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ABSTRACT  
In this paper, we introduce the concept of full-chip mixed-signal 
validation (FCMSV) for SOCs, in which any top-level ports of an 
analog discipline are represented as real-valued signals for 
validation simulations. Secondly, it exploits SystemVerilog 
syntax, especially “real” ports, to create one testbench suite that 
spans a project from top-down development to final bottom-up 
implementation. Thirdly, it presents a global strategy to improve 
simulation speed by targeting specific analog blocks for 
replacement by BMODs. This methodology is a generic strategy 
independent of EDA tool. The methodology and environment 
outlined in this paper have been successfully applied to validate 
three successive projects.   
 
Categories and Subject Descriptors  
B.7.2 [Integrated Circuits]: Design Aids – simulation, 
verification, methodology.  
 
General Terms  
Verification, Performance, Standardization 
 
Keywords  
Full Chip, Mixed Signal, SOC, Strategy, Methodology 
 
1. INTRODUCTION  
Pre-silicon validation of large digital ICs benefits from mature 
RTL methodologies and environments, including extensive 
support for formal verification (FV) and assertion-based 
verification. However in System on Chip (SOC) products, as the 
analog or mixed-signal content grows in quantity and complexity 
robust methods give way to disjointed validation approaches. 
Since transistor-level co-simulation of analog circuits and RTL is 
often impractical, behavioral models (BMODs) and bus functional 
models (BFMs) coded in an HDL are required to reduce 
simulation time. Such modeling is also common during top-down 
development. Standard HDLs—Verilog-A (VA), Verilog-AMS 
(VAMS), SystemVerilog (SV)—are not universally recognized by 
EDA tools, which may lead to compromises in coding flexibility 
and demand complex environments that link tools from multiple 
vendors. Introduction of BMODs also requires another level of 
equivalency checking to ensure they adequately emulate the block 
functionality.  
 
 
 
 
 
 
 
 

Previous efforts have concentrated on building mixed-signal 
validation (MSV) environments that resemble but stand apart 
from traditional full-chip validation (FCV) flows. Some require 
knowledge of specialized tool languages, like Cadence SKILL or 
Ocean scripts, which have a limited population of developers [1-
5]. Others represent RTL as VCD files which prohibits validation 
of dynamic interaction or closed-loop behavior [6-7]. Finally, by 
implementing testbenches/behavioral models in VAMS (or 
similar) some projects lack a direct reuse of FCV collateral, which 
typically relies on Verilog and SystemVerilog HDL [8-10].  
 
Moreover, although suitable for embedded or transparent analog 
functions—those which are invisible or hidden from chip or 
cluster I/O—most MSV and FCV methodologies do not 
comprehend so-called opaque analog functions. In this growing 
class of components, significant analog functionality is present at 
chip ports where it has strong real-time dynamic interaction with 
other components, either on the package or platform. The 
common practice of modeling an analog port, such as an I/O lane, 
as an equivalent 4-state digital signal becomes insufficient to 
rigorously validate its behavior.   
 
The methodology in this paper makes several significant 
departures. Firstly, it introduces the concept of full-chip mixed-
signal validation (FCMSV), in which any top-level ports of an 
analog discipline are optionally represented as real-valued signals 
for validation simulations. Secondly, it exploits SystemVerilog 
syntax, especially “real” ports, to create one testbench suite that 
spans a project from top-down development to final bottom-up 
implementation. Thirdly, it presents a global strategy to improve 
simulation speed by targeting specific analog blocks for 
replacement by BMODs. The methodology and environment 
outlined in this paper have been applied to three successive Intel 
SOC projects, each with significant mixed-signal content 
comprising both open- and closed-loop networks.   
 
Section 2 reviews the challenges encountered in MSV and 
describes the proposed method. In Section 3 the methodology is 
discussed in detail, particularly its impact on a project’s 
development cycle and milestones. The enhanced environment—
scripting, structure, and coding styles—is described in Section 4. 
Based on the proposed approach, Section 5 presents results from 
the aforementioned projects, and Section 6 suggests future work 
to further enhance the capabilities. Section 7 summarizes the 
contributions. 
 
