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ABSTRACT  
For ultra-scale SoC designs that are now commonplace, it has 
become impractical to use only traditional RTL design and 
verification techniques. ESL methodologies, used for designing at 
levels of abstraction above RTL, are instrumental in determining 
design feasibility, honing requirements, and experimenting with 
architectures and algorithms to meet functionality as well as 
performance and power requirements. However, applying ESL 
techniques requires building abstracted transaction-level models that 
traditionally do not have a direct path to RTL implementation. 
 
A stepwise refinement and reuse flow is necessary to realize the 
complete benefits of ESL. It preserves each subsequent modeling 
investment through the transformation and verification of 
transaction-level models from their initial highly abstracted 
representation to fully verified RTL. It utilizes transaction-level 
models as reference models during RTL verification and reuses the 
initial TLM platform as a “system level testbench” for downstream 
implementations. 
 
In this paper we will illustrate the essential elements of a five step 
refinement flow. The first four steps in the flow have been realized in 
TSMC’s Reference Flow 11 and work is ongoing for reference flow 
12. We will briefly show results from reference flow 11 and discuss 
the work underway for reference flow 12. 
 

Categories and Subject Descriptors  
B.5.2 [REGISTER-TRANSFER-LEVEL IMPLEMENTATION]: 
Design Aids –automatic synthesis, optimization, simulation, 
verification 
 

General Terms  
Design, Verification 
 

Keywords  
Electronic System Level, ESL, transaction-level models, TLM 
 

1. INTRODUCTION  
Market data suggests that the total number of highly-integrated basic, 
enhanced, and smart phones will be over 2 billion by 2012. When 
tablet PCs, iPADs, and other small form factor, connected devices 
are included, the number is projected to reach over 15 billion by 
2015. These devices will require high-end graphic performance in 
the range of 200 million triangles per second by 2011 and will need 
to support multiple concurrent software applications. Lastly, all of 
these devices will require very low power to deliver longer battery 
life. 
 
 
 
 

These trends combined with transistor density reaching over 40 
million transistors per mm2 at 20 nm has caused an explosion of 
design complexity. However, design productivity is growing by only 
about 21% per year. This disparity is depicted in Figure 1. 
 

 
Figure 1. Chip complexity versus design productivity. 

 
Contributing to the increasing gap between complexity versus 
productivity are current RTL-centric design and verification 
methodologies that do not scale with the complexity of new devices. 
Software is impossible to develop on RTL designs and relying on 
emulated platforms that require synthesizable RTL forces software 
integration and verification to occur too late in the game. 
 
It has been well established that software development and 
functional verification are the two most resource and time intensive 
activities of any hardware design project (Figure 2). RTL-centric 
methodologies continue to exacerbate this dilemma.  
 

 
Figure 2. Cost of design tasks per technology. 

 



Methodologies that support abstractions higher than RTL are needed. 
These electronic system level (ESL) methodologies are the best hope 
to speed up the initial architectural exploration phase for 
software/hardware partitioning as well as support early software 
development, functional verification, and weighing power, 
performance, and area trade-offs before committing to RTL. 
 
Establishment of the SystemC TLM2.0 standard has paved the way 
to create modular, reusable, transaction level methodologies at the 
ESL. But ESL methodologies used in isolation from the RTL flows 
do not sufficiently advance the move from RTL to ESL, and the 
benefits therein. A methodology is needed that provides a path from 
ESL to RTL that reuses and leverages the ESL design and 
verification work at the RTL. 
 
A stepwise refinement and reuse flow preserves each subsequent 
modeling investment through the transformation and verification of 
transaction-level models from their initial highly-abstracted 
representation to fully verified RTL. It utilizes transaction-level 
models (TLM) as reference models during RTL verification and 
reuses the initial TLM platform as a “system level testbench” for 
downstream implementations. 
 

2. FIVE STEP REFINEMENT FLOW 
In this paper we will illustrate the essential elements of a five step 
refinement flow. 
 

1. Algorithmic 
Models are represented in pure C/C++ algorithmic form 
and verified using C++ testbench. 

 
2. Transaction Level Model 

The algorithmic models are transformed to transaction-
level models and assembled into a transaction-level 
platform representing the system architecture. The design 
requirements can be validated and debugged at this stage, 
and the architecture can be optimized to meet performance 
and power requirements. 

