
Strategy and Environment for SOC
Mixed-Signal Validation: A Case Study

Erik A McShane
Intel Corporation

5000 W Chandler Blvd
Chandler, AZ 85226

Telephone: 1 480 552 0425
erik.a.mcshane@intel.com

Srini Iyengar
Intel Corporation

3600 Juliette Lane
Santa Clara, CA 95054

Telephone: 1 408 653 8571
srinivasan.s.iyengar@intel.com

ABSTRACT
In this paper, we introduce the concept of full-chip mixed-signal
validation (FCMSV) for SOCs, in which any top-level ports of an
analog discipline are represented as real-valued signals for
validation simulations. Secondly, it exploits SystemVerilog
syntax, especially “real” ports, to create one testbench suite that
spans a project from top-down development to final bottom-up
implementation. Thirdly, it presents a global strategy to improve
simulation speed by targeting specific analog blocks for
replacement by BMODs. This methodology is a generic strategy
independent of EDA tool. The methodology and environment
outlined in this paper have been successfully applied to validate
three successive projects.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids – simulation,
verification, methodology.

General Terms
Verification, Performance, Standardization

Keywords
Full Chip, Mixed Signal, SOC, Strategy, Methodology

1. INTRODUCTION
Pre-silicon validation of large digital ICs benefits from mature
RTL methodologies and environments, including extensive
support for formal verification (FV) and assertion-based
verification. However in System on Chip (SOC) products, as the
analog or mixed-signal content grows in quantity and complexity
robust methods give way to disjointed validation approaches.
Since transistor-level co-simulation of analog circuits and RTL is
often impractical, behavioral models (BMODs) and bus functional
models (BFMs) coded in an HDL are required to reduce
simulation time. Such modeling is also common during top-down
development. Standard HDLs—Verilog-A (VA), Verilog-AMS
(VAMS), SystemVerilog (SV)—are not universally recognized by
EDA tools, which may lead to compromises in coding flexibility
and demand complex environments that link tools from multiple
vendors. Introduction of BMODs also requires another level of
equivalency checking to ensure they adequately emulate the block
functionality.

Previous efforts have concentrated on building mixed-signal
validation (MSV) environments that resemble but stand apart
from traditional full-chip validation (FCV) flows. Some require
knowledge of specialized tool languages, like Cadence SKILL or
Ocean scripts, which have a limited population of developers [1-
5]. Others represent RTL as VCD files which prohibits validation
of dynamic interaction or closed-loop behavior [6-7]. Finally, by
implementing testbenches/behavioral models in VAMS (or
similar) some projects lack a direct reuse of FCV collateral, which
typically relies on Verilog and SystemVerilog HDL [8-10].

Moreover, although suitable for embedded or transparent analog
functions—those which are invisible or hidden from chip or
cluster I/O—most MSV and FCV methodologies do not
comprehend so-called opaque analog functions. In this growing
class of components, significant analog functionality is present at
chip ports where it has strong real-time dynamic interaction with
other components, either on the package or platform. The
common practice of modeling an analog port, such as an I/O lane,
as an equivalent 4-state digital signal becomes insufficient to
rigorously validate its behavior.

The methodology in this paper makes several significant
departures. Firstly, it introduces the concept of full-chip mixed-
signal validation (FCMSV), in which any top-level ports of an
analog discipline are optionally represented as real-valued signals
for validation simulations. Secondly, it exploits SystemVerilog
syntax, especially “real” ports, to create one testbench suite that
spans a project from top-down development to final bottom-up
implementation. Thirdly, it presents a global strategy to improve
simulation speed by targeting specific analog blocks for
replacement by BMODs. The methodology and environment
outlined in this paper have been applied to three successive Intel
SOC projects, each with significant mixed-signal content
comprising both open- and closed-loop networks.

Section 2 reviews the challenges encountered in MSV and
describes the proposed method. In Section 3 the methodology is
discussed in detail, particularly its impact on a project’s
development cycle and milestones. The enhanced environment—
scripting, structure, and coding styles—is described in Section 4.
Based on the proposed approach, Section 5 presents results from
the aforementioned projects, and Section 6 suggests future work
to further enhance the capabilities. Section 7 summarizes the
contributions.

