
Supercharge Your Verification Using Rapid Expression

Coverage as the Basis of a MC/DC-Compliant

Coverage Methodology

Gaurav Kumar Verma
Mentor Graphics Corporation

Fremont, CA (USA)

gaurav-kumar_verma@mentor.com

Doug Warmke
Mentor Graphics Corporation

Fremont, CA (USA)

doug_warmke@mentor.com

Abstract— Technology advances allows for the creation of

larger and more complex designs. This poses new challenges,

including efforts to balance verification completeness with

minimization of overall verification effort and cycle time. It is

practically impossible to enumerate all of the conditions and

states to do an exhaustive test. Therefore, it is imperative to use

well defined criteria to measure and check when the verification

is sufficiently complete and meets a reasonable quality

threshold. Code coverage is a popular measure of design quality.

This paper focuses on expression coverage, which is one of the

most complex and least understood types of code coverage, and

discusses ‘Rapid Expression Coverage’ (REC), which is a new

metric for expression coverage, while comparing it with some

popular metrics being used to evaluate expression coverage in

the industry today. Even though this paper describes REC in

context of code coverage of designs, these same techniques could

also be applied to coverage tools for software languages like C,

C++, or Java.

I. INTRODUCTION

Code coverage is a popular measure of design quality and
verification completeness. It has low setup cost and analysis is
straightforward, which makes it a high ROI component of
most modern verification methodologies. Expression coverage
is one of the most complex and least understood types of code
coverage. The main question verification engineers need to
answer regarding expression coverage is:

“There are 2
N
 possible input vectors for my N-input

expression. I saw a subset of this large number during
simulation. How well is my expression tested?”

A variety of metrics are available to help answer this
question. Metrics distill the data to a meaningful numeric
value that can be analyzed and improved. There are brute
force metrics like the sum-of-products and truth table analysis.
These require a large number of test vectors for the expression
to be covered. Then there are smarter metrics like Focused
Expression Coverage, which is a form of Modified
Condition/Decision Coverage (MC/DC). These metrics allow
an expression to be fully covered with just 2xN input vectors.

Most expression coverage metrics are based on truth table
implementations, and therefore suffer from capacity
limitations due to exponential complexity.

REC is based on partitioning an expression into sub-
expressions to derive non-masking conditions, while operating
at linear complexity and providing MC/DC-compliant results.
This allows any arbitrarily large expression to be considered
for coverage, while providing simple and easy to understand
reports.

The basis of REC is that an expression input must not be
masked by the values of other inputs at the time of coverage
collection. For example, ‘b’ must be ‘1’ while measuring the
coverage of 'a' in 'a && b'. If 'b' is 0, the result of the
expression gets fixed to '0' and the value of 'a' is not of any
significance. The ‘1’ state of ‘b’ is called its non-masking
state, and the associated condition is called the non-masking
condition.

As REC collects coverage, it ensures that the input being
covered has taken both '0' and '1' states while an appropriate
non-masking condition is satisfied. An expression is
considered covered when all its inputs have been
independently covered.

The following sections go into the details of partitioning
an expression to derive non-masking conditions, the effect of
short-circuiting, considerations for duplicate input terminals,
inverting vs. non-inverting input modes, and uni-modal versus
bi-modal expression considerations.

The results of performance benchmarks show REC has
higher performance with similar level of comprehensiveness
in expression coverage as compared to existing
implementations. These results are presented towards the end
of the paper.

II. EXPRESSION COVERAGE

Expression coverage measures coverage statistics for
expressions and conditions. The fundamental output of the
expressions considered for expression coverage should be a

2

single-bit value. Input terminals can be vectors, as long as they
are part of a sub-expression that results in a single-bit value.
Consider the following expression as an example:

((a > b) && (c == 130)) (1)

Expression “(1)” may be considered for expression
coverage with (a > b) and (c == 130) as its two input
terminals.

For each expression, a set of cases are identified, each case
specifying how parts of the expression must take on particular
values. Expression coverage then considers whether a
simulation exercises each case of the expression. An
expression is considered fully covered when all of the
individual expression coverage cases are exercised.

Several metrics can be used for expression coverage. Some
of the popular ones are listed below.