 
 
 
 
 
 



2. FULL-CHIP MIXED-SIGNAL 
VALIDATION  
 
2.1 Proposed Solution 
Pre-silicon validation often assumes two phases: MSV of 
embedded analog functions and their mixed-signal interfaces, 
followed by FCV in which the analog behavior is either ignored, 
black-boxed, or replaced by pseudo-BMODs which capture 
approximate digital behavior. For example, an I/O lane may be 
emulated as a simple 4-state digital signal. However, an emerging 
class of analog functions has critical real-time interactions with 
external components on the package or on the platform. This 
includes such familiar examples as high-speed serial I/O and link 
training, PLL lock and clock references, and voltage regulators, as 
well as second-order effects like supply decoupling and package 
resonance. Additionally, on-package or on-die power supplies—
e.g. switching regulators, linear and LDO regulators, and charge 
pumps—are another class of analog functions that are usually 
simplistically “assumed to be present” at all times in large scale 
cluster or half-system simulation environments. Often these 
functions are modeled with nearly ideal characteristics that lack 
any feedback or loading effects. 
 

In all these cases, significant analog or power functionality is 
present at SOC pins—it is no longer sufficient to black-box this 
behavior: it must be represented at the pins as part of full-chip 
validation. Hence we propose a new terminology: full-chip 
mixed-signal validation (FCMSV). This approach is already 
common in analog and power regulation industries, but it 
represents a new paradigm for validating large SOCs.  
 
Figure 1 illustrates the flowchart we developed for FCMSV [6]. 
Processes in orange are high-level tasks shared by the validation 
team, and RTL and circuit (CKT) designers. Green-shaded items 
are comprehended by a family of scripts with simdrv being the 
primary simulation tool, as described further in Section 4.1. A 
suite of testbenches and configurations is defined per a validation 
plan, which is oblivious of HDL choice and simulator engine. 
When executing a TB, simdrv parses the configuration. A build 
consisting of only Verilog and SV pulls in collateral from 
ordinary SVN or CVS repositories, and one of three engines is 
specified (Synopsys, ModelSim, or Cadence NC-Verilog). This 
flexibility accommodates various project preferences.  
 
Results are available as logfiles for automated post-processing as 
well as graphically, which is useful during testbench definition. 

 
Figure 1. Full-chip (including mixed-signal validation) simulation flowchart.



For those testbench configurations that demand schematic or 
Verilog-A/AMS BMODs (a mixed-language or mixed-mode 
context), simdrv additionally compiles the Verilog and SV 
collateral into Cadence libraries (the compile use5x step). It then 
compiles, elaborates, and simulates a build, referring to the 
compiled Cadence libraries and those containing collateral from 
analog designers (their circuits and BMODs). The configuration 
of cellviews is controlled by a testbench config view, which 
permits instance- or cell-based selection of a netlist or BMOD 
view for every block in the design hierarchy.   
 
Because this scripted flow recognizes multiple HDLs and engines, 
it is possible to execute MSV and traditional FCV using a single 
set of SV testbenches. And a single regression test list can provide 
digital and analog coverage since each test may stipulate a unique 
combination of view representations, and a specific simulator for 
optimal speed. 
 
The proposed methodology achieves several key objectives: 
1) Support common HDLs to enable maximum flexibility in 

coding BMODs for performance and portability,  
2) Permit instance- or cell-based representation as a Spice 

netlist or one of several BMODs,  
3) Enable validation during top-down development in addition 

to bottom-up implementation,  
4) Be extensible to rigorous FV methods and assertion-based 

verification (PSL and SVA),  
5) Simplify equivalency checking of BMODs and netlists 

through portable (shared) testbenches, and 
6) Support multiple vendor engines to seamlessly transition 

between MSV and pure digital RTL FCV. 
 
