
TEMPLATE DESIGN © 2008

www.PosterPresentations.com

Supercharge Your Verification Using Rapid Expression Coverage 

as the Basis of a MC/DC-Compliant Coverage Methodology

Gaurav Kumar Verma and Doug Warmke
Questa R&D, Mentor Graphics Corporation

Introduction

Code coverage is a popular measure of design
quality and verification completeness. It has low

setup cost and analysis is straightforward, which
makes it a high ROI component of most modern

verification methodologies. Expression coverage

is one of the most complex and least understood
types of code coverage. The main question

verification engineers need to answer regarding
expression coverage is:

“There are 2N possible input vectors for my N-

input expression. I saw a subset of this large 
number during simulation. How well is my 

expression tested?”

A variety of metrics are available to help answer
this question.

Popular metrics

Shortcomings of existing metrics

• SOP does not provide comprehensive
coverage.

• UDP is based on the truth table. In the worst
case, it requires 2N input vectors to cover an

expression with N input terminals.

• FEC reduces verification effort by requiring 2xN

input vectors to cover an expression. But since
it is based on the truth table, it suffers from

exponential complexity.

Modes of an expression

Inverting vs. non-inverting input terminal
When setting the value of an input to '0' (or '1'),

with all other inputs of the expression in their
quiescent states, and the expression evaluates to

'1' (or '0'), the input is operating in an inverting

mode. Otherwise it is operating in a non-inverting
mode.

Uni-modal vs. bi-modal expression

An expression whose inputs only ever operate in

one mode, either inverting or non-inverting, is
called a uni-modal expression. If there is at least

one input capable of operating in both inverting
and non-inverting modes, it is called a bi-modal

expression.

Basic expressions

Every expression, however complex, can be
broken down into N smaller expressions

consisting of only one operator each, where N is
the number of operators in the expression. We call

these expressions 'basic expressions'.

Non-masking state

When working on any input in a basic expression,
it is important that the input not be masked by the

other input because of its value. For example, if
we want to measure coverage of 'A' in 'A && B',

the value of 'B' must be '1'. If 'B' is ‘0’, the result of

the expression gets fixed to '0' and the value of 'A'
is no longer of any significance.

REC collection

Relaxed: An input is considered covered if any of
its occurrences is covered.

Strict: When coverage is collected for an input, all

its occurrences in the expression must be
simultaneously controlling the output of the

expression.

Balanced: An input is considered covered if all of

its occurrences are independently covered.

Relaxed Balanced: An input is considered

covered when any of its occurrences is covered.
Unlike relaxed approach, both the _0 and _1 hits

must be from the same occurrence of the input.

Duplicate inputs

Non-short-circuit operators

SOP Metric

Checks that each set of inputs that satisfies the

expression (results in a ‘1’) must be exercised at
least once, but not necessarily independently. It

does not check the set of inputs that results in the
expression being evaluated to ‘0’.

UDP Metric

A UDP table describes the full range of behavior

for a given expression. If the conditions described

by a row are observed during simulation, that row
is said to be hit. All rows in the UDP table must be

hit for UDP coverage to reach 100%. Row
minimization is attempted by use of wildcard

matches.

MC/DC Metric

Checks that each condition in a decision has been
shown to independently affect that decision’s

outcome. A condition is shown to independently

affect a decision’s outcome by varying just that
condition while holding fixed all other possible

conditions.

FEC Metric

An input is considered FEC-covered when other
inputs are in their quiescent states, and the output

has been seen in both ‘0’ and ‘1’ state. Checks

that all inputs are FEC covered.

Constant time and

linear complexity2xN test vectors

Comprehensive 

Coverage

REC

&

a &

b &

c d

EXPR1

EXPR2

EXPR3

Example:

f(a,b,c,d) = a & b & c & d

⇒ a & (b & (c & d))

Its basic expressions are:

a & EXPR1 (EXPR1 = b & (c 
& d))

b & EXPR2 (EXPR2 = c & d)

c & EXPR3 (EXPR3 = d)

Operator Expression Non Masking State

NOT NOT A N/A

OR A OR B B = 0

NOR A NOR B B = 0

AND A AND B B = 1

NAND A NAND B B = 1

XOR A XOR B B = 0, B = 1

XNOR A XNOR B B = 0, B = 1

TERNARY
(COND)? A:B COND = 1

(COND)? B:A COND = 0

An expression would be considered fully 
REC covered when all the inputs of the 
expression have been independently 

covered.

An input will be REC-covered if it has taken 
both 0 and 1 value during simulation, in a 

state where the other input in its basic 
expression has a non-masking value. 

At the time of coverage collection, make 
sure the other input of the basic expression 

is in a non-masking state.

Break the expression into basic 
expressions. Once identified, only work on 
the basic expressions and ignore the actual 

expression.

Performance benchmarks

Expression FEC Time REC Time Ratio

3-input AND 25.15 21.21 1.18x Faster

6-input XOR 41.53 33.95 1.22x Faster

7-input XOR 63.14 29.49 2.14x Faster

8-input XOR 113.8 27.14 4.19x Faster

9-input XOR 243.0 32.46 7.49x Faster

11-input XOR 1215 37.14 32.8x Faster

NOTE: REC collection can be woven into native
code and thus has very minimal natural overhead.

Since expressions are always evaluated left-to-
right, short-circuiting enables us to assume that if

an input is being evaluated during expression
evaluation, the LHS of the input is already in a

non-masking state. It is the responsibility of the

implementation to ensure that LHS of the input is
in a non-masking state when an operator doesn't

short-circuit. An algorithm showing how to achieve
this is presented in the proceedings paper.

Example: Relaxed collection

f(a,b,c) = (a & b) | (a & c)

f(a,b,c)f(a,b,c)

f(a,b,c)f(a,b,c)

As expected, performance gain versus FEC
increases as the size of the expression increases.


