
Copyright 2010, Verilab 2010-01-07

Stimulating Scenarios in the OVM and VMM

JL Gray
Verilab, Inc.
Austin, TX

jl.gray@verilab.com

Scott Roland
Verilab, GmbH

Munich, Germany
 scott.roland@verilab.com

ABSTRACT

The Open Verification Methodology (OVM) and Verification

Methodology Manual (VMM) libraries used to augment the

capabilities of the SystemVerilog language introduce advanced

stimulus generation capabilities suitable for designing large

testbenches and verification IP in the form of sequences and

scenarios. However, many verification teams struggle to fully utilize

these techniques, and end up with testbenches that either only

support directed tests, or support randomization while being difficult

to maintain and enhance. In this paper, advanced stimulus generation

concepts, architecture, and motivation will be described. Tips for a

successful stimulus generation implementation will be provided, and

solutions from the VMM and OVM libraries will be compared and

contrasted.

Specifically, we will cover the basic components of a stimulus

generation solution in the OVM and VMM, including both standard

and multi-channel stimulus, and deal with the issue of resource

allocation via the grab/ungrab API. Next, we will review techniques

required for building stimulus suitable for modeling both active

(master) and reactive (slave) testbench components. We will close

with a discussion of push vs. pull models of driver development.

Categories and Subject Descriptors

B 6.3 [Hardware]: Logic Design – simulation, verification.

D.3.3 [Programming Languages]: Language Constructs and

Features – frameworks, patterns.

D.2.2.2 [Software]: Design Tools and Techniques – software

libraries, object oriented design methods.

General Terms

Algorithms, Languages, Theory, Verification.

Keywords

SystemVerilog, OVM, VMM, Scenarios, Sequences, Stimulus,

Verification

1 INTRODUCTION

Before the advent of EDA tools, early chip layouts were inspected by

hand for bugs. In fact, in the early 1960s, it took 16-18 weeks to

create the layout for a module for the room-sized computers of the

day, and an additional 10 weeks to debug the completed board. [1].

Therefore, it was critical to find bugs as early as possible in the

design process. Later, directed test software simulation techniques

were applied to increase the speed at which bugs could be found.

However, over time chips have become too large and complex for

such approaches. Traditional test writing styles, while still valid in

many instances, have not scaled well to meet the challenges of new

categories of devices built to take advantage of an ever increasing

number of transistors on a single chip.

The Open Verification Methodology (OVM) and Verification

Methodology Manual (VMM) libraries used to augment the

capabilities of the SystemVerilog language provide advanced

stimulus generation capabilities suitable for designing large

testbenches and verification IP in the form of sequences and

scenarios. However, many verification teams struggle to fully utilize

these techniques, and end up with testbenches that either only

support directed tests, or support randomization while being difficult

to maintain and enhance. In this paper, advanced stimulus generation

concepts, architecture, and motivation will be described. Tips for a

successful stimulus generation implementation will be provided, and

solutions from the VMM and OVM libraries will be compared and

contrasted.

Specifically, we will cover the basic components of a stimulus

generation solution in the OVM and VMM, including both standard

and multi-channel stimulus, and deal with the issue of resource

allocation via the grab/ungrab API. Next, we will review techniques

required for building stimulus suitable for modeling both active

(master) and reactive (slave) testbench components. We will close

with a discussion of push vs. pull models of driver development.

2 CONCEPTS

Advanced stimulus generation as implemented in the OVM and

VMM is composed of five major data structure types. Each library

uses a different set of terms to describe these components.

 transaction

 driver

 sequence (collection of transactions)

 sequencer (contains library of sequences, drives sequences)

 virtual sequences

To simplify matters, the terminology from the OVM will be used

throughout the paper to components written in either methodology.

However, the VMM terminology will be used as needed when both

libraries are discussed together. In this section, each of the five

components of stimulus generation will be introduced, along with

code examples showing how to use each one.

Examples in this section will be derived from the basic testbench

architectures shown in Figure 1 and Figure 2.

Copyright 2010, Verilab 2010-01-07

Figure 1: OVM Testbench Basics

Figure 2: VMM Testbench Basics

2.1 Terminology

The OVM and VMM support many of the same stimulus generation

concepts but use different terminology to describe them. Here is a

mapping of the terms that will be used throughout this paper.

Table 1: Terminology Mapping Between the OVM and VMM

OVM VMM Definition1

ovm_sequence_item vmm_data Transaction

Sequence Scenario An object that defines a set

of transactions to be

executed and/or controls

the execution of other

scenarios on a single

interface

Virtual Sequence Multi-

stream

Scenario

Similar to a sequence, but

can control transactions and

sequences from multiple

interfaces.

1 Definitions were taken from [2] where applicable.

Sequencer Scenario

Generator

/ Multi-

stream

scenario

generator

A verification component

that provides transactions to

another component.

Driver Transactor A component responsible

for executing or otherwise

processing transactions,

usually interacting with the

device under test (DUT) to

do so.

Throughout the document, OVM source code will be displayed in a

box with a solid border.

class packet extends ovm_sequence_item;

VMM code is displayed with a dashed border.

class packet extends vmm_data;

2.2 Transaction

Before the advent of constrained random testing, generating

"stimulus" involved writing directed tests to wiggle pins of a Device

Under Test (DUT) or to fill a memory with machine code bytes.