2.2 Applications to SOCs 
Intel SOCs have a high degree of real-time interaction with 
platform components in both the analog and power domains. This 
impacts the validation strategy, since thorough coverage requires 
that the associated analog or mixed-signal blocks be stimulated 
(controlled and observed) from the testbench. Each SOC has 
substantially diverse analog circuit (CKT) content that operates in 
close coordination with RTL command and control logic. Small-
signal circuits included bandgaps, current references, high GBW 
amplifiers, voltage and current sensors, thermal diodes and 
sensors, and LDOs; large-signal CKTs included high-speed I/O 
and equalization, ADC/DAC, DLL, PLL, transient detectors, and 
buck switching regulators. Therefore these SOCs are suitable 
examples to show the benefits of this flow. 
 
3. METHODOLOGY  
 
3.1 Top-Down Development  
In our approach a single team owned FCV and MSV. This created 
opportunities to reduce resources and efforts by reusing 
testbenches and sharing BMODs. It also meant that a single 
validation team participated in early discussions with product 
architects to determine a comprehensive validation strategy. In 
particular, to facilitate top-down development (the activity during 
a project’s architecture definition and leading up to its first major 
review milestone), we established two guidelines. 
 
Guideline 1: The first element of this methodology was to adopt 
SystemVerilog as the only HDL for coding testbenches. 
Subsequently an RTL- or schematic-centric simulation could be 
performed just by customizing the hierarchy configuration. This 
greatly reduced the effort in coding and verifying the testbenches 
themselves. We made extensive use of SV real ports to 

control/observe analog behavior from the top level. This is 
distinct from other methodologies in which mixed-signal blocks 
are validated first, then black-boxed for FCV by encapsulating 
them in a wrapper to form a firewall that insulates FCV from 
“analog” behavior [4-5]. 
 
Guideline 2: The other element of our top-down methodology was 
to create cluster-level BMODs in SystemVerilog. This enabled the 
validation team to execute every testbench, prior to any design 
implementation, using ideal high-level representations of planned 
analog and mixed-signal blocks. (An approach which facilitates 
spec-driven top-down design.) As the hierarchy was developed 
and as underlying RTL and CKT collateral was implemented for 
subsequent project milestones, the cluster BMODs could be 
replaced with more detailed representations. Also, the cluster 
BMODs were essential in providing more flexibility in testbench 
configurations, especially in validating slow behavior and 
infrequent events; this is discussed further in Section 5.3. 
 
3.2 Bottom-Up Implementation for RTL and 
Custom Circuits  
As a design progresses through various milestones, the BMODs 
of analog circuits evolve to capture more accurate behavior. This 
is denoted by BMOD “Quality Factors,” as shown in Table 1. Per 
a specification-driven design methodology, a preliminary model 
(BMOD0.5) captures only ideal input-output behavior. Timing 
and latency are approximated and digital control signals (e.g. 
enable or power-down) are modeled as simple on/off functions 
without comprehending charge and decay attributes. By its 
intermediate milestone a circuit is sufficiently mature to demand 
more detail in its corresponding BMOD. In particular, it models 
dependencies on supply and reference voltages, captures 
trim/calibration behavior, and exhibits accurate timing and slew. 
The final model (BMOD2.0) is updated to comprehend 
dependency on reference currents and other enhancements based 
on simulation profiling. 
 
 

Table 1. Definition of BMOD quality factor. 
BMOD development to
Quality Levels

BMOD0.5
(Preliminary)

BMOD1.0
(Detailed)

BMOD2.0
(Final)

Basic behavior YES YES YES

Detailed behavior no YES YES

Dependence on
trim code(s)

no YES YES

Dependence on
supply voltage(s)

no YES YES

Dependence on
reference voltage(s)

no YES YES

Dependence on 
reference current(s)

no no YES

Modeling of PVT corners no no no  
 
 
The BMODs in general do not comprehend PVT corners—
ensuring adequate circuit performance margin is the responsibility 
of CKT designers using conventional analog simulators; FCV and 
MSV are too cumbersome to verify analog design corners. 
 
Another significant activity during bottom-up implementation is 
maintaining the equivalency of a design block and its 
corresponding BMOD. This is especially challenging since no 
formal verification methods exist for analog circuits. We identify 
five possible checks, shown in Table 2, in which “1” is closest to 
a transistor-level representation and “5” is the highest level of 
abstraction. In general, the validation team owns equivalency 
checks for abstraction level 5; CKT designers are responsible for 
checking and maintaining all lower abstractions.  



