuses on expression coverage, which is one of the 

most complex and least understood types of code coverage, and 

discusses ‘Rapid Expression Coverage’ (REC), which is a new 

metric for expression coverage, while comparing it with some 

popular metrics being used to evaluate expression coverage in 

the industry today. Even though this paper describes REC in 

context of code coverage of designs, these same techniques could 

also be applied to coverage tools for software languages like C, 

C++, or Java. 

I. INTRODUCTION 

Code coverage is a popular measure of design quality and 
verification completeness. It has low setup cost and analysis is 
straightforward, which makes it a high ROI component of 
most modern verification methodologies. Expression coverage 
is one of the most complex and least understood types of code 
coverage. The main question verification engineers need to 
answer regarding expression coverage is: 

“There are 2
N
 possible input vectors for my N-input 

expression. I saw a subset of this large number during 
simulation. How well is my expression tested?” 

A variety of metrics are available to help answer this 
question. Metrics distill the data to a meaningful numeric 
value that can be analyzed and improved. There are brute 
force metrics like the sum-of-products and truth table analysis. 
These require a large number of test vectors for the expression 
to be covered. Then there are smarter metrics like Focused 
Expression Coverage, which is a form of Modified 
Condition/Decision Coverage (MC/DC).  These metrics allow 
an expression to be fully covered with just 2xN input vectors. 

Most expression coverage metrics are based on truth table 
implementations, and therefore suffer from capacity 
limitations due to exponential complexity. 

REC is based on partitioning an expression into sub-
expressions to derive non-masking conditions, while operating 
at linear complexity and providing MC/DC-compliant results. 
This allows any arbitrarily large expression to be considered 
for coverage, while providing simple and easy to understand 
reports. 

The basis of REC is that an expression input must not be 
masked by the values of other inputs at the time of coverage 
collection. For example, ‘b’ must be ‘1’ while measuring the 
coverage of 'a' in 'a && b'. If 'b' is 0, the result of the 
expression gets fixed to '0' and the value of 'a' is not of any 
significance. The ‘1’ state of ‘b’ is called its non-masking 
state, and the associated condition is called the non-masking 
condition. 

As REC collects coverage, it ensures that the input being 
covered has taken both '0' and '1' states while an appropriate 
non-masking condition is satisfied. An expression is 
considered covered when all its inputs have been 
independently covered. 

The following sections go into the details of partitioning 
an expression to derive non-masking conditions, the effect of 
short-circuiting, considerations for duplicate input terminals, 
inverting vs. non-inverting input modes, and uni-modal versus 
bi-modal expression considerations. 

The results of performance benchmarks show REC has 
higher performance with similar level of comprehensiveness 
in expression coverage as compared to existing 
implementations. These results are presented towards the end 
of the paper. 

II. EXPRESSION COVERAGE 

Expression coverage measures coverage statistics for 
expressions and conditions. The fundamental output of the 
expressions considered for expression coverage should be a 
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single-bit value. Input terminals can be vectors, as long as they 
are part of a sub-expression that results in a single-bit value. 
Consider the following expression as an example: 

((a > b) && (c == 130))           (1) 

Expression “(1)” may be considered for expression 
coverage with (a > b) and (c == 130) as its two input 
terminals. 

For each expression, a set of cases are identified, each case 
specifying how parts of the expression must take on particular 
values. Expression coverage then considers whether a 
simulation exercises each case of the expression. An 
expression is considered fully covered when all of the 
individual expression coverage cases are exercised. 

Several metrics can be used for expression coverage. Some 
of the popular ones are listed below. 

A. SOP Metric 

Sum-of-Products (SOP) checks that each set of inputs that 
satisfies the expression (results in a ‘1’) must be exercised at 
least once, but not necessarily independently. It does not check 
the sets of inputs that results in the expression being evaluated 
to ‘0’. 

B. UDP Metric 

The term UDP is borrowed from the Verilog language, 
which uses the same basic table format to model user-defined 
primitives. A UDP table describes the full range of behavior 
for a given expression. If the conditions described by a row 
are observed during simulation, that row is said to be hit. All 
rows in the UDP table must be hit for UDP coverage to reach 
100%. Row minimization is attempted by use of wildcard 
matches. 