2. FULL-CHIP MIXED-SIGNAL
VALIDATION

2.1 Proposed Solution
Pre-silicon validation often assumes two phases: MSV of
embedded analog functions and their mixed-signal interfaces,
followed by FCV in which the analog behavior is either ignored,
black-boxed, or replaced by pseudo-BMODs which capture
approximate digital behavior. For example, an I/O lane may be
emulated as a simple 4-state digital signal. However, an emerging
class of analog functions has critical real-time interactions with
external components on the package or on the platform. This
includes such familiar examples as high-speed serial I/O and link
training, PLL lock and clock references, and voltage regulators, as
well as second-order effects like supply decoupling and package
resonance. Additionally, on-package or on-die power supplies—
e.g. switching regulators, linear and LDO regulators, and charge
pumps—are another class of analog functions that are usually
simplistically “assumed to be present” at all times in large scale
cluster or half-system simulation environments. Often these
functions are modeled with nearly ideal characteristics that lack
any feedback or loading effects.

In all these cases, significant analog or power functionality is
present at SOC pins—it is no longer sufficient to black-box this
behavior: it must be represented at the pins as part of full-chip
validation. Hence we propose a new terminology: full-chip
mixed-signal validation (FCMSV). This approach is already
common in analog and power regulation industries, but it
represents a new paradigm for validating large SOCs.

Figure 1 illustrates the flowchart we developed for FCMSV [6].
Processes in orange are high-level tasks shared by the validation
team, and RTL and circuit (CKT) designers. Green-shaded items
are comprehended by a family of scripts with simdrv being the
primary simulation tool, as described further in Section 4.1. A
suite of testbenches and configurations is defined per a validation
plan, which is oblivious of HDL choice and simulator engine.
When executing a TB, simdrv parses the configuration. A build
consisting of only Verilog and SV pulls in collateral from
ordinary SVN or CVS repositories, and one of three engines is
specified (Synopsys, ModelSim, or Cadence NC-Verilog). This
flexibility accommodates various project preferences.

Results are available as logfiles for automated post-processing as
well as graphically, which is useful during testbench definition.

Figure 1. Full-chip (including mixed-signal validation) simulation flowchart.

For those testbench configurations that demand schematic or
Verilog-A/AMS BMODs (a mixed-language or mixed-mode
context), simdrv additionally compiles the Verilog and SV
collateral into Cadence libraries (the compile use5x step). It then
compiles, elaborates, and simulates a build, referring to the
compiled Cadence libraries and those containing collateral from
analog designers (their circuits and BMODs). The configuration
of cellviews is controlled by a testbench config view, which
permits instance- or cell-based selection of a netlist or BMOD
view for every block in the design hierarchy.

Because this scripted flow recognizes multiple HDLs and engines,
it is possible to execute MSV and traditional FCV using a single
set of SV testbenches. And a single regression test list can provide
digital and analog coverage since each test may stipulate a unique
combination of view representations, and a specific simulator for
optimal speed.

The proposed methodology achieves several key objectives:
1) Support common HDLs to enable maximum flexibility in

coding BMODs for performance and portability,
2) Permit instance- or cell-based representation as a Spice

netlist or one of several BMODs,
3) Enable validation during top-down development in addition

to bottom-up implementation,
4) Be extensible to rigorous FV methods and assertion-based

verification (PSL and SVA),
5) Simplify equivalency checking of BMODs and netlists

through portable (shared) testbenches, and
6) Support multiple vendor engines to seamlessly transition

between MSV and pure digital RTL FCV.

2.2 Applications to SOCs
Intel SOCs have a high degree of real-time interaction with
platform components in both the analog and power domains. This
impacts the validation strategy, since thorough coverage requires
that the associated analog or mixed-signal blocks be stimulated
(controlled and observed) from the testbench. Each SOC has
substantially diverse analog circuit (CKT) content that operates in
close coordination with RTL command and control logic. Small-
signal circuits included bandgaps, current references, high GBW
amplifiers, voltage and current sensors, thermal diodes and
sensors, and LDOs; large-signal CKTs included high-speed I/O
and equalization, ADC/DAC, DLL, PLL, transient detectors, and
buck switching regulators. Therefore these SOCs are suitable
examples to show the benefits of this flow.

3. METHODOLOGY

3.1 Top-Down Development
In our approach a single team owned FCV and MSV. This created
opportunities to reduce resources and efforts by reusing
testbenches and sharing BMODs. It also meant that a single
validation team participated in early discussions with product
architects to determine a comprehensive validation strategy. In
particular, to facilitate top-down development (the activity during
a project’s architecture definition and leading up to its first major
review milestone), we established two guidelines.