However, it soon became apparent that it was more convenient to

think at higher levels of abstraction. For example, a test writer might

want to execute a register read or write transaction. The transaction

encapsulates all of the information needed to wiggle the pins

required to execute the command and relieves the test writer of the

tedium of thinking about the low level details of particular

operations.

Basically, a transaction is “a class instance that encapsulates

information used to communicate between two or more

components.” [2] Transactions are the basic building blocks of any

verification environment. Transactions can be used to describe a

variety of common testbench data types, such as:

 Ethernet packets

 CPU instructions

 ATM cells

 OCP transactions

 Registers

In the past, testbench data may have been passed as parameters to

function calls. For example, someone attempting to write to a register

may have simply said:

write(0xA0, 0xFF001FF0);

This Verilog task call writes the value 0xFF001FF0 to the register at

address 0xA0. Similarly, to read register data, a user may have called

a task similar to the following:

read(0xA0, result);

result would end up populated with a value such as 0xF0F0F01.

Experienced verification engineers will recognize that this

information is only marginally useful. A typical 32-bit register is

made up of one or more fields of varying bit-widths. Optimally,

DUT
Packet

Driver

Config

Driver

ATM

Driver

ovm_seq_item_pull_port

seq_item_port

ovm_seq_item_pull_export

seq_item_exportTLM Interface

DUT
Packet

Xactor

Config

Xactor

ATM

Xactor

VMM Channel

Copyright 2010, Verilab 2010-01-07

these fields could be referenced by name without knowledge of the

underlying register structure or widths. In Verilog, I could have

created a struct to represent these fields. Using a struct solves one

problem, but it does not allow a user to create customized methods

such as those described in Table 2. Specialized transaction-specific

base classes help automate the process of incorporating specialized

functionality into data structures.

Support for transactions is included in all modern verification

methodology libraries, including the OVM and VMM. When

building a verification environment, it is critical to utilize the built-in

transaction base classes to ensure compatibility with the stimulus

generation capabilities inherent in the libraries. These classes also

free the user from having to deal with the implementation of many

commonly used operations:

Table 2: Common operations for transactions

ovm_sequence_item vmm_data

copy copy

pack pack

unpack unpack

compare compare

print psdisplay

record record

-- save

-- load

Transactions are defined similarly in both the OVM and VMM.

OVM transactions are based on the ovm_sequence_item base class.

Customization macros are used to enable users to copy, compare,

print, etc. without having to implement these methods manually.

class packet extends ovm_sequence_item;
 rand bit [47:0] src;
 rand bit [47:0] dst;
 rand bit [15:0] type_len;
 rand unsigned int delay;
 constraint short_delay {delay < 100; };
 `ovm_object_utils_begin(packet)
 `ovm_field_int(src, OVM_ALL_ON)
 `ovm_field_int(dst, OVM_ALL_ON)
 `ovm_field_int(type_len, OVM_ALL_ON)
 `ovm_object_utils_end(packet)
 ...
endclass : packet

The same transaction can be defined in VMM as shown below. This

code is similar (but not the same) between the libraries.

class packet extends vmm_data;
 rand bit [47:0] src;
 rand bit [47:0] dst;
 rand bit [15:0] type_len;
 ...
 rand unsigned int delay;
 constraint short_delay { delay < 100; };
 ...
 `vmm_data_member_begin(packet)
 `vmm_data_member_scalar(src, DO_ALL);
 `vmm_data_member_scalar(dst, DO_ALL);
 `vmm_data_member_scalar(type_len, DO_ALL);
 `vmm_data_member_end(packet)
endclass : packet

Once transactions are available in an environment, it is possible to

create directed or fully random tests by creating a transaction and

passing it to a component (usually a vmm_xactor or an

ovm_component) which will drive the transaction on the physical

interface to the Device Under Test (DUT). Within a directed test one

could also create a well-defined series of transactions (like opening a

TCP connection or describing a for-loop in an assembly program).

These types of series can be extremely valuable if reused in other

tests in the user’s environment.

Modern methodologies such as the VMM and OVM allow reuse of

series of transactions via the use of sequences. Before discussing

sequences, it is important to understand how the drivers shown in

Figure 1 work with the other components of the stimulus generation

solution.

2.3 Driver

As described in Table 1, a driver is a component responsible for

executing or otherwise processing transactions, usually interacting

with the device under test (DUT) to do so. While this definition

applies to drivers created in both the OVM and VMM, there are

some implementation differences. Stimulus in the VMM is generated

using “push” mode. The “push” style of stimulus generation requires

a driver that can accept transactions passed to it via one of its

standard interfaces. In the VMM, transactions would be passed in via

either a vmm_channel or a Transaction Level Modeling (TLM)

blocking or non-blocking transport.

When an OVM driver is operated in push mode, transactions are

passed in via a TLM export. However, push mode is not the standard

mechanism for generating stimulus in the OVM. Instead, “pull”

mode is used. Both pull and push modes are described more

thoroughly in section 3.2 below.

Figure 3 provides a step-by-step overview of the general flow of a

pull-mode driver.