A. SOP Metric

Sum-of-Products (SOP) checks that each set of inputs that
satisfies the expression (results in a ‘1’) must be exercised at
least once, but not necessarily independently. It does not check
the sets of inputs that results in the expression being evaluated
to ‘0’.

B. UDP Metric

The term UDP is borrowed from the Verilog language,
which uses the same basic table format to model user-defined
primitives. A UDP table describes the full range of behavior
for a given expression. If the conditions described by a row
are observed during simulation, that row is said to be hit. All
rows in the UDP table must be hit for UDP coverage to reach
100%. Row minimization is attempted by use of wildcard
matches.

C. MC/DC Metric

Modified Condition/Decision Coverage (MC/DC) is a
popular metric for expression coverage [3]. It is also the basis
of some of the other metrics, like FEC. The formal definition
of MC/DC as defined by DO-178B is: “Every point of entry
and exit in the program has been invoked at least once, every
condition in a decision has taken all possible outcomes at least
once, every decision in the program has taken all possible
outcomes at least once, and each condition in a decision has
been shown to independently affect that decisions outcome. A
condition is shown to independently affect a decisions
outcome by varying just that condition while holding fixed all
other possible conditions. [1]”

Modified Condition/Decision Coverage (MC/DC), is a
code coverage metric often used by the DO-178B safety
critical software certification standard, as well as the DO-254
formal airborne electronic hardware certification standard.

D. FEC Metric

Focused Expression Coverage (FEC) is a row based
coverage metric which emphasizes the contribution of each
expression input to the expression’s output value. FEC
measures coverage for each input of an expression. If all
inputs are fully covered, the expression has reached 100%

FEC coverage. In FEC, an input is considered covered only
when other inputs are in their quiescent states, i.e. a state that
allows the target input to control the output of the expression.
Further, the output must be seen in both 0 and 1 state while the
target input is controlling it. If these conditions occur, the
input is said to be fully covered. The final FEC coverage
number is the number of fully covered inputs divided by the
total number of inputs. FEC is fully compliant with the
MC/DC coverage metric and can safely be used in a strict
MC/DC compliance environment.

III. RAPID EXPRESSION COVERAGE

UDP coverage is very strongly based on the truth table.
Covering an expression 100% requires hitting each row in the
table at least once. In the worst case, when none of the rows
can be merged, UDP requires 2

N
 input vectors to fully cover

an expression with N input terminals. FEC reduces
verification effort by only requiring 2xN input vectors in the
worst case to fully cover the same expression. This helps
verification engineers achieve 100% coverage faster, but it
doesn’t make the tool implementation any easier. FEC is still
based on the truth table, which makes it exponential with
respect to the number of input terminals in the expression. It is
clearly desirable to move towards constant time and linear
complexity solutions. So let’s think, can we come up with a
better metric that uses the power of FEC to cover an
expression using only 2xN input vectors, while still being able
to provide a linear complexity solution with respect to the
number of input terminals? REC [2] is one such metric. Like
FEC, REC is also fully compliant with the MC/DC coverage
metric and can safely be used in a strict MC/DC compliance
environment.

A. Expression Modes

There are two modes in which an input of an expression
can be operating. These are called inverting mode and non-
inverting mode.

When setting the value of an input to '0' (or '1'), with all
other inputs of the expression in their quiescent states, and the
expression evaluates to '1' (or '0'), the input is said to be
operating in an inverting mode. On the other hand, when
setting the value of an input to '1' (or '0'), with all other inputs
of the expression in their quiescent states, and the expression
evaluates to '1' (or '0'), the input is said to be operating in a
non-inverting mode.

Based on the modes of its inputs, an expression can be
classified as either uni-modal or bi-modal. An expression
whose inputs only ever operate in one mode, either inverting
or non-inverting, is called a uni-modal expression. On the
other hand, if an expression has at least one input operating in
both inverting and non-inverting modes, it is called a bi-modal
expression.

The simplest example of a uni-modal expression is a two-
input 'AND' gate.

a && b (2)

3

TABLE I. TRUTH TABLE OF AND GATE WITH TARGETS

a b a && b Target

0 0 0 --

0 1 0 a_0*

1 0 0 b_0

1 1 1 a_1, b_1

* The target of a_0 indicates that this row delivers FEC
testing when a's value is 0.