Guideline 1: The first element of this methodology was to adopt
SystemVerilog as the only HDL for coding testbenches.
Subsequently an RTL- or schematic-centric simulation could be
performed just by customizing the hierarchy configuration. This
greatly reduced the effort in coding and verifying the testbenches
themselves. We made extensive use of SV real ports to

control/observe analog behavior from the top level. This is
distinct from other methodologies in which mixed-signal blocks
are validated first, then black-boxed for FCV by encapsulating
them in a wrapper to form a firewall that insulates FCV from
“analog” behavior [4-5].

Guideline 2: The other element of our top-down methodology was
to create cluster-level BMODs in SystemVerilog. This enabled the
validation team to execute every testbench, prior to any design
implementation, using ideal high-level representations of planned
analog and mixed-signal blocks. (An approach which facilitates
spec-driven top-down design.) As the hierarchy was developed
and as underlying RTL and CKT collateral was implemented for
subsequent project milestones, the cluster BMODs could be
replaced with more detailed representations. Also, the cluster
BMODs were essential in providing more flexibility in testbench
configurations, especially in validating slow behavior and
infrequent events; this is discussed further in Section 5.3.

3.2 Bottom-Up Implementation for RTL and
Custom Circuits
As a design progresses through various milestones, the BMODs
of analog circuits evolve to capture more accurate behavior. This
is denoted by BMOD “Quality Factors,” as shown in Table 1. Per
a specification-driven design methodology, a preliminary model
(BMOD0.5) captures only ideal input-output behavior. Timing
and latency are approximated and digital control signals (e.g.
enable or power-down) are modeled as simple on/off functions
without comprehending charge and decay attributes. By its
intermediate milestone a circuit is sufficiently mature to demand
more detail in its corresponding BMOD. In particular, it models
dependencies on supply and reference voltages, captures
trim/calibration behavior, and exhibits accurate timing and slew.
The final model (BMOD2.0) is updated to comprehend
dependency on reference currents and other enhancements based
on simulation profiling.

Table 1. Definition of BMOD quality factor.
BMOD development to
Quality Levels

BMOD0.5
(Preliminary)

BMOD1.0
(Detailed)

BMOD2.0
(Final)

Basic behavior YES YES YES

Detailed behavior no YES YES

Dependence on
trim code(s)

no YES YES

Dependence on
supply voltage(s)

no YES YES

Dependence on
reference voltage(s)

no YES YES

Dependence on
reference current(s)

no no YES

Modeling of PVT corners no no no

The BMODs in general do not comprehend PVT corners—
ensuring adequate circuit performance margin is the responsibility
of CKT designers using conventional analog simulators; FCV and
MSV are too cumbersome to verify analog design corners.

Another significant activity during bottom-up implementation is
maintaining the equivalency of a design block and its
corresponding BMOD. This is especially challenging since no
formal verification methods exist for analog circuits. We identify
five possible checks, shown in Table 2, in which “1” is closest to
a transistor-level representation and “5” is the highest level of
abstraction. In general, the validation team owns equivalency
checks for abstraction level 5; CKT designers are responsible for
checking and maintaining all lower abstractions.

Equivalency “1” is comparing transistor-level and Verilog-A
behavior in an analog simulator (most rigorous comparison of
actual and modeled behavior); equivalency “3” similarly
compares a VAMS BMOD in a Verilog-AMS environment. Some
Intel devices include proprietary simulation models: to port a
schematic for Cadence Spectre or UltraSim simulation,
equivalency “2” verifies the same netlist using CMI and the
proprietary models. At the cluster level, equivalency “4” is
between an SV BMOD and an alternate representation, such as
VA or VAMS. Finally, to enable multiple simulation engines,
equivalency “5” verifies the same SV model in Cadence and
Synopsys (or ModelSim) to isolate any issues with vendor-
specific HDL interpretation.

Table 2. Equivalency checks for mixed-signal data

representation.

SystemVerilog

NanosimVerilog-AVerilog-AVerilog-A/AMS

Transistor

(BMOD)

Spectre/
Ultrasim
(CMI)(custom)

Sim Engine

Data Type

SystemVerilog

Verilog-AVerilog-AVerilog-A/AMS

Transistor

Synopsys
-VCS

Virtuoso
-AMS

Spectre/
Ultrasim

Custom
Spice

Sim Engine

Data Type

1

4

5

2

3

(CMI)

SystemVerilog

NanosimVerilog-AVerilog-AVerilog-A/AMS

Transistor

(BMOD)

Spectre/
Ultrasim
(CMI)(custom)

Sim Engine

Data Type

SystemVerilog

Verilog-AVerilog-AVerilog-A/AMS

Transistor

Synopsys
-VCS

Virtuoso
-AMS

Spectre/
Ultrasim

Custom
Spice

Sim Engine

Data Type

1

4

5

2

3

(CMI)

4. ENVIRONMENT

4.1 Scripting
The validation and design flow includes a unified directory
structure (with revision control in SVN or CVS). Synthesis,
simulation, linting, and tagging are all controlled by the same
underlying set of Perl scripts, Makefiles, and shell scripts in CSH,
Awk, and Sed. The scripts had the capability:

1) To recognize various HDLs such as Verilog-A/AMS and

SystemVerilog, and
2) To comprehend the Cadence design environment in addition

to Synopsys and ModelSim.