Figure 3: OVM Pull Mode

Unlike push-mode stimulus in the VMM and OVM, the run() task

of an OVM driver written to be used in pull mode must be

implemented as shown below in order to function correctly.

class packet_driver extends ovm_driver #(packet);
 function new (string name,
 ovm_component parent);

Packet

Driver

Interface

Packet

Sequencer
LIB

1) get_next_item()

Runt Pkt Seq Simple Pkt Stream

3) Pick next action

4) Selected sequence

randomizes packet

5) Tell sequencer item

is ready to be sent

7) Tell sequence

packet was sent

2) Each sequence calls `ovm_do(packet)

6) Deliver packet

to driver

Invalid Addr

Copyright 2010, Verilab 2010-01-07

 super.new(name, parent);
 endfunction : new

 `ovm_component_utils(packet_driver)

 task run();
 packet item;
 forever begin
 @(...);
 // User must implement logic to get next item
 // from sequencer as shown.
 seq_item_port.get_next_item(item);
 ovm_report_info(get_type_name(),
 "driving packet");
 seq_item_port.item_done();
 end
 endtask : run

endclass : pkt_driver

With the appropriate drivers in place, it is possible to start

constructing sequences, sequencers, and virtual sequences.

2.4 Sequence

Once testbench creators started thinking in terms of individual

transactions, the next logical progression was to imagine what to do

if you were to have a collection of transactions. For example, what if

you wanted to send a particular stream of read or write register

commands to program the DUT? What if you want to open a

TCP/IP connection using a stream of Ethernet packets? Higher level

collections of transactions can be modeled using the concept of

sequences.

Sequences define useful streams of transactions. According to

Accellera, a sequence is an “object that procedurally defines a set of

transactions to be executed and/or controls the execution of other

sequences.”[2] For example, imagine trying to test a network device

under the scenario where a user needs to open a TCP/IP connection.

The desired stream of packets might look something like this:

 Send a short packet to IP address 192.168.0.1

 Send a long packet to IP address 192.168.0.1

The stream could be captured as a directed test, but ideally we’d like

to run this stream intermixed with a variety of other randomly

selected streams of packets. Sequences (scenarios in the VMM) can

be used to accomplish this goal. To code a sequence in the OVM,

simply extend the ovm_sequence class:

class pkt_seq extends ovm_sequence #(packet);
 rand reg [47:0] addr;

 `ovm_sequence_utils_begin(pkt_seq, pkt_sqr)
 `ovm_field_int(addr, OVM_ALL_ON)
 `ovm_sequence_utils_end

 function new(string name="x_seq");
 super.new(name);
 endfunction

 virtual task body();
 // Send packet 1
 `ovm_do_with(...)
 // Send packet 2

 `ovm_do_with(...)
 endtask : body

endclass : my_packet_seq

In the example above, the pkt_seq sequence is derived from an

ovm_sequence specialized based on the packet data type.

In the VMM, create a VMM scenario. Starting with the VMM 1.2,

use the parameterized VMM scenario base class as the basis for all

user-generated scenarios.

class packet_scenario extends vmm_ss_scenario #(packet);
 ...
endclass: packet_scenario

Now, create a user-defined scenario by implementing the apply()

method of my_packet_scenario. my_packet_scenario is extended

from packet_scenario:

class my_packet_scenario extends
 packet_scenario;
 ...
 virtual task apply(...);
 // Ideally, use VMM factory instead
 // of direct instantiation...
 packet pkt1 = new;
 packet pkt2 = new;

 // Send packet 1.
 pkt1.randomize();
 channel.put(pkt1)

 // Send packet 2
 pkt2.randomize();
 channel.put(pkt2)

 ...
 channel.put(...)
 endtask : apply
 ...
endclass : my_packet_scenario

Once a single sequence has been created, it makes sense to create a

collection of sequences.

Once a collection of sequences exists it quickly becomes apparent

that a testbench component must be created in order to manage the

collection of sequences. This component is called a sequencer.

2.5 Sequencer

The sequencer has several functions within a testbench. First, it

manages the collection of sequences relevant to the particular

sequencer type and instance. Individual sequencers can be

customized by test writers and environment integrators to behave as

needed for the application at hand.

Second, the sequencer manages the interaction between sequences

and the underlying driver. The sequencers must also provide a way to

control which sequences will be selected. Both the VMM and OVM

make it possible to create a set of weighted constraints that can be

applied to this process. As shown in Figure 4, the OVM uses the

concept of a default sequence. The default sequence contains the

Copyright 2010, Verilab 2010-01-07

constraints and procedural code required to choose the next sequence

to be selected.

Figure 4: Default Sequence in an OVM Sequencer

As shown in Figure 5 in the VMM a voter is used to select the next

scenario. The voter could be configured to select a single scenario

that could then be used as a “default” scenario if behavior similar to

the OVM is desired.

Figure 5: Voter in a VMM Scenario Generator

The sequencer serves other purposes as well. It serves as an anchor

to hold the customized set of sequences and underlying configuration

parameters for sequences in the sequence library. Additionally, in

OVM the sequencer is also a resource that can be grabbed by other

testbench components (sequences or virtual sequences). In the VMM

the channel serves as the lockable resource, but the scenario

generator is responsible for maintaining a registry of scenarios that

can be run in the context of the scenario generator.