C. MC/DC Metric 

Modified Condition/Decision Coverage (MC/DC) is a 
popular metric for expression coverage [3]. It is also the basis 
of some of the other metrics, like FEC. The formal definition 
of MC/DC as defined by DO-178B is: “Every point of entry 
and exit in the program has been invoked at least once, every 
condition in a decision has taken all possible outcomes at least 
once, every decision in the program has taken all possible 
outcomes at least once, and each condition in a decision has 
been shown to independently affect that decisions outcome. A 
condition is shown to independently affect a decisions 
outcome by varying just that condition while holding fixed all 
other possible conditions. [1]” 

Modified Condition/Decision Coverage (MC/DC), is a 
code coverage metric often used by the DO-178B safety 
critical software certification standard, as well as the DO-254 
formal airborne electronic hardware certification standard.  

D. FEC Metric 

Focused Expression Coverage (FEC) is a row based 
coverage metric which emphasizes the contribution of each 
expression input to the expression’s output value. FEC 
measures coverage for each input of an expression. If all 
inputs are fully covered, the expression has reached 100% 

FEC coverage. In FEC, an input is considered covered only 
when other inputs are in their quiescent states, i.e. a state that 
allows the target input to control the output of the expression. 
Further, the output must be seen in both 0 and 1 state while the 
target input is controlling it. If these conditions occur, the 
input is said to be fully covered. The final FEC coverage 
number is the number of fully covered inputs divided by the 
total number of inputs. FEC is fully compliant with the 
MC/DC coverage metric and can safely be used in a strict 
MC/DC compliance environment. 

III. RAPID EXPRESSION COVERAGE 

UDP coverage is very strongly based on the truth table. 
Covering an expression 100% requires hitting each row in the 
table at least once. In the worst case, when none of the rows 
can be merged, UDP requires 2

N
 input vectors to fully cover 

an expression with N input terminals. FEC reduces 
verification effort by only requiring 2xN input vectors in the 
worst case to fully cover the same expression. This helps 
verification engineers achieve 100% coverage faster, but it 
doesn’t make the tool implementation any easier. FEC is still 
based on the truth table, which makes it exponential with 
respect to the number of input terminals in the expression. It is 
clearly desirable to move towards constant time and linear 
complexity solutions. So let’s think, can we come up with a 
better metric that uses the power of FEC to cover an 
expression using only 2xN input vectors, while still being able 
to provide a linear complexity solution with respect to the 
number of input terminals? REC [2] is one such metric. Like 
FEC, REC is also fully compliant with the MC/DC coverage 
metric and can safely be used in a strict MC/DC compliance 
environment. 

 

A. Expression Modes 

There are two modes in which an input of an expression 
can be operating. These are called inverting mode and non-
inverting mode. 

When setting the value of an input to '0' (or '1'), with all 
other inputs of the expression in their quiescent states, and the 
expression evaluates to '1' (or '0'), the input is said to be 
operating in an inverting mode. On the other hand, when 
setting the value of an input to '1' (or '0'), with all other inputs 
of the expression in their quiescent states, and the expression 
evaluates to '1' (or '0'), the input is said to be operating in a 
non-inverting mode. 

Based on the modes of its inputs, an expression can be 
classified as either uni-modal or bi-modal. An expression 
whose inputs only ever operate in one mode, either inverting 
or non-inverting, is called a uni-modal expression. On the 
other hand, if an expression has at least one input operating in 
both inverting and non-inverting modes, it is called a bi-modal 
expression. 

The simplest example of a uni-modal expression is a two-
input 'AND' gate. 

a && b     (2) 
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TABLE I.  TRUTH TABLE OF AND GATE WITH TARGETS 

a b a && b Target 

0 0 0 -- 

0 1 0 a_0* 

1 0 0 b_0 

1 1 1 a_1, b_1 

* The target of a_0 indicates that this row delivers FEC 
testing when a's value is 0. 

 

In “Table I” for expression “(2)”, a_0 evaluates the 
expression to '0' and a_1 evaluates it to '1'. Similarly, b_0 
evaluates the expression to '0' and b_1 evaluates it to '1'. 
Therefore expression “(2)” is a uni-modal expression with all 
its inputs operating in non-inverting mode. 