The validation environment is initialized in two steps. First, a
Cadence analog design environment is invoked and the schematic
design libraries are identified. Then additional EDA tools are
configured for RTL design, verification, synthesis, etc. We
combined these actions in a single setup_fcmsv script.
Afterwards there are three categories of scripts to enhance
productivity and provide automation. Most rely on gmake which
processes relationships in a global sim_make.rules file.

Script set 1: Automated Code Generation from Templates
mkmodule and mktest – These Perl scripts use
parameterized templates to create the necessary directory structure
for a new Verilog module or testbench, respectively, populate it
with file templates, and perform a check-in to the project
repository.

Script set 2: Compilation Scripts
gmake – The Makefile utility may be invoked directly to
compile, elaborate, and simulate individual modules or
testbenches. The simulator engine (vcs, mti, or ncv) may be
specified on the command line. For the special case of NC-
Verilog, the –use5x flag is added, such that the compiled result
is also a valid Cadence library, which conforms to the
library:cell:view (LCV) or 5X format. See also Section 4.2.

buildmodel – This Perl script builds all modules, from either a
release area or user area, based on a revision symbolic tag. By
default it then compiles the model for either Synopsys or
ModelSim.

Script set 3: Simulation
simdrv – A Perl script to run a testbench in batch mode.
Optionally it may perform a full regression test if a list is provided
in the regression_test.list command file.
 > simdrv –list regression_test.list –build

simdata – A Perl script to parse the results of a regression run,
which stores a result as simdata.results. A sample result of four
regression tests:

4.2 Directory Structure
A skeleton of the environment directory structure is shown in
Figure 2. Generic templates, tools, and models are indicated, as
well as the location of project design collateral, with placeholders
denoted by italics.

To enable MSV using Cadence tools (Virtuoso-AMS and
UltraSim) the RTL and SV testbench collateral must be identified
as valid libraries. Assuming the collateral has been compiled-in-
place in 5X format (see Section 4.1), the gray fields indicate the
additional files—cds.lib and hdl.var—to declare the
collateral to the Cadence library manager. Effectively, each unit,
each BFM, the core, and the system appear as distinct libraries;
likewise for each unit- or system-level test.

core/ common/templates/

src/ templates/
Makefile {model|module|systest|unittest}_cds.lib
cds.lib, hdl.var {model|module|systest|unittest}_hdl.var
core.v {module|systest|unittest}_Makefile

syn/ newmodel.sv
system/ newmodule.v

src/ systest.sv
Makefile tst_tb.sv
cds.lib, hdl.var unit_tst_tb.sv
my_tb.sv unit_unit_tb.sv

tests/my1_unit/my1_unit_s001/ unittest.sv
Makefile models/my1_bfm/src/
cds.lib, hdl.var Makefile
cds_globals.vams cds.lib, hdl.var
my1_unit_s001.sv my1_bfm.v
tst_tb.sv release/

units/my1_unit/ tools/bin/
src/ bin/

Makefile buildmodel
cds.lib, hdl.var mkmodule
unit.v mktest

tests/my1_unit_u001/ setup_fcmsv
Makefile sim_make.rules
cds.lib, hdl.var simdata
cds_globals.vams simdrv
my1_unit_u001.sv
tst_tb.sv, unit_tb.sv

Figure 2. Directory structure. (Grayed fields are
enhancements to enable Virtuoso-AMS recognition.)

4.3 Coding Styles
We developed a single Verilog template which supports Verilog
and SystemVerilog syntax, and can be correctly parsed by
Synopsys, ModelSim, and Cadence, by defining a compact set of
macros. All RTL modules were coded using this template,
including the chip top-level, such that the declaration of any
analog ports could be toggled between a scalar wire (for
synthesis) and a scalar real (for MSV).

Figure 3. Universal template for Verilog and SystemVerilog

that comprehends usage by Virtuoso-AMS.