In “Table I” for expression “(2)”, a_0 evaluates the
expression to '0' and a_1 evaluates it to '1'. Similarly, b_0
evaluates the expression to '0' and b_1 evaluates it to '1'.
Therefore expression “(2)” is a uni-modal expression with all
its inputs operating in non-inverting mode.

Now consider a two-input XOR gate.

a ^ b (3)

TABLE II. TRUTH TABLE OF XOR GATE WITH TARGETS

a b a ^ b Target

0 0 0 a_0, b_0

0 1 1 a_0, b_1

1 0 1 a_1, b_0

1 1 0 a_1, b_1

In “Table II” for expression “(3)”, a_0 evaluates the
expression to both '0' and '1'. Similarly a_1, b_0, and b_1 also
evaluate the expression to both ‘0’ and ‘1’. Therefore
expression “(3)” is a bi-modal expression, with both its inputs
operating in both inverting and non-inverting modes.

B. Theory

Every expression, however complex it may be, can be
broken down into N smaller expressions consisting of only
one operator each, where N is the number of operators in the
expression. We call these expressions 'basic expressions'.
Consider the following expression:

a && b && c && d (4)

The ‘&&’ operator groups from left-to-right, therefore
expression “(4)” can be represented as:

a && (b && (c && d)) (5)

Expression “(5)” can be broken down into 3 basic
expressions, defined as:

a && EXPR1 (6)

b && EXPR2 (7)

c && EXPR3 (8)

Where EXPR1 is ‘b && (c && d)’, EXPR2 is ‘c && d’,
and EXPR3 is ‘d’. Figure 1 shows the expression tree of “(4)”,
and highlights its 3 basic expressions.

Figure 1. Expression Tree of “(3)” Highlighting Its Basic Expressions

If we work on the truth table of the whole expression,
complexity increases exponentially as the expression becomes
bigger. Consider the case of a 6 input XOR expression. It has
2

6
 = 64 rows in its truth table. Adding one more input to this

expression increases the number of rows to 2
7
 = 128 rows.

Adding additional inputs exponentially increases the number
of rows, for example a 16 input XOR will consume 65536
rows. Now imagine maintaining a table with all these rows
during simulation, and matching all input vectors with rows in
this table. This is what exponential complexity metrics like
UDP and FEC do.

On the other hand, if we work on basic expressions, the
complexity of the solution increases linearly as the expression
becomes bigger. A 6-input XOR expression can be broken
down into 5 basic XOR expressions. If we add one more input
to this expression, the expression can be broken down into 6
basic expressions. If we add one more input, the expression
can be broken down into 7 basic expressions.

When working on any input in an expression, it is
important that the input must not be masked by the other input
because of its value. For example, if we want to measure
coverage of 'a' in 'a && b', it is important that the value of 'b'
is '1'. If 'b' is 0, the result of the expression gets fixed to '0' and
the value of 'a' is no longer of any significance. Also, since the
expression is evaluated left-to-right in the presence of short-
circuiting, it is correct to only look at the right side of the
concerned input. The effect of short-circuiting and non-short-
circuit operators is discussed in more detail later in the paper.
The assumption is that if we're evaluating the concerned input,
it means that its left side is already in a non-masking state. For
example, if we're evaluating 'b' in 'a && b && c', it means that
'a' was already evaluated to '1'.

Note that the terminology, ‘left side of the input’, and
‘right side of the input’, is being used to make the theory
easier to understand. The same theory can be extended to an
expression tree as well.

&&

a &&

b &&

c d

EXPR1

EXPR2

EXPR3

4

“Table III” lists operators with non-masking states of
inputs. Note that the coverage of 'A' is being collected in the
expression in the table.

TABLE III. OPERATORS WITH THEIR NON-MASKING STATES

Operator Expression Non Masking State

NOT NOT A N/A

OR
A OR B B = 0

B OR A B = 0

NOR
A NOR B B = 0

B NOR A B = 0

AND
A AND B B = 1

B AND A B = 1

NAND
A NAND B B = 1

B NAND A B = 1

XOR
A XOR B B = 0, B = 1

B XOR A B = 0, B = 1

XNOR
A XNOR B B = 0, B = 1

B XNOR A B = 0, B = 1

TERNARY
(COND)? A:B COND = 1, B is non-masking

(COND)? B:A COND = 0, B is non-masking

C. Algorithm

Start by breaking the expression into basic expressions.
Once a basic expression has been identified, only work on the
basic expression, and don't care about the actual complex
expression (divide-and-conquer).