 
3. Block Level  

The TLM is now implemented in RTL either via High 
Level Synthesis or coded manually. An OVM testbench is 
used to verify that the RTL block is functionally correct. 
The original TLM is used as a reference in the scoreboard 
to determine functional equivalency. Stimulus is reused 
from the Algorithmic step. 
 

4. Bus Integration 
The RTL block is connected to a standard bus. Stimulus is 
reused from the Block Level step. Testbench layering 
techniques in OVM enable reuse of the stimulus and 
scoreboards. 
 

5. System Level  
The block is now integrated with other blocks on the bus to 
form a complete system. Stimulus reused from the Block 
Level step is included. The system-level testbench and 
software driven stimulus are reused from the TLM step. 

 
TSMC defined the ESL-Verification step-wise refinement flow 
requirements as part of its new ESL scope for the Reference Flow 
11. Mentor implemented the flow on an IDCT block design using the 
Vista™, Catapult® C Synthesis, and Questa® tools and 
methodologies. The example described here was donated by Mentor 
to TSMC Reference Flow 11. 

2.1 Algorithmic Step 
The “golden model” and testbench for an Inverse Discrete Cosine 
Transform (IDCT) model was created in untimed ANSI C++. The 
IDCT block reconstructs a sequence from its DCT coefficients to 
bring back the spatial information from a JPEG/MPEG stream. It is a 
key block in consumer electronic devices for the dissemination and 
consumption of audio and video, amongst other applications. 
 
The starting point is the IDCT from the International JPEG Group 
(IJG). While this highly optimized software code is not well suited 
for high level synthesis, it is an excellent reference model to verify 
the synthesizable code against. 
 
The C++ model and C++ testbench was considered the “golden 
source.” They were used to verify that the C++ model was correctly 
exercised by the C++ testbench as compared against the IJG 
reference. Verifying IDCT at the algorithm level allowed verifying 
the C++ model and C++ testbench much more quickly than at RTL, 
more quickly debugging and changing the C++ model and/or 
testbench than the RTL, and ensuring that the C++ models worked 
correctly before adding additional timing and communication 
information further on in the flow. 
 

2.2 Transaction Level Model Step 
In this step, TLM 2.0 wrappers are added to the C++ model and the 
testbench from Step 1. The TLM models are created from the C++ 
source  and assembled to create the TLM platform that is used to 
validate and debug the TLM models. This allows reuse of the 
algorithmic C++ model and testbench and faster validation and 
debug of the IDCT at TLM over RTL. This is also a step towards 
building virtual platforms. Each TLM component is built and 
verified on its own before it is used in building the complete SoC 
virtual platform. A coverage collector is added to evaluate coverage 
at the TLM level. The algorithmic to TLM model migration, 
validation and debug is depicted in Figure 3. 
 

 
 

Figure 3. Vista used for Algorithmic-to-TLM model  
migration, validation, and debug. 

 
The TLM testbench is used to validate the SystemC algorithm. The 
TLM DUT contains, of course, the algorithm we are validating. The 
testbench contains two main elements: the stimulus generator that 
generates a stream of input data and retrieves responses; and the 
coverage collectors that monitor transaction level activity to 
determine if the algorithm has been sufficiently exercised. 
 
In this example, the IDCT and Stimulus C++ code is wrapped in a 
TLM2.0 wrapper using these three steps:  



1. For all slave sockets, callback functions were created to 
enable the model to react to an incoming transaction. 

 
2. For all master sockets, convenience functions were created 

to initiate outgoing transactions. 
 

3. The behavior of the component was modeled by 
embedding master convenience functions on the slave 
callback functions. 

 
The sockets can be either master (to initiate transactions) or slave (to 
react to transactions), so we defined the master and the slave ports 
and their width. We then defined the registers, the address for each, 
and the type of access allowed for each register. Finally we 
associated a callback reusing the algorithmic model which triggered 
when the register was read or written. The sockets can instantiate 
specific protocols. In the absence of a specific protocol, we used the 
“generic” protocol. Then we proceeded to define the timing relations 
between transaction boundaries using policies. These policies can be 
of several types: delay, split, sequential, pipeline buffering, or 
pipeline interleaving. We have chosen to define sequential and delay 
policies.  
 
We used a debug and verification environment for obtaining a 
general view of transactions (READS/WRITE) and their timing 
relations as well as detailed transaction data structures, status, and 
phases. To better understand model behavior, both thread execution 
and event triggering were used. We viewed the transaction in a 
display waveform viewer and transaction sequences in a transaction 
sequence view (TSV) window. We also could see the state of each 
process, its process stack, and local variables, and we could observe 
when a process was suspended or resumed using the Vista animated 
process view. 
 