Equivalency “1” is comparing transistor-level and Verilog-A 
behavior in an analog simulator (most rigorous comparison of 
actual and modeled behavior); equivalency “3” similarly 
compares a VAMS BMOD in a Verilog-AMS environment. Some 
Intel devices include proprietary simulation models: to port a 
schematic for Cadence Spectre or UltraSim simulation, 
equivalency “2” verifies the same netlist using CMI and the 
proprietary models. At the cluster level, equivalency “4” is 
between an SV BMOD and an alternate representation, such as 
VA or VAMS.  Finally, to enable multiple simulation engines, 
equivalency “5” verifies the same SV model in Cadence and 
Synopsys (or ModelSim) to isolate any issues with vendor-
specific HDL interpretation. 

 
Table 2. Equivalency checks for mixed-signal data 

representation. 
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4. ENVIRONMENT  
 
4.1 Scripting  
The validation and design flow includes a unified directory 
structure (with revision control in SVN or CVS). Synthesis, 
simulation, linting, and tagging are all controlled by the same 
underlying set of Perl scripts, Makefiles, and shell scripts in CSH, 
Awk, and Sed. The scripts had the capability: 
 
1) To recognize various HDLs such as Verilog-A/AMS and 

SystemVerilog, and 
2) To comprehend the Cadence design environment in addition 

to Synopsys and ModelSim.  
 
The validation environment is initialized in two steps. First, a 
Cadence analog design environment is invoked and the schematic 
design libraries are identified. Then additional EDA tools are 
configured for RTL design, verification, synthesis, etc. We 
combined these actions in a single setup_fcmsv script. 
Afterwards there are three categories of scripts to enhance 
productivity and provide automation. Most rely on gmake which 
processes relationships in a global sim_make.rules file.   
 
Script set 1: Automated Code Generation from Templates 
mkmodule and mktest – These Perl scripts use 
parameterized templates to create the necessary directory structure 
for a new Verilog module or testbench, respectively, populate it 
with file templates, and perform a check-in to the project 
repository.  
 
Script set 2: Compilation Scripts 
gmake – The Makefile utility may be invoked directly to 
compile, elaborate, and simulate individual modules or 
testbenches. The simulator engine (vcs, mti, or ncv) may be 
specified on the command line. For the special case of NC-
Verilog, the –use5x flag is added, such that the compiled result 
is also a valid Cadence library, which conforms to the 
library:cell:view (LCV) or 5X format. See also Section 4.2.  

buildmodel – This Perl script builds all modules, from either a 
release area or user area, based on a revision symbolic tag. By 
default it then compiles the model for either Synopsys or 
ModelSim.  
 
Script set 3: Simulation 
simdrv – A Perl script to run a testbench in batch mode. 
Optionally it may perform a full regression test if a list is provided 
in the regression_test.list command file.  
    > simdrv –list regression_test.list –build  
 
simdata – A Perl script to parse the results of a regression run, 
which stores a result as simdata.results.  A sample result of four 
regression tests: 

 
4.2 Directory Structure  
A skeleton of the environment directory structure is shown in 
Figure 2. Generic templates, tools, and models are indicated, as 
well as the location of project design collateral, with placeholders 
denoted by italics.  
 
To enable MSV using Cadence tools (Virtuoso-AMS and 
UltraSim) the RTL and SV testbench collateral must be identified 
as valid libraries. Assuming the collateral has been compiled-in-
place in 5X format (see Section 4.1), the gray fields indicate the 
additional files—cds.lib and hdl.var—to declare the 
collateral to the Cadence library manager. Effectively, each unit, 
each BFM, the core, and the system appear as distinct libraries; 
likewise for each unit- or system-level test. 
   