At the time of coverage collection, make sure the input
being covered has taken both '0' and '1' states when the other
input of the expression is in a non-masking state. Note that
we're only looking at the value of the other input in the basic
expression, and not inputs of the expression. A truth table
lookup is not required. In fact, a truth table itself is not
required to be created or stored at any time.

An input will be fully REC covered if it has taken both 0
and 1 values during simulation, in a state where the other input
in its basic expression has a non-masking value. In case of
XOR, the value of the other input of the expression must be
the same in both collections. This ensures that both collections
are made when the input is active in the same mode (inverting
or non-inverting). An expression is considered fully REC
covered when all the inputs of the expression have been
independently covered.

An interesting implementation aspect of the REC
algorithm is that it can be woven directly into the machine
code generated by the compiler. Since there are no alternative
evaluation mechanisms such as truth tables, fidelity with the
primary evaluation engine is a non-issue. Furthermore,

performance is optimal when only light additions of machine
code are required to observe and collect coverage.

D. Non-Short-Circuit Operators

Since expressions are always evaluated left-to-right, short-
circuiting enables us to assume that if an input is being
evaluated during expression evaluation, the LHS of the input
is already in a non-masking state. It is the responsibility of the
implementation to ensure that LHS of the input is in a non-
masking state when an operator doesn't short-circuit.

REC can be made to work together with non-short-
circuiting operators using the following algorithm:

• Initialize the LHS_MASKED flag to 0.

• Don't change this flag while evaluating a short-circuit
operator.

• In case of a non-short-circuiting operator, set this flag
to 1 while evaluating the right operand (expression
tree of right operand) if the value of the left operand
masks the value of the right operand. i.e. set the flag
to 1 while evaluating 'b' if 'a' evaluates to '0' in 'a & b'.

• While collecting REC for an input make sure that in
addition to the masking expression being in the non-
masking state, LHS_MASKED flag is also 0.

The effect of masking due to non-short-circuiting will be
propagated to all inputs in the sub-expression being masked
from left-to-right.

E. Duplicate Inputs

Special handling is required when an expression contains
one or more inputs that have more than one occurrence in the
expression. There are four ways in which REC handles
duplicate inputs.

1) Relaxed
When there are duplicate inputs in the expression, the

input will be considered covered if any of its occurrences is
covered. While considering an input 100% REC covered, we'll
not enforce that both _1 and _0 hits occur for the same
occurrence of the input. Mixing hits from different
occurrences will be allowed. I.e. even if _0 is hit for the first
occurrence of an input in the expression and _1 is hit for the
second occurrence of that input in the expression, the input
will be considered covered.

For example, consider the following expression:

(a & b) | (c & a) (9)

There are two occurrences of 'a' in the above expression.
Let's call them a{1} and a{2}. Even if a_0 is hit for a{1}, and
a_1 is hit for a{2}, as shown in Figure 2, we will consider
input 'a' REC covered.

5

Figure 2. An Example of Relaxed Collection for expression “(9)”

 We collect REC for a duplicate input in the same way as
any other input. The masking expression needs to be in the
non-masking state, and the LHS_MASKED flag needs to be
taken into consideration for each input individually to make
sure it is not masked due to non-short-circuit operators in the
expression. There will be cases where the masking expression
of an occurrence of an input terminal contains another
occurrence of the same input terminal. There will only be one
set of counters corresponding to the input terminal. All
occurrences of the input will increment the same set of
counters.

This mode of collection can help a verification engineer
achieve 100% coverage faster, but it will not be as
comprehensive as the other approaches listed below.

2) Strict
In the strict approach, we ensure that when REC is

collected for an input, all its occurrences in the expression are
simultaneously controlling the output of the expression. This
is a stricter criterion than relaxed, and may not be suitable for
all expressions. There may be cases when all occurrences of
an input can never control the output of the expression
simultaneously. It also makes coverage of the input more
difficult as it reduces the set of input vectors that can cover it.