For the IDCT design example we added two coverage collectors, an 
input coverage model, and an output coverage model. The input 
coverage model counts the number of times each of the sixty-four 
words in an input data block have odd parity and even parity. 100 
percent coverage was reached when each of the sixty-four words 
exhibits odd parity and even parity once. There are 64 things that can 
each have odd or even parity, which means there are a total of 128 
bins. The output coverage model counts the number of times each of 
the sixty-four words in an output data block was saturated at zero 
(i.e., all zeros), saturated at one (i.e., all ones), or not saturated. For 
the output coverage model, each of the 64 positions in the output 
data block can have one of three different saturation modes for a total 
of 192 bins. 
 
The coverage collectors were implemented as subscribers— devices 
which connect to analysis ports. The coverage collectors each 
implemented the write() function in the analysis interface. The 
write() function extracts data, as necessary, from the transaction 
passed to it and increments the coverage counters accordingly. In 
SystemVerilog, the counters were implemented using coverpoints 
and covergroups. In SystemC, the counters were implemented with 
local variables. 
 
Once the IDCT TLM was completely validated reaching its 
functional coverage goal, we had to take an extra step to prepare it 
for reuse in the OVM RTL verification environment. Currently, the 
connection between SystemC ports and SystemVerliog ports is done 
through an interface that supports only TLM1.0 style ports. For 
reusing the IDTC TLM having TLM2.0 style ports (sockets) as a 
reference model to the RTL DUT, a translator had to be provided. 
When the translator receives a TLM1.0 request, it stores the request 

in memory and creates a generic payload that points to that memory. 
This payload is written (via b_transport) to the TLM2.0 DUT and 
processed. Then the processed payload is read (again via 
b_transport) and translated into an appropriate TLM1.0 response and 
sent back. 
 

2.3 Block Level Step 
The RTL block is created using high-level synthesis to synthesize the 
C++ functional core used to define the model of the behavior of the 
IDCT TLM. Catapult includes built-in support (named, SCVerify) to 
verify the generated RTL against the C source. It wraps the generated 
RTL in an automatically created SystemC driver and monitor that 
allows comparison of the generated RTL code to the synthesizable 
C++. It generated all the verification models and shell scripts, which 
allowed us to launch interactive simulation in order to compare and 
view simulation results.  
 

 
Figure 4. Catapult SCVerify used to produce  

and verify the IDCT RTL block. 
 
To verify the IDCT DUT we treat the pins on the device as a 
communication protocol. It is not a standard protocol, but by treating 
it as such we can build an OVM agent to drive the DUT. The agent is 
a container that holds a driver, monitor, sequencer, and a coverage 
collector.  
 
The agent has three interfaces: 

1. A sequencer interface 
The sequencer is used to host sequences, behaviors that 
generate stimulus for the DUT. A reference to the 
sequencer is used to initiate sequences. 

 
2. An analysis port 

The analysis port makes available the transactions 
recognized by the monitor to components outside the 
agent, such as a scoreboard. 

 
3. A virtual interface 

The virtual interface is a reference to an interface object 
(i.e. the SystemVerilog interface construct) that contains 
the pins that the testbench uses to talk to the DUT. In this 
case the virtual interface is the bundle of pins that are on 
the IDCT DUT. 

 
 
The other major elements of the block level testbench include: 

1. Sequences 
Sequences are behaviors that generate streams of 



transactions, also called sequence items, which are used to 
stimulate the DUT 

 
2. Scoreboard 

The scoreboard is responsible for determining whether or 
not the DUT provided the correct response for any 
particular stimulus. The scoreboard contains some 
machinery for sending requests to the reference model, 
retrieving responses, and comparing the responses from the 
reference model with responses from the DUT. The 
reference model is written in SystemC, so the scoreboard 
has to communicate across the language boundary. 

 

 
Figure 5. The testbench. 

 
The testbench is a conventional OVM testbench with the exception 
of the internal construction of the sequences and the scoreboard, as 
shown in Figure 5. The sequences come from the C++ stimulus 
reused in the SystemC TLM. In the SystemC model, the C function 
is linked directly into the model. The stimulus generator provides 
data to the DUT using SystemC datatypes. Since these datatypes are 
not available in C, a conversion must be done to convert the data 
generated by the C stimulus functions into a SystemC datatype for 
use by the stimulus generator. 
 
