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Abstract—This IEEE 1801 UPF [1] format comes with a limitation that it doesn’t entirely support decoupling of 

front and backend power intent files and as many SoC projects in Intel are marching towards ASIC products on 

different process technologies, it becomes all the more important for designers to code power intent with the process 

agnostic approach. Therefore, IEEE 1801-2015 UPF (UPF3.1) [2]has come up with a methodology called Successive 

refinement that supports Incremental specification. This methodology enables incremental design and verification 

of the power management architecture, and it is specifically designed to support specification of power management 

requirements for IP components used in a low power design. This incremental flow accelerates design and 

verification of the power management architecture using partition methodology wherein the power intent is 

partitioned into constraints, configuration and implementation. In this paper, we will present the POC for the new 

methodology Successive refinement implemented on CPUSS in which power intent is specified in a technology 

independent manner and verified abstractly before implementation 
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I.  INTRODUCTION  

 

Use of IP in SOC’s is essential in order to meet time-to-market requirements and leveraging existing technologies 

efficiently. So, designing the power management mechanism should involve both IP requirements and Soc 

concerns. 

IEEE 1801 UPF follows an implementation-methodology that provides power-management structures and 

behavior for a design which drives both verification and Implementations steps. There are some problems with 

this methodology. 

In this paper, we will present the new methodology Successive refinement in which power intent is specified in a 

technology independent manner and verified abstractly before implementation 

Following are the Challenges of using Implementation-oriented UPF 

1. After investing a lot of verification effort to prove that the strategy and UPF file are correct, if the UPF file has to be 

modified or re-created after selection of the target process technology, the verification equity built up is lost and the 

verification process has to be repeated with associated delays and extra resource costs. so, power aware verification is 

often is often postponed until late in the flow 

2. IP’s are re-used either in different soc’s, different generation of same soc’s or in different target technologies.so, if IP 

upf contains implementation details, it should be re-generated based on the customer’s usage.   

 

Successive Refinement addresses both of these issues. This methodology defines 

1. How an IP provider can provide upf that specify constraints on the use of an IP component within a system, without 

knowledge of the characteristics of the system. 

2. How UPF can be used by the system integrator to specify the logical configuration of power management for the 

individual IP components used in the system and for the system as a whole. This enables early verification of the 

power management architecture before any implementation decisions are made. 

3. how UPF can be used by the system implementer to realize the power intent in the context of a given technology and 

implementation approach 

The concept and methodology come with an idea of adding detailed description of power management in different 
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files by separating the logical functionality of power management for a system from the technology specific 

implementation of the system. 

II. SUCCESSIVE REFINEMENT FLOW AND ITS CHALLENGES 

Successive refinement in UPF allows an IP provider to capture the low power constraints inherent in an IP block 

without predicting a particular configuration. Then any customer who uses that IP can configure the IP, within 

these constraints, for their particular application without predicating a particular technology specific 

implementation. The result is a simulatable but technology-independent Golden source against which all 

technology specific implementations can be verified. In this way the verification of strategies and upf file need 

not be repeated even if implementation details change. 

 
Figure 1  Successive Refinement Flow 

  

SUCCESSIVE REFINEMENT ESSENTIALLY PARTITIONS THE UPF INTO THREE CATEGORIES 

A. Constraints UPF: The IP developer creates Constraint UPF. The constraint UPF file should not                    

be replaced or changed by the IP consumer. 

• Defines atomic power domains 

• Define clamp value for (possible) ISO strategy 

• Define retention elements for (possible) strategy 

• Fundamental power states are defined without voltage value 

Note: Retention, Isolation also is not actually specified in the constraint UPF file for an IP component. Implementation of 

retention, isolation is an implementation choice and is usually left for IP licensees to decide whether they would like to 

include it in their design. However, it is necessary to specify which state elements must be retained, isolated if the user 

decides to make use of retention, Isolation in his power management scheme. 

1) Defining Atomic Power Domains:  

The constraint UPF file defines each power domain that is identified in the specification for the IP component. The option 

–atomic indicates that this power domain cannot be further partitioned by the IP consumer. 

Power domain can be defined as follows 

 
Figure 2.1.1   Atomic power domains in constraint upf 

2) Define Isolation Requirements: 
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Isolation is not actually specified in the constraint UPF file for an IP component. The constraint UPF file should specify 

the isolation clamp values that must be used if the user decides to shutdown portions of the system as part of this power 

management scheme. 

The command ‘set_port_attributes’ is used to define the clamp value requirements: 

 
Figure 2.1.2 Isolation Clamp Values 

3) Define retention elements for strategy: 

Specify the retention on the state elements if the user decides to make use of retention in his power management scheme. 

set_retention_elements retn_list_<name> -elements [list <Retention elements>] 

4) Define power states without voltage value: 

 
Figure 2.1.3 Fundamental power states 

For constraint UPF, add_power_state should be used to define the fundamental power states of an IP block and its 

component domains in a technology-independent manner. This implies that power states should be defined without 

reference to voltage levels. Similarly, constraint UPF should not impose any particular power management approach on 

the IP consumer, so it should define power states without dictating how power will be controlled. 