In Strict mode, REC for a duplicate input should be
collected only when all the following conditions are met:

• None of the duplicate inputs is masked in the
expression.

• The LHS_MASKED flag is taken into consideration
for each input individually to make sure it is not
masked due to non-short-circuit operators in the
expression.

• The masking expression of the last occurrence of the
input in the expression is in a non-masking state.

For example, consider the following expression:

a && (b && (c || (d && (a || (e && f))))) (10)

There are two occurrences of 'a' in the above expression.
Let's call them a{1} and a{2}. There are no non-short-circuit
operators, so LHS_MASKED flag will always be 0. We
should collect coverage for 'a' if both a{1} and a{2} are
reached during expression evaluation, and the masking
expression for a{2} i.e. (e && f) is in its non-masking state of
0. This will happen when the value of ‘a’ is ‘1’, ‘b’ is ‘1’, ‘c’
is ‘0’, ‘d’ is ‘1’, ‘e’ is ‘1’, and ‘f’ is ‘1’.

3) Balanced
When there are duplicate inputs in the expression, an input

is considered covered if all its occurrences have been
independently covered. While considering an occurrence of an
input REC covered, the implementation enforces that both _1
and _0 hits occur for the same occurrence. Mixing hits from
different occurrences is not allowed.

Each occurrence of an input in the expression should have
its own set of counters, and coverage should be collected for
each occurrence of an input independently, in the same way as
any other input. The masking expression needs to be in the
non-masking state, and the LHS_MASKED flag needs to be
taken into consideration for each input individually to make
sure it is not masked due to non-short-circuit operators in the
expression. An occurrence of an input should increment only
the counters associated with it. Each occurrence of an input is
reported independently in the REC report, as if it was a
distinct input.

In expression “(10)”, a{1} will have ‘_0' and '_1' counters
for it, and a{2} will have its own set of '_0' and '_1' counters.
Input 'a' will be considered covered when both a{1} and a{2}
have been independently covered. This will happen when all
four counters have non-zero counts.

4) Relaxed Balanced
This approach combines the balanced and relaxed

approaches to create a 'relaxed balanced' approach. Each
occurrence of an input has its own set of counters. They are
collected and maintained in the same way as balanced
approach described above. However, an input will be
considered REC covered when any one of its occurrences is
covered. Unlike the balanced approach, it is not required to
cover every occurrence of the input. On the other hand, unlike
the relaxed approach, both the _0 and _1 hits need to come
from the same occurrence of the input.

In expression “(10)”, a{1} will have ‘_0' and '_1' counters
for it, and a{2} will have its own set of '_0' and '_1' counters.
Input 'a' will be considered covered when either a{1}, or a{2},
or both have been independently covered.

Figure 3 shows how the four methods compare with each
other with respect to comprehensiveness of coverage and the
ease of achieving 100% coverage. Method strict provides very
comprehensive coverage, but requires a very precise set of
input vectors, which makes it difficult to achieve 100%
coverage. On the other hand, method relaxed may not provide
as comprehensive coverage, but it makes it very easy to
achieve 100% coverage. Method balanced also provides
comprehensive coverage, but requires more effort to 100%
cover the expression because each duplicate input must be
covered independently.

AND

AND

OR

a

b

c

a_0

1

0

0

0

AND

AND

OR

a

b

c

a_1

0

1

1

1

First occurrence of ‘a’ is

controlling the output

Second occurrence of ‘a’ is

controlling the output

6

Figure 3. Comparison of Four Ways Of Handling Duplicate Inputs

F. Comprehensive Bi-modal Analysis

A bi-modal expression is considered covered if the target
input controls the output to different values while remaining in
the same bi-modal state (i.e. either inverting mode or non-
inverting mode).

An expression can be bi-modal without the presence the
XOR operator. To do a comprehensive analysis of such
expressions, the output value of the expression should be
taken into consideration while collecting REC. An input
should be considered REC covered only when it has been
observed in both '0' and '1' states during simulation with both
these states resulting in different output values of the
expression. This condition on the output should be in addition
to all other conditions required for REC collection.