In the SystemVerilog/OVM testbench, the same C function is used in 
the stimulus generation sequence to provide the actual stimulus data. 
The C function is linked with the SystemVerilog via DPI. Just like 
with SystemC, a conversion must take place to convert data 
generated in the C domain to be used in the SystemVerilog domain. 
This this case, the DPI facility takes care of the conversion. 
 

2.4 Bus Integration Step 
As we continue with the stepwise refinement process, the next step is 
to start integrating the block with the system, as shown in Figure 6. 
To do that we must be able to connect the IDCT block to an AXI 
bus, as the system is designed using an AXI bus. We connect an 
adapter to the IDCT block that enables the block to appear as an AXI 
slave. The DUT now consists of the AXI slave adapter and the IDCT 
block. Since the device now has an AXI interface we can drive it 
with and AXI agent.  

Figure 6. Integrating the block with the system. 
 
The AXI agent we used is from the Mentor MVC library. The MVC 
library is a collection of verification IP that has SystemVerilog/OVM 
wrappers so that they can easily be used in OVM testbenches. Like 
any OVM testbench, each MVC contains a monitor, driver, and 
sequencer.  
 
In order to use elements from previous steps we have to create 
layers, agents that talk to other agents, not directly to the DUT. In 
this case we have two layers, an IDCT layering agent and a register 
layering agent. The IDCT agent converts IDCT transactions to 
protocol-independent bus transactions. IDCT transactions are just 
blocks of numbers that are operated on by the IDCT block. The 
IDCT agent converts those to read and writes on an abstract bus. In 
the reverse direction, the IDCT agent converts protocol-independent 
transactions to IDCT transactions.  
 
Note that the register agent converts the protocol-independent 
transactions to protocol-dependent transactions, sometimes called 
concrete transactions. A protocol-independent transaction may say 
something like “read register A”. The register agent looks up the 
address of A and converts the transaction to perform a read on the 
address where register A resides. Finally, the AXI agent will convert 
the protocol-dependent transaction into pin activity on the RTL bus. 
 
The IDCT agent also has a whitebox connection on DUT. The DUT 
wrapper contains an interface that connects to the internal IDCT bus. 
This interface is made available externally. This enables some of the 
internal activity to be made visible externally. In this example we 
connect the IDCT agent to the interface. The IDCT agent operates in 
“passive” mode, meaning that the sequencer and driver are turned 
off. The monitor and coverage collector remain on. Effectively, the 
agent operates like a monitor. We instantiate the agent and run it in 
passive mode instead of just instantiating and connecting a monitor 
because the agent is the reusable element. It’s much easier to 
instantiate the agent then to have to understand how to instantiate 
and connect each internal component. 
 
The sequences generate randomized IDCT input data, pack the data 
into AXI transactions, and send them off to the AXI agent. The AXI 
agent converts the AXI transactions to pin-level activity on the AXI 
bus. The AXI slave, which contains the IDCT block, processes the 
input data, performs the IDCT computation, and returns the result 
back to the AXI bus. The AXI agent retrieves the results and makes 
them available to the sequences. The sequences can get the result by 
issuing a bus read. 
 



2.5 System Level Step 
The final stage in our stepwise refinement process is to connect our 
IDCT slave to the AXI switch. That enables it to be used in a 
complete system. 
 

AXI
SWITCH

IDCT
SLAVE

REGISTER
LAYERING

AGENT

AXI
AGENT

IDCT
LAYERING

AGENT

ARM
PROCESSOR

SYSTEMVERILOG
SCOREBOARD

IDCT
SYSTEMC

TLM
MODEL

SOFTWARE

 
Figure 7. The complete system. 

We retain the transactors and the layering from the previous step. We 
add a processor and whatever other masters and slaves are necessary 
to form the complete system.  
 

3. CONCLUSION 
We have shown that using a stepwise refinement flow we can take 
advantage of architectural models written in SystemC in the RTL 
verification flow. At each refinement step we reuse design and 
verification components from the previous step. This not only saves 
time by avoiding re-writing models that already exist, but it ensures 
that the verification results achieved at each step can be recreated at 
subsequent steps. This provides for greater confidence that the final 
design is correct and reduces the number of bugs and the entire 
verification effort. 
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