Now consider a two-input XOR gate. 

a ^ b     (3) 

TABLE II.  TRUTH TABLE OF XOR GATE WITH TARGETS 

a b a ^ b Target 

0 0 0 a_0, b_0 

0 1 1 a_0, b_1 

1 0 1 a_1, b_0 

1 1 0 a_1, b_1 

 

In “Table II” for expression “(3)”, a_0 evaluates the 
expression to both '0' and '1'. Similarly a_1, b_0, and b_1 also 
evaluate the expression to both ‘0’ and ‘1’. Therefore 
expression “(3)” is a bi-modal expression, with both its inputs 
operating in both inverting and non-inverting modes. 

B. Theory 

Every expression, however complex it may be, can be 
broken down into N smaller expressions consisting of only 
one operator each, where N is the number of operators in the 
expression. We call these expressions 'basic expressions'. 
Consider the following expression: 

a && b && c && d   (4) 

The ‘&&’ operator groups from left-to-right, therefore 
expression “(4)” can be represented as: 

a && (b && (c && d))   (5) 

Expression “(5)” can be broken down into 3 basic 
expressions, defined as: 

a && EXPR1     (6) 

b && EXPR2     (7) 

c && EXPR3    (8) 

Where EXPR1 is ‘b && (c && d)’, EXPR2 is ‘c && d’, 
and EXPR3 is ‘d’. Figure 1 shows the expression tree of “(4)”, 
and highlights its 3 basic expressions. 

 

 

Figure 1.  Expression Tree of “(3)” Highlighting Its Basic Expressions 

If we work on the truth table of the whole expression, 
complexity increases exponentially as the expression becomes 
bigger. Consider the case of a 6 input XOR expression. It has 
2

6
 = 64 rows in its truth table. Adding one more input to this 

expression increases the number of rows to 2
7
 = 128 rows. 

Adding additional inputs exponentially increases the number 
of rows, for example a 16 input XOR will consume 65536 
rows. Now imagine maintaining a table with all these rows 
during simulation, and matching all input vectors with rows in 
this table. This is what exponential complexity metrics like 
UDP and FEC do. 

On the other hand, if we work on basic expressions, the 
complexity of the solution increases linearly as the expression 
becomes bigger. A 6-input XOR expression can be broken 
down into 5 basic XOR expressions. If we add one more input 
to this expression, the expression can be broken down into 6 
basic expressions. If we add one more input, the expression 
can be broken down into 7 basic expressions. 

When working on any input in an expression, it is 
important that the input must not be masked by the other input 
because of its value. For example, if we want to measure 
coverage of 'a' in 'a && b', it is important that the value of 'b' 
is '1'. If 'b' is 0, the result of the expression gets fixed to '0' and 
the value of 'a' is no longer of any significance. Also, since the 
expression is evaluated left-to-right in the presence of short-
circuiting, it is correct to only look at the right side of the 
concerned input. The effect of short-circuiting and non-short-
circuit operators is discussed in more detail later in the paper. 
The assumption is that if we're evaluating the concerned input, 
it means that its left side is already in a non-masking state. For 
example, if we're evaluating 'b' in 'a && b && c', it means that 
'a' was already evaluated to '1'. 

Note that the terminology, ‘left side of the input’, and 
‘right side of the input’, is being used to make the theory 
easier to understand. The same theory can be extended to an 
expression tree as well. 

&& 

a && 

b && 

c d 

EXPR1 

EXPR2 

EXPR3 
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“Table III” lists operators with non-masking states of 
inputs. Note that the coverage of 'A' is being collected in the 
expression in the table. 

TABLE III.  OPERATORS WITH THEIR NON-MASKING STATES 

Operator Expression Non Masking State 

NOT NOT A N/A 

OR 
A OR B B = 0 

B OR A B = 0 

NOR 
A NOR B B = 0 

B NOR A B = 0 

AND 
A AND B B = 1 

B AND A B = 1 

NAND 
A NAND B B = 1 

B NAND A B = 1 

XOR 
A XOR B B = 0, B = 1 

B XOR A B = 0, B = 1 

XNOR 
A XNOR B B = 0, B = 1 

B XNOR A B = 0, B = 1 

TERNARY 
(COND)? A:B COND = 1, B is non-masking 

(COND)? B:A COND = 0, B is non-masking 

 

C. Algorithm 

Start by breaking the expression into basic expressions. 
Once a basic expression has been identified, only work on the 
basic expression, and don't care about the actual complex 
expression (divide-and-conquer). 