Figure 4. Sample Coverage Report with non-XOR Bi-Modal Expression

Either a deeper analysis of the expression can be done to
determine the modes of all inputs, or the mode can be
automatically switched to bi-modal REC after identifying
certain characteristics of the bi-modal expression, like the
presence of XOR, or duplicate terminals working in different
modes, etc. If a uni-modal expression is falsely classified as
bi-modal, even though the coverage percentages will remain
unchanged, bi-modal reports are more difficult to understand
than uni-modal reports, and need more processing.

IV. PERFORMANCE BENCHMARKS

We created our own small tests to do some benchmarking,
and found that as expected after converting an exponential
algorithm to a linear algorithm, the performance gain increases
significantly as the size of the expression increases.

In real world tests, an interesting effect tends to occur
when the implementation shifts to a non-truth-table-based
algorithm like REC. As a result of REC’s ability to handle any
expression, substantially more expressions are coverable than
with other approaches. In addition, the newly coverable
expressions tend to be the largest and most complex in the
design. As a result, REC’s performance gains tend to be offset
by the fact that it covers more expressions.

Here are some results of our benchmarks:

TABLE IV. RESULTS OF BENCHMARK ON SMALL TESTS

Expression FEC Sim Time REC Sim Time Ratio

3-input AND 25.1536 21.2093 1.18x Faster

6-input XOR 41.5346 33.9541 1.22x Faster

7-input XOR 63.1399 29.4898 2.14x Faster

8-input XOR 113.843 27.1377 4.19x Faster

9-input XOR 243.015 32.458 7.49x Faster

11-input XOR 1215.68 37.1395 32.8x Faster

V. CONCLUSION

Existing expression coverage metrics are based on truth
table, and this makes them exponential in nature. This is the
main reason why they suffer from performance and capacity
limitations. But metrics like MC/DC and FEC are a boon for
verification engineers who can use them to cover their
complex expressions using only 2xN input vectors. REC
brings in the core principals of MC/DC that give it this
advantage, and works on basic expressions rather than the
truth table, to give it the power of FEC while being linear in
complexity with respect to the number of inputs in the
expression. This helps it achieve tremendous gains in
performance and capacity, as we’ve seen in our benchmarks.
We saw that there is a more than 3X slowdown due to FEC
when handling an 11 input XOR expression in a testcase. This
is because FEC generated a 2048 row truth table for that XOR.
A truth table also puts a restriction on the size of the
expression because it blows up quickly for large expressions.
REC is linear in complexity, and doesn't require a truth table.
This helps it handle any arbitrarily large expression for
expression coverage.

REFERENCES

[1] DO-178B, "Software Considerations in Airborne Systems and

Equipment Certification", RCTA, December 1992, pp.31, 74.

[2] Gaurav-Kumar Verma and Doug Warmke,2013, “Rapid Expression

Coverage”, United States Patent Application

[3] Kelly J. Hayhurst, Dan S. Veerhusen, et. al., 2001, “A Practical

Tutorial on Modified Condition/Decision Coverage”, NASA/TM-2001-

210876

----------------Rapid Expression View-----------------
Line 23 Item 1 assign DO = (!IT1 && IT2) || (IT1 && IT4);
Expression totals: 1 of 3 input terms covered = 33.33%

Input Term Covered Hint
-------------- ----------- ------------------------------
IT1 Y
IT2 N Hit '_0' and '_1' for different outputs
IT4 N Hit '_0' and '_1' for different outputs

Rows: Hits(0) Hits(1) Target Masking Expression
---------- ------- --------- --------- --
Row 1: 1 0 IT1_0 {(IT2=1) && (IT1 && IT4)=0} OR (IT4=1)
Row 2: 0 1 IT1_1 {(IT2=1) && (IT1 && IT4)=0} OR (IT4=1)
Row 3: 0 0 IT2_0 (IT1 && IT4)=0
Row 4: 0 0 IT2_1 (IT1 && IT4)=0
Row 5: 0 0 IT4_0 IT1=1
Row 6: 0 0 IT4_1 IT1=1

Strict

Balanced

Relaxed

Relaxed Balanced

Ease of Achieving 100% Coverage

Comprehensiveness of Coverage