An OVM sequencer can be created as shown.

class pkt_sqr extends ovm_sequencer #(packet);

 function new (string name=“pkt_sqr",
 ovm_component parent);
 super.new(name, parent);
 `ovm_update_sequence_lib_and_item(packet)
 endfunction : new

 `ovm_sequencer_utils(pkt_sqr)

endclass : x_sqr

The VMM scenario generator and associated channel classes are

generated using VMM macros.

// Instantiate the channel & scenario generator
// using transaction “packet”.
`vmm_channel(packet)
`vmm_scenario_gen(packet, "packet class")

2.6 Virtual Sequences

Let's review what has been covered so far. First, the concept of a

transaction was introduced to save us from having to deal with the

underlying DUT behavior. Next, we created a collection of

sequences and the sequencer required to encapsulate important

system use cases/behaviors and allow us to randomly select from

these during a simulation. However, something is still missing. What

happens if users want to coordinate what happens on several

sequencers together? For example:

 Configure the DUT (configuration sequencer)

 Send an ATM cell (ATM sequencer)

 Open a TCP/IP connection (packet sequencer)

To do this, the concept of the virtual sequencer is needed. The virtual

sequences executed by the virtual sequencer are capable of executing

sequences from any other sequencer or virtual sequencer in the

verification environment. Virtual sequences provide the user with

fine-grained control of testbench activities and allow for coordination

between multiple disparate interfaces.

Driver

(ovm_driver)

Monitor

(ovm_monitor)

Interface Interface

Sequencer

(ovm_sequencer)
LIB

Default Sequence

Agent (ovm_agent)

Sequence

Library

Driver

(vmm_xactor)

Monitor

(vmm_xactor)

VMM

Channel

InterfaceInterface

Scenario Generator

(vmm_scenario_gen)

LIB

Election

Mechanism

Sub Environment (vmm_subenv)

Scenario

Library

Copyright 2010, Verilab 2010-01-07

Figure 6: Virtual Sequences Overview [3]

Figure 7: OVM Virtual Sequences Controlling Sequences [3]

Figure 8: VMM Multi-Stream Scenarios Controlling Scenarios

Virtual sequences in the OVM are created using sequencers and

sequences that have no associated sequence item. Otherwise, they are

created in the same fashion as regular sequences.

In the VMM, virtual sequences are known as multi-stream scenarios

(MSS). Sequencers are known as multi-stream scenario generators

(MSSG). Unlike virtual sequencers in the OVM, MSSGs are not

created using the same data structures as scenario generators in the

VMM. MSSGs are described in more detail in [4] and [5].

2.7 Grab/Ungrab

In a VMM testbench we use a channel to pass stimulus information

to a transactor. In an OVM testbench, stimulus is passed to drivers

via a sequencer. In each case, data could be sent to the

transactor/sequencer from different streams (threads). Data sent from

multiple streams could end up being interleaved, but this is not

always desirable. For example, an algorithm might call for an

uninterrupted sequence of commands. It may also be desirable to

lock multiple resources (channels in the VMM, sequencers in the

OVM) for a given set of operations such that other stimulus streams

do not interfere with the flow of data. This could occur during an

arbitration scenario where the activities on multiple interfaces are

coordinated to create specific traffic timing patterns for a period of

time.[4]

Resource sharing in both the OVM and VMM is handled via the

concepts of grab and ungrab. Grabbing a resource means that the

grabber has exclusive rights to send transactions through it. Other

testbench components attempting to access the resource will be

blocked until the grabber “ungrabs” the resource using the ungrab

command.

The problem of resource sharing cannot be resolved simply by

having individual sequences grab channels for exclusive use.

Hierarchical stimulus, where a sequence or virtual sequence can have

any number of child sequences makes it necessary to have a scheme

that allows the children to obtain a grabbed resource for use from

their parent or another ancestor sequence. Both the OVM and VMM

use similar algorithms to determine who may grab or ungrab any

given sequence or channel. For more information about how this is

handled in the VMM, see [4] and [5]. For information on how this is

handled in the OVM, see [6] and [7].

3 USE CASES

In section 2 we covered the basic concepts required to implement

stimulus in the OVM and VMM. Next, we will demonstrate the

concepts in a real system context where both master and slave

drivers are present. Slaves are especially interesting because of the

feedback path from the driver to the sequence. The examples in this

section show how to implement each component using both the

OVM and VMM.

3.1 Open Core Protocol (OCP)

The following examples are based on a production Verification IP

for the Open Core Protocol™ standard [8]. The goal was to take a

real piece of VIP with code that has been used in production and

distill useful examples from it, rather than creating simply theoretical

code. The reader should be able to understand the examples even

without any particular knowledge of OCP.

The OCP defines a point-to-point interface between two components.