At the time of coverage collection, make sure the input 
being covered has taken both '0' and '1' states when the other 
input of the expression is in a non-masking state. Note that 
we're only looking at the value of the other input in the basic 
expression, and not inputs of the expression. A truth table 
lookup is not required. In fact, a truth table itself is not 
required to be created or stored at any time. 

An input will be fully REC covered if it has taken both 0 
and 1 values during simulation, in a state where the other input 
in its basic expression has a non-masking value. In case of 
XOR, the value of the other input of the expression must be 
the same in both collections. This ensures that both collections 
are made when the input is active in the same mode (inverting 
or non-inverting). An expression is considered fully REC 
covered when all the inputs of the expression have been 
independently covered. 

An interesting implementation aspect of the REC 
algorithm is that it can be woven directly into the machine 
code generated by the compiler. Since there are no alternative 
evaluation mechanisms such as truth tables, fidelity with the 
primary evaluation engine is a non-issue. Furthermore, 

performance is optimal when only light additions of machine 
code are required to observe and collect coverage. 

 

D. Non-Short-Circuit Operators 

Since expressions are always evaluated left-to-right, short-
circuiting enables us to assume that if an input is being 
evaluated during expression evaluation, the LHS of the input 
is already in a non-masking state. It is the responsibility of the 
implementation to ensure that LHS of the input is in a non-
masking state when an operator doesn't short-circuit. 

REC can be made to work together with non-short-
circuiting operators using the following algorithm: 

• Initialize the LHS_MASKED flag to 0. 

• Don't change this flag while evaluating a short-circuit 
operator. 

• In case of a non-short-circuiting operator, set this flag 
to 1 while evaluating the right operand (expression 
tree of right operand) if the value of the left operand 
masks the value of the right operand. i.e. set the flag 
to 1 while evaluating 'b' if 'a' evaluates to '0' in 'a & b'. 

• While collecting REC for an input make sure that in 
addition to the masking expression being in the non-
masking state, LHS_MASKED flag is also 0. 

The effect of masking due to non-short-circuiting will be 
propagated to all inputs in the sub-expression being masked 
from left-to-right. 

 

E. Duplicate Inputs 

Special handling is required when an expression contains 
one or more inputs that have more than one occurrence in the 
expression. There are four ways in which REC handles 
duplicate inputs. 

1) Relaxed 
When there are duplicate inputs in the expression, the 

input will be considered covered if any of its occurrences is 
covered. While considering an input 100% REC covered, we'll 
not enforce that both _1 and _0 hits occur for the same 
occurrence of the input. Mixing hits from different 
occurrences will be allowed. I.e. even if _0 is hit for the first 
occurrence of an input in the expression and _1 is hit for the 
second occurrence of that input in the expression, the input 
will be considered covered. 

For example, consider the following expression: 

(a & b) | (c & a)    (9) 

There are two occurrences of 'a' in the above expression. 
Let's call them a{1} and a{2}. Even if a_0 is hit for a{1}, and 
a_1 is hit for a{2}, as shown in Figure 2, we will consider 
input 'a' REC covered. 
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Figure 2.  An Example of Relaxed Collection for expression “(9)” 

 We collect REC for a duplicate input in the same way as 
any other input. The masking expression needs to be in the 
non-masking state, and the LHS_MASKED flag needs to be 
taken into consideration for each input individually to make 
sure it is not masked due to non-short-circuit operators in the 
expression. There will be cases where the masking expression 
of an occurrence of an input terminal contains another 
occurrence of the same input terminal. There will only be one 
set of counters corresponding to the input terminal. All 
occurrences of the input will increment the same set of 
counters. 

This mode of collection can help a verification engineer 
achieve 100% coverage faster, but it will not be as 
comprehensive as the other approaches listed below. 

2) Strict 
In the strict approach, we ensure that when REC is 

collected for an input, all its occurrences in the expression are 
simultaneously controlling the output of the expression. This 
is a stricter criterion than relaxed, and may not be suitable for 
all expressions. There may be cases when all occurrences of 
an input can never control the output of the expression 
simultaneously. It also makes coverage of the input more 
difficult as it reduces the set of input vectors that can cover it. 