core/ common/templates/

src/ templates/
Makefile {model|module|systest|unittest}_cds.lib
cds.lib, hdl.var {model|module|systest|unittest}_hdl.var
core.v {module|systest|unittest}_Makefile

syn/ newmodel.sv
system/ newmodule.v

src/ systest.sv
Makefile tst_tb.sv
cds.lib, hdl.var unit_tst_tb.sv
my_tb.sv unit_unit_tb.sv

tests/my1_unit/my1_unit_s001/ unittest.sv
Makefile models/my1_bfm/src/
cds.lib, hdl.var Makefile
cds_globals.vams cds.lib, hdl.var
my1_unit_s001.sv my1_bfm.v
tst_tb.sv release/

units/my1_unit/ tools/bin/
src/ bin/

Makefile buildmodel
cds.lib, hdl.var mkmodule
unit.v mktest

tests/my1_unit_u001/ setup_fcmsv
Makefile sim_make.rules
cds.lib, hdl.var simdata
cds_globals.vams simdrv
my1_unit_u001.sv
tst_tb.sv, unit_tb.sv  

Figure 2. Directory structure. (Grayed fields are 
enhancements to enable Virtuoso-AMS recognition.) 

 
4.3 Coding Styles  
We developed a single Verilog template which supports Verilog 
and SystemVerilog syntax, and can be correctly parsed by 
Synopsys, ModelSim, and Cadence, by defining a compact set of 
macros. All RTL modules were coded using this template, 
including the chip top-level, such that the declaration of any 
analog ports could be toggled between a scalar wire (for 
synthesis) and a scalar real (for MSV). 



 
Figure 3. Universal template for Verilog and SystemVerilog 

that comprehends usage by Virtuoso-AMS.  
 
 
Figure 3 shows an example template (values in italics are 
placeholders). If no macro is defined, the interpretation defaults to 
Verilog syntax suitable for simulation in ModelSim or Synopsys, 
or for synthesis. Adding an “SV” flag causes the module to be 
interpreted as SystemVerilog, and ports with an analog context 
are redefined as reals. In this way a scalar port can be used to 
exchange real-valued data, which is consistent with its analog 
context (e.g. an analog value of 1 mA is passed as 0.001). The 
“SV” flag is sufficient for ModelSim and Synopsys, since both 
engines are fully compliant to IEEE P1800 SystemVerilog.  
 
Cadence, however, is not P1800-compliant and requires a two-
level approach in which the original SV module is wrapped in 
Verilog and its ports are mapped using hierarchical notation. By 
specifying both “SV” and “CADENCE_SV” flags, first the 
module is compiled to redefine the “analog” ports as internal real 
signals (see blue text of Figure 4). Then a separate Verilog 
wrapper must be compiled. Using the same template with the 
“CADENCE_SV_WRAP” flag (green text of Figure 4), the 
module is compiled as Verilog and it includes explicit bindings to 
its embedded SystemVerilog-like instance. 
 
This discussion is based on an older Cadence release. In a more 
recent release, Cadence has been advocating a strategy called 
Real-Value Modeling (RVM), in which the wreal type is 
recognized as a valid port type and the separate Verilog wrapper 
is no longer required. 
 
The resulting hierarchy of a Cadence SV-like module is illustrated 
in Figure 4, an example of a bandgap reference testbench shown 
in Hierarchy Editor (HED). It is evident that multiple HDLs may 
be supported in a single testbench configuration (this example 
includes schematic, spectre netlist, Verilog-AMS, Verilog, and 
SystemVerilog).  
 
To represent the bandgap block in SystemVerilog, the cell:view 
(LCV) binding of its fundamental BMOD is:  

ssiyenga_sv  : sim_bgref_tb : module 
and the LCV of its Verilog wrapper is:   

ssiyenga_ams : sim_bgref_tb : module 
 
Note that since the BMOD and its wrapper have the same cell and 
view names, they must be compiled into different libraries. In this 
example, the top-level testbench is represented as a schematic but 
any abstraction, including Verilog or SystemVerilog, is permitted.  

Verilog 
Wrapper 

SystemVerilog 
Module 

SystemVerilog 
Library Call  

VerilogAMS 
behavioral module 

 
Figure 4. Example of instantiating SystemVerilog modules in 

Virtuoso-AMS HED. 
 