For each OCP instance there is one master that initiates request

transactions and one slave that responds to the transactions. If two

components wish to communicate in a peer-to-peer fashion, then

they need to be connected with two OCP instances, with each

DUT

ATM

CellPacket

Config

1. Config DUT

2. Send ATM Cell

3. Open TCP Connection

Sequence

Data Item

Sequence

DUT

ATM

CellPacket

Config

Virtual

Sequencer

LIB

User

Data Item
Sequence

Sequences executed by

associated sequencer

Sequence

DUT

ATM

CellPacket

Config

MSSG

LIB

User

Uses Data

Item

Uses Pkt

Scenario

VMM – Scenarios

applied by parent

scenarioUses Cfg

Scenario

Data Items bypass

generators - placed

directly in channels

Copyright 2010, Verilab 2010-01-07

component being a master on one instance and a slave on the other. It

is possible to connect multiple components together in a variety of

arrangements, using as many OCP instances as desired, each instance

having a single master and slave.

OCP defines a set of dataflow signals that are used for the primary

communication between the components via read and write transfers.

OCP also defines a set of sideband signals that are used for control

information. The dataflow and sideband signals are allowed to

change asynchronously with respect to each other.

3.2 Push vs. Pull

As mentioned in section 2.3, there are two variants of sequencer-

driver interaction: Push and Pull. Both strategies can be used to

create complex stimulus appropriate for any environment.

In the case of a “push” sequence, the sequence initiates the action by

putting2 a transaction into the sequencer, which then gives the

transaction to the driver. For a “pull” sequence, the driver initiates

the action by getting a transaction from the sequencer, which will

request the transaction from the sequence.

It is often desirable to determine the contents of a transaction based

on conditions up to and until the driver is ready to use it. Pull

sequences make it easier to adapt a transaction to the system at the

time it will be used. For example, if a transaction were being sent to

indicate the current fill level of a FIFO or if a sequence were trying

to meet a certain coverage goal. The delaying of generation of

transactions until they are ready to be used is sometimes called “late

randomization” because the randomization occurs as late as possible.

Drivers are often required to consider interface arbitration rules

before starting the next transaction. An OCP master driver cannot

start driving a transaction on the request phase signals if the signals

are currently in use by a different transaction. When using a pull

driver, an OCP master would not get the next transaction from the

sequence until it was ready to be used.

Since a push sequence initiates the action that eventually happens in

the driver, it is possible, and common, for the driver to delay using

an already created transaction until a later time. However, it is

possible to avoid this by having the push mode sequence

communicate with the push driver and delay generation of the

transactions until when they are ready to be used. This allows a push

sequence to also achieve late randomization. An OVM example of

this will be shown in section 3.4.1, while a VMM example of this

will be shown in section 3.4.2.

3.3 OCP Sideband Driver

The OCP sideband signals include signals dedicated to conveying

interrupt and error information. Normally, a component experiences

a condition and then drives the appropriate sideband signal, such as

the master interrupt.

Either push or pull mode could be used since the source of the

information decides when the transaction should be sent. The

2
 In the OVM, sequence items are “put” into a TLM interface to the

sequencer. In the VMM, data items are placed into the channel.

sideband signal driver does not need to worry about arbitration or

protocol semantics to decide when it can drive the signals.

3.3.1 Push Sideband Driver (OVM)
In the OVM, a sideband sequence is created by extending from the

ovm_sequence class. This class has a parameterized member variable

(req) that can be used for storing each transaction. The sequence

ocp_minterrupt_sideband_seq below issues a single sideband

transaction, which indicates that the master interrupt (minterrupt)

signal should be driven.

class ocp_minterrupt_sideband_seq extends
 ovm_sequence#(ocp_sideband);
 `ovm_sequence_utils(ocp_minterrupt_sideband_seq,
 ocp_sideband_sequencer)
 function new(string name=”…”);
 super.new(name);
 endfunction

 rand bit minterrupt_value;
 virtual task body();
 `ovm_create(req)
 req.drive_minterrupt = 1;
 `ovm_rand_send_with(req,
 {req.minterrupt==minterrupt_value;})
 endtask : body
endclass : ocp_minterrupt_sideband_seq

The `ovm_rand_send_with macro will randomize the transaction

and send it to the OVM sequencer. The sequencer will then push the

transaction to the driver with a call to the put() task.

Figure 9: OVM Push Driver (OCP Sideband)

A simplified version of the OVM-based push driver is shown below.

The transaction is driven on the OCP interface once received by the

driver.

class ocp_sideband_driver extends
 ovm_push_driver#(ocp_sideband);
 …
 task put(ocb_sideband sb_item);
 drive_sideband(sb_item);
 endtask : put
endclass : ocp_sb_driver

It would also be possible to use a pull driver with pull sequences for

controlling the OCP sideband signals. When using OVM, pull

drivers are recommended and are a good default choice.

3.3.2 Push Sideband Driver (VMM)
In the VMM, a sideband sequence is created by extending the

vmm_ss_scenario class. The sequence

ocp_minterrupt_sideband_seq below issues a single sideband

Copyright 2010, Verilab 2010-01-07

transaction, which indicates that the master interrupt (minterrupt)

signal should be driven.

class ocp_minterrupt_sideband_seq extends
 vmm_ss_scenario#(ocp_sideband);
 rand bit minterrupt_value;
 virtual task apply(…);
 ocp_sideband sb_item = new();
 sb_item.drive_minterrupt = 1;
 if (!sb_item.randomize() with
 {sb_item.minterrupt==minterrupt_value;}) …
 channel.put(sb_item);
 endtask: apply
endclass : ocp_minterrupt_sideband_seq

The channel.put() call will push the transaction through the

channel to the driver.