Figure 3 shows an example template (values in italics are
placeholders). If no macro is defined, the interpretation defaults to
Verilog syntax suitable for simulation in ModelSim or Synopsys,
or for synthesis. Adding an “SV” flag causes the module to be
interpreted as SystemVerilog, and ports with an analog context
are redefined as reals. In this way a scalar port can be used to
exchange real-valued data, which is consistent with its analog
context (e.g. an analog value of 1 mA is passed as 0.001). The
“SV” flag is sufficient for ModelSim and Synopsys, since both
engines are fully compliant to IEEE P1800 SystemVerilog.

Cadence, however, is not P1800-compliant and requires a two-
level approach in which the original SV module is wrapped in
Verilog and its ports are mapped using hierarchical notation. By
specifying both “SV” and “CADENCE_SV” flags, first the
module is compiled to redefine the “analog” ports as internal real
signals (see blue text of Figure 4). Then a separate Verilog
wrapper must be compiled. Using the same template with the
“CADENCE_SV_WRAP” flag (green text of Figure 4), the
module is compiled as Verilog and it includes explicit bindings to
its embedded SystemVerilog-like instance.

This discussion is based on an older Cadence release. In a more
recent release, Cadence has been advocating a strategy called
Real-Value Modeling (RVM), in which the wreal type is
recognized as a valid port type and the separate Verilog wrapper
is no longer required.

The resulting hierarchy of a Cadence SV-like module is illustrated
in Figure 4, an example of a bandgap reference testbench shown
in Hierarchy Editor (HED). It is evident that multiple HDLs may
be supported in a single testbench configuration (this example
includes schematic, spectre netlist, Verilog-AMS, Verilog, and
SystemVerilog).

To represent the bandgap block in SystemVerilog, the cell:view
(LCV) binding of its fundamental BMOD is:

ssiyenga_sv : sim_bgref_tb : module
and the LCV of its Verilog wrapper is:

ssiyenga_ams : sim_bgref_tb : module

Note that since the BMOD and its wrapper have the same cell and
view names, they must be compiled into different libraries. In this
example, the top-level testbench is represented as a schematic but
any abstraction, including Verilog or SystemVerilog, is permitted.

Verilog
Wrapper

SystemVerilog
Module

SystemVerilog
Library Call

VerilogAMS
behavioral module

Figure 4. Example of instantiating SystemVerilog modules in

Virtuoso-AMS HED.

Table 3 itemizes recommended cellviews within Cadence-AMS.
In addition to typical schematic and symbol views, Verilog-
A/AMS have unique cellviews for models and stubs. The
“module” view denotes Verilog syntax, although as shown above
explicit binding rules may be used to emulate SystemVerilog.

Table 3. Recommended Virtuoso-AMS cellview labels.

View Type Description
schematic view showing transistor level circuit representation of a given unit
symbol view showing IOs/ports of a given unit
veriloga BMOD view created using Verilog-A tool type
verilogams BMOD view created using Verilog-AMS tool type
module BMOD view created using SystemVerilog/Verilog option/tool type
stub_va Null BMOD view created using Verilog-A tool type
stub_vams Null BMOD view created using Verilog-AMS tool type
stub Null BMOD view created using Verilog tool type

5. RESULTS

5.1 Analog Regression Results
We applied this flow to perform analog regression simulations,
including parametric sensitivity. This was extremely useful as the
design progressed toward complete schematics since violations
due to unexpected sensitivity could be detected as early as
possible. Table 4 shows an example of parametric regression
coverage for a voltage supply rail. Columns 10-17 list the
independent variables; note that these include digital and analog
qualities, all controlled from an SV testbench. The simulated
results, listed in columns 1-9, include common voltage regulator
metrics like setpoint voltage (Vnom) and efficiency (Eff).

Table 4. Analog regression simulation example with
parametric sensitivity.

V
n

o
m

 (
V

)

E
ff

 (
%

)

V
rp

l+
 (

%
)

V
rp

l-
 (

%
)

V
o

v
r

(%
)

V
sf

ts
D

e
v
 (

V
)

P
h

a
se

S
W

H
S

o
v
rF

lt

S
h

o
o

ts

d
is

b
a
l

ib
a
l_

p
d

n
o

v
lp

so
ft

sw

lo
a
d

M
in

M
a
x

E
N

A
Im

v
p

4

V
im

v
p

 (
V

)

R
cp

u
v
ss

 (
o

h
m

)