Table 3 itemizes recommended cellviews within Cadence-AMS. 
In addition to typical schematic and symbol views, Verilog-
A/AMS have unique cellviews for models and stubs. The 
“module” view denotes Verilog syntax, although as shown above 
explicit binding rules may be used to emulate SystemVerilog.   

 
Table 3. Recommended Virtuoso-AMS cellview labels. 

View Type Description
schematic view showing transistor level circuit representation of a given unit
symbol view showing IOs/ports of a given unit
veriloga BMOD view created using Verilog-A tool type
verilogams BMOD view created using Verilog-AMS tool type
module BMOD view created using SystemVerilog/Verilog option/tool type
stub_va Null BMOD view created using Verilog-A tool type
stub_vams Null BMOD view created using Verilog-AMS tool type
stub Null BMOD view created using Verilog tool type  
 
5. RESULTS  
 
5.1 Analog Regression Results  
We applied this flow to perform analog regression simulations, 
including parametric sensitivity. This was extremely useful as the 
design progressed toward complete schematics since violations 
due to unexpected sensitivity could be detected as early as 
possible. Table 4 shows an example of parametric regression 
coverage for a voltage supply rail. Columns 10-17 list the 
independent variables; note that these include digital and analog 
qualities, all controlled from an SV testbench. The simulated 
results, listed in columns 1-9, include common voltage regulator 
metrics like setpoint voltage (Vnom) and efficiency (Eff).  
 

Table 4. Analog regression simulation example with 
parametric sensitivity. 
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1.053 84.2 3.6 3.2 2.0 0.071 23 3 0 0 0 0 1 0 0 0.7875 0.000001 Nov 8 2007 20:12:48
1.053 84.6 3.6 3.3 1.2 0.097 26 3 0 0 0 0 0 0 1 0.6168 0.000001 Nov 8 2007 23:24:18
1.054 79.8 4.4 3.0 2.1 0.050 23 3 0 0 0 0 0 0 1 0.6168 0.05 Nov 9 2007 02:37:57
1.054 79.6 4.5 2.9 3.0 0.041 23 3 0 0 0 0 0 0 0 0.7875 0.05 Nov 9 2007 05:51:26
1.052 84.6 7.5 6.2 2.2 0.078 12 3 0 0 0 0 0 1 0 0.7875 0.000001 Nov 8 2007 20:13:19
1.052 84.2 7.6 6.0 2.0 0.069 12 3 0 0 0 0 1 1 0 0.7875 0.000001 Nov 8 2007 22:08:18
1.052 84.1 6.0 6.3 2.7 0.128 7 3 0 0 1 0 1 1 0 0.7875 0.000001 Nov 9 2007 00:00:39
1.052 84.5 8.0 6.5 2.1 0.079 12 3 19 0 0 3 0 1 0 0.7875 0.000001 Nov 9 2007 01:41:40
1.052 84.1 8.4 5.7 2.1 0.076 12 3 0 0 0 3 1 1 0 0.7875 0.000001 Nov 9 2007 03:38:08  
 
This example combined analog and power functions with 
significant closed-loop digital control. Initially the testbench 
configuration consisted of RTL and high-level BMODs, which 
were gradually replaced by more accurate models. Ultimately, the 
configuration shifted to RTL and schematics with relatively few 
BMODs. The evolutionary process provided weekly checkpoints 
to detect bugs in interfaces or implementation.  



5.2 Effective BMOD Strategy  This improvement in modeling efficiency is due to generational 
learning about which blocks critically impact simulation speed 
and how to define a single behavioral representation to satisfy all 
testbenches.  

Given the complexity and quantity of analog blocks in SOCs, a 
validation strategy must identify a minimal set of BMODs 
necessary for effective simulation coverage. Figure 5(a) 
summarizes the unique analog block counts of all three projects. 
“Leaf” blocks are those at the lowest level of hierarchy, 
comprised only of transistors and other schematic primitives. 
“Structural” blocks establish the hierarchy by instantiating and 
connecting child blocks. Projects A and B had similar proportions 
(~0.66) of leaf and structural blocks; Project C had a relatively 
“deeper” hierarchy reflected in its smaller 0.55 ratio.  