Figure 10: VMM Push Driver (OCP Sideband)

A simplified version of the VMM-based push driver is shown below.

When the driver receives the transaction from the input channel, it

drives it on the OCP interface. The driver also does some standard

VMM management of the channel, but these actions are not

important for understanding the execution flow of the driver.

class ocp_sideband_driver extends vmm_xactor;
 virtual task main();
 fork
 super.main();
 forever begin
 ocp_sideband sideband_item;
 wait_if_stopped_or_empty(in_chan);
 in_chan.activate(sideband_item);
 void'(in_chan.start());
 drive_sideband(sideband_item);
 void'(in_chan.complete());
 void'(m_in_chan.remove());
 end
 join
 endtask : main
endclass : ocp_sideband_driver

3.4 OCP Dataflow Master

The OCP dataflow signals are used for the read and write transfers

between components. These signals must follow several protocol

rules which specify when a new transfer can begin. A simple push

driver could be used for these signals, but that would mean that the

sequence could randomize the transactions before they were actually

used by the driver.

The next set of examples show OCP dataflow master drivers. The

drivers initiate requests transactions on the interface. They are

architected to ensure that the request transactions are only

randomized at the time they will be used.

3.4.1 Pull Dataflow Master (OVM)
The OVM implementation of the OCP master uses the recommended

OVM pull driver. Since this is a pull driver, it will determine when to

initiate the get of the next transaction. Only when the OCP interface

is ready to accept the next request transaction will the master attempt

to do a get_next_item() from the sequencer.

class ocp_master extends ovm_driver#(ocp_txn);
 virtual task drive_interface();
 forever begin
 @(...);
 if (interface_is_available() &&
 seq_item_port.has_do_available())) begin
 seq_item_port.get_next_item(req);
 drive_request(req);
 seq_item_port.item_done();
 end
 end
 endtask : drive_interface
endclass : ocp_master

The sequencer does not have to provide a new transaction every time

the master asks for one. The master first checks with the sequencer to

see if it is ready to provide a new transaction. The sequencer might

be waiting for an external event, such as a FIFO reaching a certain

threshold, before providing the next transaction to master. If the

sequencer is not ready to provide a new transaction this cycle, then

the master will leave the interface idle and check again the next

cycle. This allows the sequence to have control over when things

happen, even though it is in pull mode and does not initiate the

activity.

A simplified view of the flow of control is shown in Figure 11. For a

higher level view of the flow, including the sequencer, refer to

Figure 3.

Figure 11: OVM Pull Master (OCP Dataflow)

Below is the example of a simple pull sequence that issues a single

read transaction, but only after the FIFO has enough space for the

read it will be sending.

class ocp_simple_read_request_seq extends
 ovm_sequence #(ocp_txn);
 virtual task body();
 wait_for_fifo_space();
 `ovm_do_with(req, {req.cmd ==RD; ... })
 get_response(rsp);
 endtask : body
endclass : ocp_simple_read_request_seq

The `ovm_do_with macro hides a few actions and is basically

equivalent to the following:

Copyright 2010, Verilab 2010-01-07

 `ovm_create(req)
 start_item(req); // blocking
 if(!req.randomize() with {req.cmd ==RD; ...}) ...
 finish_item(req);

The start_item() call is blocking. First it indicates that the

sequence is ready to provide the next transaction, and then it waits

until the sequencer actually requests it. This ensures that the

transaction is only randomized at the time it is needed.

3.4.2 “Pull” Dataflow Master (VMM with
Notifier)

The VMM implementation of the OCP master uses a VMM push

driver to emulate pull mode. To avoid the push sequence

randomizing a transaction before the driver is ready to use it, a VMM

notifier is connected between the OCP master and sequence. The

READY indicator will be set when the master is ready for a transaction

from the sequence. This simple approach does not handle the case

where multiple sequences are trying to drive transactions to the

master driver.

class pull_indications extends vmm_notify;
 typedef enum {READY} indications_e;
 ...
endclass: pull_indications

The example sequence will issue read requests until stopped. The

sequence first waits on the READY indicator before randomizing the

transaction and putting it in the channel to send to the master.

class ocp_txn_seq extends vmm_ss_scenario #(ocp_txn);
 pull_indications indications;
endclass : ocp_txn_seq

class ocp_simple_read_seq extends ocp_txn_seq;
 ...
 virtual task apply(ocp_txn_channel channel,
 ref int unsigned n_insts);
 ocp_txn req;
 forever begin
 req = new();
 indications.wait_for(pull_indications::READY);
 if (!req.randomize() with {req.cmd==RD;}) ...
 channel.put(req); // blocks until removed
 n_insts++;
 end
 endtask : apply
endclass : ocp_simple_read_request_scenario

The sequence takes advantage of the fact that this channel only has

room for a single entry and that the put() call will block after

inserting the transaction until the channel is empty. This means that

the sequence will be delayed until the master has responded and

removed the transaction from the channel.