Last Run Time
1.053 84.2 3.6 3.2 2.0 0.071 23 3 0 0 0 0 1 0 0 0.7875 0.000001 Nov 8 2007 20:12:48
1.053 84.6 3.6 3.3 1.2 0.097 26 3 0 0 0 0 0 0 1 0.6168 0.000001 Nov 8 2007 23:24:18
1.054 79.8 4.4 3.0 2.1 0.050 23 3 0 0 0 0 0 0 1 0.6168 0.05 Nov 9 2007 02:37:57
1.054 79.6 4.5 2.9 3.0 0.041 23 3 0 0 0 0 0 0 0 0.7875 0.05 Nov 9 2007 05:51:26
1.052 84.6 7.5 6.2 2.2 0.078 12 3 0 0 0 0 0 1 0 0.7875 0.000001 Nov 8 2007 20:13:19
1.052 84.2 7.6 6.0 2.0 0.069 12 3 0 0 0 0 1 1 0 0.7875 0.000001 Nov 8 2007 22:08:18
1.052 84.1 6.0 6.3 2.7 0.128 7 3 0 0 1 0 1 1 0 0.7875 0.000001 Nov 9 2007 00:00:39
1.052 84.5 8.0 6.5 2.1 0.079 12 3 19 0 0 3 0 1 0 0.7875 0.000001 Nov 9 2007 01:41:40
1.052 84.1 8.4 5.7 2.1 0.076 12 3 0 0 0 3 1 1 0 0.7875 0.000001 Nov 9 2007 03:38:08

This example combined analog and power functions with
significant closed-loop digital control. Initially the testbench
configuration consisted of RTL and high-level BMODs, which
were gradually replaced by more accurate models. Ultimately, the
configuration shifted to RTL and schematics with relatively few
BMODs. The evolutionary process provided weekly checkpoints
to detect bugs in interfaces or implementation.

5.2 Effective BMOD Strategy This improvement in modeling efficiency is due to generational
learning about which blocks critically impact simulation speed
and how to define a single behavioral representation to satisfy all
testbenches.

Given the complexity and quantity of analog blocks in SOCs, a
validation strategy must identify a minimal set of BMODs
necessary for effective simulation coverage. Figure 5(a)
summarizes the unique analog block counts of all three projects.
“Leaf” blocks are those at the lowest level of hierarchy,
comprised only of transistors and other schematic primitives.
“Structural” blocks establish the hierarchy by instantiating and
connecting child blocks. Projects A and B had similar proportions
(~0.66) of leaf and structural blocks; Project C had a relatively
“deeper” hierarchy reflected in its smaller 0.55 ratio.

5.3 Correlation between Hierarchy,
Partitioning, and Simulation Speed
Proper partitioning of analog design hierarchy can facilitate much
faster simulations without sacrificing transistor-level accuracy.
Many analog leaf blocks, especially those which include passive
networks or trim functions, have a very high node count if
captured as a flat schematic. Examples include opamps,
references, comparators, and data converters. By collecting each
distributed network into a single element instead, each element
may be modeled by a lumped equivalent; there is no impact to
layout artwork or LVS, only one more level of design hierarchy.

210
293

104

326

436

191

0

100

200

300

400

500

600

700

800

Project A Project B Project C

U
ni

qu
e

A
na

lo
g

B
lo

ck
s

Leaf Blocks Structural Blocks

Figure 6 shows the impact on the simulation executable of two
projects as a function of design partitioning. All results are
normalized to simulations consisting of RTL and a complete
transistor netlist (Spice netlist column), which is the baseline for
simulation accuracy and actual simulation time. To reduce
simulation time, a common practice is to replace all schematics
with BMODs. As shown (in column BMODs w/lumped RC) the
speedup is significant, with CPU usage reducing by a factor of 9
and 25 for Projects B and C, respectively. However, creating a
complete set of BMODs may demand a substantial coding effort,
and it potentially masks bugs due to inadequate model fidelity.
 Figure 5(a). Circuit block count.
We found that simply replacing resistor and capacitor networks
with lumped elements, and leaving the analog netlist otherwise
unchanged, reduced simulation time by 30-60% in both examples
(column Spice Netlist w/lumped RC). The module count relative
to the Spice Netlist baseline was almost unchanged as expected,
but interconnect count was nearly halved. This suggests a strategy
for design hierarchy partitioning:

Figure 5(b) presents the BMOD statistics for the same projects. It
shows a generational improvement in validation strategy and
planning. In all three projects nearly 50% of leaf blocks had
corresponding BMODs as dictated by their validation plans;
however some redundant models were coded too. (Redundancy
implies a single block has multiple BMOD representations, such
as Verilog-A and Verilog-AMS, or Verilog-A and stub, etc.) In
Project A, 10% of leaf cells required alternative models, which
was reduced to 0% redundancy by Project C. The prevalence of
BMODs at the structural level has no clear trend. This is expected
considering that the projects had very different functions and
design hierarchies. But the trend in modeling improvement is
even more pronounced: 24% of Project A’s structural blocks had
redundant models, which was reduced to just 9% in Project C.