In Strict mode, REC for a duplicate input should be 
collected only when all the following conditions are met: 

• None of the duplicate inputs is masked in the 
expression. 

• The LHS_MASKED flag is taken into consideration 
for each input individually to make sure it is not 
masked due to non-short-circuit operators in the 
expression. 

• The masking expression of the last occurrence of the 
input in the expression is in a non-masking state. 

For example, consider the following expression: 

a && (b && (c || (d && (a || (e && f)))))   (10) 

There are two occurrences of 'a' in the above expression. 
Let's call them a{1} and a{2}. There are no non-short-circuit 
operators, so LHS_MASKED flag will always be 0. We 
should collect coverage for 'a' if both a{1} and a{2} are 
reached during expression evaluation, and the masking 
expression for a{2} i.e. (e && f) is in its non-masking state of 
0. This will happen when the value of ‘a’ is ‘1’, ‘b’ is ‘1’, ‘c’ 
is ‘0’, ‘d’ is ‘1’, ‘e’ is ‘1’, and ‘f’ is ‘1’. 

3) Balanced 
When there are duplicate inputs in the expression, an input 

is considered covered if all its occurrences have been 
independently covered. While considering an occurrence of an 
input REC covered, the implementation enforces that both _1 
and _0 hits occur for the same occurrence. Mixing hits from 
different occurrences is not allowed. 

Each occurrence of an input in the expression should have 
its own set of counters, and coverage should be collected for 
each occurrence of an input independently, in the same way as 
any other input. The masking expression needs to be in the 
non-masking state, and the LHS_MASKED flag needs to be 
taken into consideration for each input individually to make 
sure it is not masked due to non-short-circuit operators in the 
expression. An occurrence of an input should increment only 
the counters associated with it. Each occurrence of an input is 
reported independently in the REC report, as if it was a 
distinct input. 

In expression “(10)”, a{1} will have ‘_0' and '_1' counters 
for it, and a{2} will have its own set of '_0' and '_1' counters. 
Input 'a' will be considered covered when both a{1} and a{2} 
have been independently covered. This will happen when all 
four counters have non-zero counts. 

4) Relaxed Balanced 
This approach combines the balanced and relaxed 

approaches to create a 'relaxed balanced' approach. Each 
occurrence of an input has its own set of counters. They are 
collected and maintained in the same way as balanced 
approach described above. However, an input will be 
considered REC covered when any one of its occurrences is 
covered. Unlike the balanced approach, it is not required to 
cover every occurrence of the input. On the other hand, unlike 
the relaxed approach, both the _0 and _1 hits need to come 
from the same occurrence of the input. 

In expression “(10)”, a{1} will have ‘_0' and '_1' counters 
for it, and a{2} will have its own set of '_0' and '_1' counters. 
Input 'a' will be considered covered when either a{1}, or a{2}, 
or both have been independently covered. 

Figure 3 shows how the four methods compare with each 
other with respect to comprehensiveness of coverage and the 
ease of achieving 100% coverage. Method strict provides very 
comprehensive coverage, but requires a very precise set of 
input vectors, which makes it difficult to achieve 100% 
coverage. On the other hand, method relaxed may not provide 
as comprehensive coverage, but it makes it very easy to 
achieve 100% coverage. Method balanced also provides 
comprehensive coverage, but requires more effort to 100% 
cover the expression because each duplicate input must be 
covered independently. 

AND 

AND 

 

OR 

a 

b 

c 

a_0 

1 

0 

0 

0 

AND 

AND 

 

OR 

a 

b 

c 

a_1 

0 

1 

1 

1 

First occurrence of ‘a’ is 

controlling the output 

 

Second occurrence of ‘a’ is 

controlling the output 
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Figure 3.  Comparison of Four Ways Of Handling Duplicate Inputs 

F. Comprehensive Bi-modal Analysis 

A bi-modal expression is considered covered if the target 
input controls the output to different values while remaining in 
the same bi-modal state (i.e. either inverting mode or non-
inverting mode). 