 
 
5.3 Correlation between Hierarchy, 
Partitioning, and Simulation Speed  
Proper partitioning of analog design hierarchy can facilitate much 
faster simulations without sacrificing transistor-level accuracy. 
Many analog leaf blocks, especially those which include passive 
networks or trim functions, have a very high node count if 
captured as a flat schematic. Examples include opamps, 
references, comparators, and data converters. By collecting each 
distributed network into a single element instead, each element 
may be modeled by a lumped equivalent; there is no impact to 
layout artwork or LVS, only one more level of design hierarchy.  
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Figure 6 shows the impact on the simulation executable of two 
projects as a function of design partitioning. All results are 
normalized to simulations consisting of RTL and a complete 
transistor netlist (Spice netlist column), which is the baseline for 
simulation accuracy and actual simulation time. To reduce 
simulation time, a common practice is to replace all schematics 
with BMODs. As shown (in column BMODs w/lumped RC) the 
speedup is significant, with CPU usage reducing by a factor of 9 
and 25 for Projects B and C, respectively. However, creating a 
complete set of BMODs may demand a substantial coding effort, 
and it potentially masks bugs due to inadequate model fidelity.   
 Figure 5(a). Circuit block count. 
We found that simply replacing resistor and capacitor networks 
with lumped elements, and leaving the analog netlist otherwise 
unchanged, reduced simulation time by 30-60% in both examples 
(column Spice Netlist w/lumped RC). The module count relative 
to the Spice Netlist baseline was almost unchanged as expected, 
but interconnect count was nearly halved. This suggests a strategy 
for design hierarchy partitioning: 

 
Figure 5(b) presents the BMOD statistics for the same projects. It 
shows a generational improvement in validation strategy and 
planning. In all three projects nearly 50% of leaf blocks had 
corresponding BMODs as dictated by their validation plans; 
however some redundant models were coded too. (Redundancy 
implies a single block has multiple BMOD representations, such 
as Verilog-A and Verilog-AMS, or Verilog-A and stub, etc.) In 
Project A, 10% of leaf cells required alternative models, which 
was reduced to 0% redundancy by Project C. The prevalence of 
BMODs at the structural level has no clear trend. This is expected 
considering that the projects had very different functions and 
design hierarchies. But the trend in modeling improvement is 
even more pronounced: 24% of Project A’s structural blocks had 
redundant models, which was reduced to just 9% in Project C. 

 
1) If a leaf cell contains a high node-count network (e.g. resistor  

matching), capture it as a single symbol and push that 
schematic complexity down the hierarchy as a new leaf cell. 

2) Create an equivalent lumped-element schematic or BMOD. 
3) For a faster simulation use those equivalent cellviews along 

with selective BMODs of those blocks less essential to the 
testbench coverage goal. 

 
  This strategy of selective BMOD usage is more effective for 

MSV than a BMOD-only approach:  
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1) Greatly reduces the number of BMODs which must be coded, 
2) Retains as much transistor-level accuracy as possible, and  
3) Can achieve nearly the same simulation speed. 
 
Another example of partitioning is the tradeoff between high-level 
(cluster) BMODs and a combination of detailed block BMODs 
and schematics in terms of simulation fidelity and speed. For 
Project B, when simulating for 1 millisecond, a configuration 
comprised of schematics and detailed block-level BMODs 
required 80 minutes to complete. The same simulation based on 
relatively few SV BMODs of entire analog clusters completed in 
less than 4 minutes, a 20× improvement. Our validation plan 
leveraged both configurations for different testbench goals. The 
slower, high-quality representation was used to evaluate critical 
datasheet specs, whereas the faster representation was selected to 
validate low-bandwidth behavior, such as control algorithms and 
platform interaction. Figure 5(b). BMOD coding efficiency.  
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(a): Project B.        (b): Project C. 
Figure 6. Effect of optimized partitioning and modeling of mixed-signal circuits in (a) Project B and (b) Project C on three metrics 

of simulation resources: number of interconnects, number of modules, and CPU usage. 
 