1) If a leaf cell contains a high node-count network (e.g. resistor

matching), capture it as a single symbol and push that
schematic complexity down the hierarchy as a new leaf cell.

2) Create an equivalent lumped-element schematic or BMOD.
3) For a faster simulation use those equivalent cellviews along

with selective BMODs of those blocks less essential to the
testbench coverage goal.

 This strategy of selective BMOD usage is more effective for

MSV than a BMOD-only approach:
48%

42%

10%

24%

48%
50%

6%

17%

47%

36%

0%

9%

0%

10%

20%

30%

40%

50%

Leaf Blocks
w/BMOD

Struct Blocks
w/BMOD

Redundant
BMOD, Leaf

Redundant
BMOD, Struct

Project A Project B Project C

1) Greatly reduces the number of BMODs which must be coded,
2) Retains as much transistor-level accuracy as possible, and
3) Can achieve nearly the same simulation speed.

Another example of partitioning is the tradeoff between high-level
(cluster) BMODs and a combination of detailed block BMODs
and schematics in terms of simulation fidelity and speed. For
Project B, when simulating for 1 millisecond, a configuration
comprised of schematics and detailed block-level BMODs
required 80 minutes to complete. The same simulation based on
relatively few SV BMODs of entire analog clusters completed in
less than 4 minutes, a 20× improvement. Our validation plan
leveraged both configurations for different testbench goals. The
slower, high-quality representation was used to evaluate critical
datasheet specs, whereas the faster representation was selected to
validate low-bandwidth behavior, such as control algorithms and
platform interaction. Figure 5(b). BMOD coding efficiency.

1

0.47
0.14

1

0.96

0.78

1

0.42

0.11

0

0.5

1

1.5

2

2.5

3

Spice Netlist Spice Netlist
w/Lumped RC

BMODs
w/Lumped RC

In
te

rc
on

ne
ct

s,
 M

od
ul

es
, C

PU
 U

sa
ge

 (N
or

m
al

iz
ed

)

InterConnect Modules CPU Usage

1
0.65

0.22

1

0.95

0.3

1

0.68

0.04

0

0.5

1

1.5

2

2.5

3

Spice Netlist Spice Netlist
w/Lumped RC

BMODs
w/Lumped RC

In
te

rc
on

ne
ct

s,
 M

od
ul

es
, C

PU
 U

sa
ge

 (N
or

m
al

iz
ed

)

InterConnect Modules CPU Usage

(a): Project B. (b): Project C.
Figure 6. Effect of optimized partitioning and modeling of mixed-signal circuits in (a) Project B and (b) Project C on three metrics

of simulation resources: number of interconnects, number of modules, and CPU usage.

5.4 Selective Usage of Digital Constructs
In coding BMODs, particularly for analog leaf blocks, we
recommended Verilog-A unless mixed-signal functionality
required Verilog-AMS mainly because most CKT designers are
more fluent in Verilog-A and this policy made it possible for the
designer to own and maintain the schematic and BMOD views,
which reduced the burden on the validation team. Secondly,
Verilog-A is usually recognized by analog simulators, however
Verilog-AMS is not. Therefore the validation team supported only
the relatively small population of CKT designers who required
training on Verilog-AMS usage and environments.

To determine which types of mixed-signal blocks require VAMS
representation, we benchmarked a simple clock buffer, shown in
Figure 7. For toggle rates approaching DC there is little benefit in
VAMS. But as toggle rates exceeded 10 MHz, simulation time of
VA increased exponentially compared to VAMS. This inflection
point can guide the selection of VA or VAMS to model a mixed-
signal block. Certainly anything with high-speed digital interfaces
(PLL, DLL, fast data converters, etc) should be modeled in
VAMS. Note that a VAMS leaf cell requires all parent cells up the
hierarchy also be represented in VAMS to retain the logic
discipline.

6. FUTURE WORK
There is no analog equivalent of logical assertion-based
verification (ABV), as found in PSL and SVA, although
considerable research is being done in the standards community
on extensions to system modeling. One example is the activity by
Accellera to align Verilog-AMS and SystemVerilog into a
SystemVerilog-AMS standard. As an intermediate solution, we
are actively investigating methods to develop macro-based analog
self-checkers, initially based on Verilog-A, which may be
embedded in analog circuits and/or their behavioral models.