 

B. Maintaining the Integrity of the Specifications 

C. Configuration UPF: The IP consumer adds Configuration UPF describing his system design including how 

all the IP blocks in the system are configured and power managed. 

• Define design ports using create_logic_port 

• Define ISO/RET strategies and how they are controlled 

• Update power domain states with logic expressions using add_power_state -update 

1) Define design ports 

 Add design ports that a design may use to control power management logic using create_logic_port 

 
Figure 2.2.1 Logic port definition 
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2.2.2 DEFINE ISO/RET STRATEGIES AND HOW THEY ARE CONTROLLED: 

In the configuration file, an isolation strategy must specify clamp values consistent with the specifications in the 

constraint UPF. 

 
Figure 2.2.2 Isolation Strategy 

2.3 Implementation UPF: This UPF file is used to provide the implementation details and technology specific 

information that is needed for the implementation of the design. 

• Define supply and network elements for the design 

• Defining Power Switches 

• Connecting supply nets with supply sets 

• Define Supply Voltages in power states 

2.3.1 DEFINE SUPPLY AND NETWORK ELEMENTS FOR THE DESIGN: 

  

  

 

 

 

2.3.2   Defining Power Switches 

 This methodology requires IPs to no longer create power switches and it's up to the SOC Integrator to handle all 

the validation 

Figure 2.3.1 Supply nets and Supply ports 
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Figure 2.3.2 Power switches 

 

2.3.3   Connecting supply nets with supply sets:  

The option –update is used to add the names of the supply nets to be connected to functions power, ground of the 

respective supply set 

 
Figure 2.3.3 supply sets 

 
Figure 2.3.4 supply nets 

2.3.4 Define Supply Voltages in power states 

 

Figure 2.3.5 power states 



 

6 

 

     

               Figure 3. Design Low Power Flow Diagram with Successive refinement flow 

III. RESULTS- SUCCESSIVE REFINEMENT UPF METHODOLOGY USAGE IN  SOC COMPUTE DIE  

SOC accepted IP power intent either: 

1. In process and project agnostic way – using “successive refinement” methodology 

2. Or in aligned with project SD and topology – using traditional delivery 

Internal IP delivered UPF following the first approach. UPF commands and options were limited by currently 

supported by all Synopsys and Cadence flow tools. IP level validation was limited by tools as well.  

• All layers (including implementation) were required for logic validation and simulation. LRM claims 

implementation portion only for structural design. 

• Only UPF2.1 commands and options are used. E.g., associate_supply_set command -handle option was used 

to connect SOC with IP supplies. UPF *logic* commands were not used. 
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• Updating of power state (add_power_state) with -illegal option was not allowed by tools. To avoid conflict 

between IP and SOC PST last one was disabled after integration for structural design. 

SOC used bottom up approach and consumed IP integration wrapper, which included constraint and configuration 

files. SPA with driver/receiver supply were put to configuration part. Most of configuration IP UPF were not 

updated by SOC (except removing redundant ISO after disabling internal gated PD).  Implementation layer one 

per SD entity (e.g., partition) was automatically created by SOC. Partition UPF looks schematically: 

  

  

 

 

 

 

 

 

SOC added automatically inter IP ISO/ELS layers (SOC added ISO between IP, having a logic on gated supply 

and interface on un-gated was not required). It allowed to simplify most of small IP and produce them with a 

single power supply. UPF delivery (except one command with clamp value) for the last type of IP was not 

required. 

• IP UPF in “successive refinement” format keeps backward compatibility with traditional way. All layers (including 

implementation) produce the same traditional UPF: the same content is described by about the same commands are 

specified in different order and in incremental way.  

IV. SUMMARY  

In SoC, we have implemented successive refinement methodology to decouple front-end UPF from BE-UPF and it was 

successfully accepted. Also, we have piloted it on CPUSS design and work is in progress to scale it to multiple subsystems. 

Below are some of the highlights 

• A UPF power intent specification for a SoC with multiple IPs having different levels of physical hierarchical 

implementation and UPF specifications was created 

• The UPF specifications for individual IPs were verified for structural checks through static checks and formal 

methods. 

• The power models created for memories and PHY were elegant and re-use of the power model was achieved 

in the successive refinement process. 

• The power intent of hard macros is modelled with power states for the hard macro. 

• The higher-level interface of each IP was modelled through port attributes based on UPF interface scenario – 

IP or system level 

• Each IP con be verified with the UPF in their block level verification environment and at the top level using 

the SoC level verification environment. 

• The use of UPF for IP block verification, IP hard macro implementation, SoC verification and SoC 

implementation was seamless with no changes to the IP or SoC UPF between processes 

 

5 GLANCE TO THE FUTURE 

At present not all tools support all the constructs required for Successive Refinement, but it is expected that this issue will 

go away with time. The IEEE P1801 UPF working group is continuing to refine the definition of UPF in order to support 

Successive Refinement more effectively. In particular, improvements in power state definition and refinement are being 

developed for inclusion in the next release of the standard. These improvements should make adoption and use of 

Successive Refinement even more straightforward than has been described above 

 

load IP#1_wrapper.upf -scope IP#1 

load IP#2_wrapper.upf -scope IP#2 

… 

load IP#N_wrapper.upf -scope IP#N 

source partition implementation.upf 
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