An expression can be bi-modal without the presence the 
XOR operator. To do a comprehensive analysis of such 
expressions, the output value of the expression should be 
taken into consideration while collecting REC. An input 
should be considered REC covered only when it has been 
observed in both '0' and '1' states during simulation with both 
these states resulting in different output values of the 
expression. This condition on the output should be in addition 
to all other conditions required for REC collection. 

 

Figure 4.  Sample Coverage Report with non-XOR Bi-Modal Expression 

Either a deeper analysis of the expression can be done to 
determine the modes of all inputs, or the mode can be 
automatically switched to bi-modal REC after identifying 
certain characteristics of the bi-modal expression, like the 
presence of XOR, or duplicate terminals working in different 
modes, etc. If a uni-modal expression is falsely classified as 
bi-modal, even though the coverage percentages will remain 
unchanged, bi-modal reports are more difficult to understand 
than uni-modal reports, and need more processing. 

IV. PERFORMANCE BENCHMARKS 

We created our own small tests to do some benchmarking, 
and found that as expected after converting an exponential 
algorithm to a linear algorithm, the performance gain increases 
significantly as the size of the expression increases.  

In real world tests, an interesting effect tends to occur 
when the implementation shifts to a non-truth-table-based 
algorithm like REC. As a result of REC’s ability to handle any 
expression, substantially more expressions are coverable than 
with other approaches. In addition, the newly coverable 
expressions tend to be the largest and most complex in the 
design. As a result, REC’s performance gains tend to be offset 
by the fact that it covers more expressions. 

Here are some results of our benchmarks: 

TABLE IV.  RESULTS OF BENCHMARK ON SMALL TESTS 

Expression FEC Sim Time REC Sim Time Ratio 

3-input AND 25.1536 21.2093 1.18x Faster 

6-input XOR 41.5346 33.9541 1.22x Faster 

7-input XOR 63.1399 29.4898 2.14x Faster 

8-input XOR 113.843 27.1377 4.19x Faster 

9-input XOR 243.015 32.458 7.49x Faster 

11-input XOR 1215.68 37.1395 32.8x Faster 

 

V. CONCLUSION 

Existing expression coverage metrics are based on truth 
table, and this makes them exponential in nature. This is the 
main reason why they suffer from performance and capacity 
limitations. But metrics like MC/DC and FEC are a boon for 
verification engineers who can use them to cover their 
complex expressions using only 2xN input vectors. REC 
brings in the core principals of MC/DC that give it this 
advantage, and works on basic expressions rather than the 
truth table, to give it the power of FEC while being linear in 
complexity with respect to the number of inputs in the 
expression. This helps it achieve tremendous gains in 
performance and capacity, as we’ve seen in our benchmarks. 
We saw that there is a more than 3X slowdown due to FEC 
when handling an 11 input XOR expression in a testcase. This 
is because FEC generated a 2048 row truth table for that XOR. 
A truth table also puts a restriction on the size of the 
expression because it blows up quickly for large expressions. 
REC is linear in complexity, and doesn't require a truth table. 
This helps it handle any arbitrarily large expression for 
expression coverage. 
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# ----------------Rapid Expression View----------------- 
# Line       23 Item    1 assign DO = (!IT1 && IT2) || (IT1 && IT4); 
# Expression totals: 1 of 3 input terms covered = 33.33% 
#  
#   Input Term    Covered     Hint 
#   --------------     -----------     ------------------------------ 
#               IT1               Y 
#               IT2               N     Hit '_0' and '_1' for different outputs 
#               IT4               N     Hit '_0' and '_1' for different outputs 
#  
#    Rows:  Hits(0)  Hits(1)  Target      Masking Expression 
# ----------     -------  ---------  ---------     ------------------------------------------------ 
#  Row   1:         1           0    IT1_0     {(IT2=1) && (IT1 && IT4)=0} OR (IT4=1) 
#  Row   2:         0           1    IT1_1     {(IT2=1) && (IT1 && IT4)=0} OR (IT4=1) 
#  Row   3:         0           0    IT2_0     (IT1 && IT4)=0 
#  Row   4:         0           0    IT2_1     (IT1 && IT4)=0        
#  Row   5:         0           0    IT4_0     IT1=1 
#  Row   6:         0           0    IT4_1     IT1=1 

Strict 

Balanced 

Relaxed 

Relaxed Balanced 

Ease of Achieving 100% Coverage 

Comprehensiveness of Coverage 