Figure 12: VMM Push Master w/ Notifier (OCP Dataflow)

The OCP master observes the OCP interface and when it is available,

it will check for a transaction from the sequence. The master checks

to see if the READY indicator is being waited on by the sequence,

before setting the indicator and getting the next transaction from the

sequence. This prevents the master from being blocked when the

sequence has no transaction to provide.

class ocp_master extends vmm_xactor;
 ...
 virtual task main();
 fork
 super.main();
 join_none
 forever begin
 ocp_txn req;
 @(...);
 wait_if_stopped();
 if (interface_is_available() &&
 indications.is_waited_for(pull_indications::
 READY)) begin
 indications.indicate(pull_indications::READY);
 in_chan.activate(req);
 indications.reset(pull_indications::READY);
 ...
 void'(in_chan.start());
 drive_request(req);
 void'(in_chan.complete());
 void'(in_chan.remove());
 end
 end
 endtask : main
endclass : ocp_master

The removal of the transaction from the channel allows the

sequence’s put() call to complete, as mentioned previously. The

master resets the READY indicator before removing the transaction, to

ensure that the sequence will block on the next wait_for(READY)

call. This ensures that the next transaction is not randomized until the

master is ready for it.

3.5 OCP Dataflow Slave

OCP dataflow slave drivers are responsible for responding to

requests on the OCP interface with responses. The final set of

Copyright 2010, Verilab 2010-01-07

examples show implementation of OCP dataflow slave drivers in

OVM and VMM.

Since the slave drivers are reactive, they will ensure that the response

transactions are generated after the received request transactions.

3.5.1 Pull Dataflow Slave (OVM)
The OVM implementation of the OCP dataflow slave uses an OVM

pull driver. The flow of control is shown in Figure 13.

Figure 14: OVM Reactive Pull Slave (OCP Dataflow)

This example uses the simple response sequence below, which

generates a response transaction for ever request transaction.

class ocp_simple_response_seq extends
 ovm_sequence #(ocp_txn);
 virtual task body();
 forever begin
 p_sequencer.request_phase_peek_port.peek(
 collected_txn);
 `ovm_do_with(req,
 {req.addr == collected_txn.addr;...})
 end
 endtask : body
endclass : ocp_simple_response_seq

The sequence loops forever in order to be able to respond to as many

requests as needed. The first thing it does is to call the blocking

peek() task to get the collected request transaction from the slave.

This hands over timing control to the driver, allowing it to decide

when it is ready for the next transaction from the sequence.

When the driver has collected the next request transaction, it allows

the peek() to complete and returns the collected transaction to the

sequence. The sequence then calls the `ovm_do_with macro, which:

waits for the driver to ask for the next transaction, randomizes the

response and sends it to the driver. (The variable called req is a

built-in OVM variable for storing the transaction generated by a

sequence. The name is confusing here because we are using it to

store a response transaction, but don’t let the name obscure the local

usage.) Notice in the flow of control that the randomization of the

response transaction only occurs after the slave has called

get_next_item().

The code for the slave is shown below. First, it observes a request on

the OCP interface and stores the collected request into the member

variable m_current_request. Then it triggers an event, which

allows the blocking peek() method to return the observed request to

the sequence. Next, the driver checks to see if the sequence is ready

to provide a response transaction. If a response transaction is

available, the driver will get it from the sequence and drive it on the

OCP interface.

class ocp_slave extends ovm_driver#(ocp_txn);
 event m_request_phase_started;
 ocp_txn m_current_request;
 task peek(output ocp_txn collected_txn);
 @m_request_phase_started;
 collected_txn = m_current_request;
 endtask : peek
 virtual task drive_interface();
 forever begin
 @(...);
 if (request_is_ready()) begin
 m_current_request = collect_request();
 -> m_request_phase_started;
 if (seq_item_port.has_do_available()) begin
 // Sequencer response via TLM port
 seq_item_port.get_next_item(req);
 drive_response(req);
 end
 end
 if (response_is_finished()) begin
 seq_item_port.item_done();
 end
 end
 endtask : drive_interface
endclass : ocp_slave

The has_do_available() check in the slave prevents the slave from

being blocked if the sequence is not yet ready to provide a response

transaction. A pull response sequence could examine the collected

request and decide not to respond immediately, in which case it

would not perform the `ovm_do_with() and the slave would repeat

the entire process the next cycle.

3.5.2 “Pull” Dataflow Slave (VMM with Notifier)
The VMM implementation of the OCP dataflow slave uses a VMM

push driver to emulate pull mode.