 
 
 

5.4 Selective Usage of Digital Constructs  
In coding BMODs, particularly for analog leaf blocks, we 
recommended Verilog-A unless mixed-signal functionality 
required Verilog-AMS mainly because most CKT designers are 
more fluent in Verilog-A and this policy made it possible for the 
designer to own and maintain the schematic and BMOD views, 
which reduced the burden on the validation team. Secondly, 
Verilog-A is usually recognized by analog simulators, however 
Verilog-AMS is not. Therefore the validation team supported only 
the relatively small population of CKT designers who required 
training on Verilog-AMS usage and environments. 
 
To determine which types of mixed-signal blocks require VAMS 
representation, we benchmarked a simple clock buffer, shown in 
Figure 7. For toggle rates approaching DC there is little benefit in 
VAMS. But as toggle rates exceeded 10 MHz, simulation time of 
VA increased exponentially compared to VAMS. This inflection 
point can guide the selection of VA or VAMS to model a mixed-
signal block. Certainly anything with high-speed digital interfaces 
(PLL, DLL, fast data converters, etc) should be modeled in 
VAMS. Note that a VAMS leaf cell requires all parent cells up the 
hierarchy also be represented in VAMS to retain the logic 
discipline. 
 
6. FUTURE WORK  
There is no analog equivalent of logical assertion-based 
verification (ABV), as found in PSL and SVA, although 
considerable research is being done in the standards community 
on extensions to system modeling. One example is the activity by 
Accellera to align Verilog-AMS and SystemVerilog into a 
SystemVerilog-AMS standard. As an intermediate solution, we 
are actively investigating methods to develop macro-based analog 
self-checkers, initially based on Verilog-A, which may be 
embedded in analog circuits and/or their behavioral models. 
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Figure 7. Impact of properly modeled digital nodes on (a) 
actual simulation time using a clock buffer (b) as an example. 



Simple checkers have been coded to monitor basic input-output 
relationships (like block enable/disable and signal voltage or 
current levels). More sophisticated checkers create a parallel 
representation of a block as a parameterized transfer function. By 
applying the block’s input also to its checker, it is possible to 
dynamically compare results of the DUT and its checker; a 
violation is reported if their difference exceeds a preset tolerance. 
These checkers recognize their position in the design hierarchy 
such that the top-level testbench may universally enable/disable 
checkers above or below a certain depth. This permits fine-
grained control of validation coverage and simulation speed 
without requiring edits of the actual blocks. 
 
7. SUMMARY  
Considering the growing complexity of SOCs, we introduced the 
concept of full-chip mixed-signal validation (FCMSV). A key 
component of this approach is the use of SystemVerilog to 
propagate analog behavior through scalar real ports; SV was also 
proposed for many high-level cluster BMODs. To facilitate 
FCMSV we then presented an environment, based on a common 
Intel RTL flow, in which an SV testbench suite comprehends 
multiple HDLs and simulators. The environment was reviewed in 
detail, including its application to combined digital and analog 
regression testing. It greatly reduced testbench coding, and 
enabled testbench and BMOD sharing between FCV and MSV.  
 
A methodology for top-down development and bottom-up 
implementation was presented with particular emphasis on 
BMOD evolution and equivalency checking. Guidelines were 
discussed for the incremental improvement of analog BMODs as 
part of each design milestone.  
 
Finally validation results were presented from three different 
projects. The capability of this flow to perform rapid analog 
regression testing was demonstrated. More significantly the 
performance benefits of various validation strategies were 
quantified. Firstly, intelligent hierarchy partitioning and BMOD 
configuration provided substantial simulation speedup without 
sacrificing any transistor-level accuracy. Next, it was shown that a 

careful validation plan can achieve very high efficiency in BMOD 
coding: minimal BMODs and little redundancy. Lastly, we 
benchmarked a circuit to guide selection of Verilog-A versus 
Verilog-AMS in modeling a block.  
 
The union of FCV and MSV by a single team had great 
opportunities for resource sharing.  A team of four full-time staff 
were able to validate each project by following this approach.  
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