0
20
40
60
80

100
120
140
160
180
200

1 10 100
Digital Interface Toggle Rate (MHz)

VA
 /

VA
M

S
Si

m
ul

at
io

n
Ti

m
e

R
at

io

(a)

(b)

Figure 7. Impact of properly modeled digital nodes on (a)
actual simulation time using a clock buffer (b) as an example.

Simple checkers have been coded to monitor basic input-output
relationships (like block enable/disable and signal voltage or
current levels). More sophisticated checkers create a parallel
representation of a block as a parameterized transfer function. By
applying the block’s input also to its checker, it is possible to
dynamically compare results of the DUT and its checker; a
violation is reported if their difference exceeds a preset tolerance.
These checkers recognize their position in the design hierarchy
such that the top-level testbench may universally enable/disable
checkers above or below a certain depth. This permits fine-
grained control of validation coverage and simulation speed
without requiring edits of the actual blocks.

7. SUMMARY
Considering the growing complexity of SOCs, we introduced the
concept of full-chip mixed-signal validation (FCMSV). A key
component of this approach is the use of SystemVerilog to
propagate analog behavior through scalar real ports; SV was also
proposed for many high-level cluster BMODs. To facilitate
FCMSV we then presented an environment, based on a common
Intel RTL flow, in which an SV testbench suite comprehends
multiple HDLs and simulators. The environment was reviewed in
detail, including its application to combined digital and analog
regression testing. It greatly reduced testbench coding, and
enabled testbench and BMOD sharing between FCV and MSV.

A methodology for top-down development and bottom-up
implementation was presented with particular emphasis on
BMOD evolution and equivalency checking. Guidelines were
discussed for the incremental improvement of analog BMODs as
part of each design milestone.

Finally validation results were presented from three different
projects. The capability of this flow to perform rapid analog
regression testing was demonstrated. More significantly the
performance benefits of various validation strategies were
quantified. Firstly, intelligent hierarchy partitioning and BMOD
configuration provided substantial simulation speedup without
sacrificing any transistor-level accuracy. Next, it was shown that a

careful validation plan can achieve very high efficiency in BMOD
coding: minimal BMODs and little redundancy. Lastly, we
benchmarked a circuit to guide selection of Verilog-A versus
Verilog-AMS in modeling a block.

The union of FCV and MSV by a single team had great
opportunities for resource sharing. A team of four full-time staff
were able to validate each project by following this approach.

8. ACKNOWLEDGEMENTS
The authors acknowledge the support of DAs (Vikram Muttineni,
Liza Jones, and Jason Salvaggio) for implementing changes to the
original tool environments. And we acknowledge the technical
contributions of Prashant Choudhari and Roque Thuo. Significant
support was also provided by Cadence applications engineers,
particularly Vasant Pai.

9. REFERENCES
[1] Virtuoso AMS Designer Simulator User Guide, Version 8.x, Cadence,

Inc.
[2] Miller, I. and Fitzpatrick, D. Analog Behavioral Modeling with

Verilog-A Language.
[3] Kundert, K. S. and Zinke, O. A Designer’s Guide to Verilog-AMS.
[4] Accellera, SystemVerilog 3.1a Language Reference Manual.
[5] Miller, I., Fitzpatrick, D., and Aisola, R. “Analog design with Verilog-

A.” In Proceedings of Verilog HDL Conference. 1997.
[6] Mayes, M and Chin M. S. “All Verilog mixed signal simulator with

analog behavioral and noise models.” In VLSI Circuits. 1996.
[7] Wong, W., Gao, X., Wang, Y., and Vishwanathan, S. “Overview of

mixed-signal methodology for digital full-chip design/verification.” In
Proceedings of International Conference on Solid-State and Integrated
Circuits Technology. 2004.

[8] Joeres, S., Groh, H.-W., and Heinen, S., “Event driven analog
modeling of RF frontends.” In Behavioral Modeling and Simulation
Workshop. 2007.

[9] Daglio, P., “A complete and fully qualified design flow for verification
of mixed-signal SoC with embedded Flash memories.” In Design,
Automation and Test in Europe. 2006.

[10] Pennell, M., Forni, B., and Evans, R. “Full chip mixed-signal
simulation of a disk drive read/write channel.” In Proceedings of
Bipolar/BiCMOS Circuits and Technology Meeting. 1996.