Copyright 2010, Verilab 2010-01-07

Figure 15: VMM Reactive Push Slave (OCP Dataflow)

Similar to the VMM dataflow master in section 3.4.2, a VMM

notifier is connected between the OCP slave and sequence. The

notifier is used for the handshaking required between the two and for

providing the sequence with the collected request transaction. The

reactive slave needs an additional ACK indicator, to acknowledge

receipt of the READY indicator. This is explained in more detail when

the driver is discussed later.

class pull_indications extends vmm_notify;
 typedef enum {READY, ACK} indications_e;
 ...
endclass: pull_indications

This example uses the response sequence below.

class ocp_txn_seq extends vmm_ss_scenario #(ocp_txn);
 pull_indications indications;
endclass : ocp_txn_seq

class ocp_simple_response_seq extends ocp_txn_seq;
 ...
 virtual task apply(ocp_txn_channel channel,
 ref int unsigned n_insts);
 ocp_txn req;
 ocp_txn resp;
 bit responding;
 forever begin
 resp = new();
 indications.wait_for(pull_indications::READY);
 dataflow_req = ocp_txn'(
 indications.status(pull_indications::READY));
 responding = want_to_respond(req);
 if (responding) begin
 if (!resp.randomize() with
 {resp.addr==req.addr;}) ...
 end
 indications.indicate(pull_indications::ACK);
 if (responding) channel.put(resp);
 indications.wait_for_off(pull_indications::READY);
 indications.reset(pull_indications::ACK);
 n_insts++;
 end
 endtask : apply

endclass : ocp_simple_read_request_scenario

The sequence loops forever in order to be able to respond to as many

requests as needed. It first waits on the READY indicator from the

slave, which tells the sequence when the slave has collected a request

transaction. A VMM indicator can also include an associated “status”

transaction. In this case, the READY indicator’s status transaction is

the request collected by the slave. Once the sequence gets the

collected request from the notifier, the sequence decides if it is going

to provide a response now, or wait to respond in a later cycle. If the

sequence decides to generate a response, then response transaction is

randomized and put() into the channel to the slave driver.

The sequence will always set the ACK indicator to tell the driver that

it has processed the request transaction, even if the sequence decides

not to respond this cycle. Finally, the sequence waits until the READY

indicator is cleared by slave before it clears the ACK indicator,

thereby ensuring that the slave saw the ACK indicator.

The slave driver code is shown below. First, it observes a request on

the OCP interface and checks to see if the sequence is waiting for a

request. This allows the slave to not be blocked if the sequence is not

ready to handle a request. If the sequence is ready, then the request is

collected into the variable req and associated with the READY

indicator that is set for the sequence to observer.

class ocp_slave extends vmm_xactor;
 ...
 virtual task main();
 fork
 super.main();
 join_none
 forever begin
 ocp_txn req;
 ocp_txn resp;
 @(...);
 wait_if_stopped();
 if (request_is_ready() &&
 indications.is_waited_for(pull_indications::
 READY)) begin
 req = collect_request();
 indications.indicate(pull_indications::READY,
 req);
 indications.wait_for(pull_indications::ACK);
 indications.reset(pull_indications::READY);
 if (resp_chan.level() > 0) begin
 resp_chan.activate(dataflow_resp);
 void'(resp_chan.start());
 drive_response(dataflow_resp);
 void'(resp_chan.complete());
 void'(resp_chan.remove());
 end
 end
 end
 endtask : main
endclass : ocp_slave

Next, the driver waits for the ACK indicator from the sequence and

then clears the READY indicator. This provides a complete handshake

with the sequence. During the process, the sequence has decided if it

wants to reply to the request. The driver can tell if the sequence has

replied by checking to see if there is a response transaction in the

channel. If a response transaction is available, the driver will get it

and drive it on the OCP interface.

Copyright 2010, Verilab 2010-01-07

If the sequence decided not to issue a response this cycle, then the

driver can continue without blocking on trying to pull from the

channel.

4 CONCLUSION

Stimulus is an integral part of every verification environment,

including those created in SystemVerilog using the OVM or VMM.

Both methodologies use different terminology and seemingly

different data structures to facilitate creation of a stimulus model.

When examined more closely, though, it is easy to see that each

library supports similar capabilities in almost every respect. The

concepts of sequences, virtual sequences, sequencers, and drivers are

common to both the OVM and VMM. We described the purpose of

each of the aforementioned components and showed how they could

be used. We then demonstrated how to create both push and pull-

mode sequencers in the OVM and VMM using a real-life verification

component based on the Open Core Protocol (OCP).

5 REFERENCES

[1] JL Gray. (2009, August) The Past, Present and Future of the

Design Automation conference. Blog. [Online].

http://www.coolverification.com/2009/08/dac-past-present-

future.html

[2] Accellera, Verification Intellectual Property (VIP) Recommended

Practices v1.0., August 2009. [Online].

http://www.accellera.org/activities/vip/VIP_1.0.pdf

[3] JL Gray. (2009, July) Zero to Sequences in 30 Minutes.

Presentation.

[4] Jason Sprott, JL Gray, Sumit Dhamanwala, and Cliff Cummings,

"Using the New Features in VMM 1.1 for Multi-Stream

Scenarios," 2009.

[5] Synopsys. (2009) VMM 1.2 Documentation.

[6] Cadence Design Systems and Mentor Graphics. (2009) OVM

2.0.3 User Guide.

[7] Cadence Design Systems and Mentor Graphics. (2009) OVM

2.0.3 Reference Manual.

[8] OCP-IP Association. (2007) Open Core Protocol Specification

2.2.

http://www.coolverification.com/2009/08/dac-past-present-future.html
http://www.coolverification.com/2009/08/dac-past-present-future.html
http://www.accellera.org/activities/vip/VIP_1.0.pdf

