
Stepwise Refinement and Reuse: The Key to ESL

Ashok B. Mehta
TSMC Technology, Inc.
2585 Junction Avenue
San Jose, CA 95134

(408) 678-2722
ashokm@tsmc.com

Mark Glasser
Mentor Graphics, Corp.
46871 Bayside Parkway

Fremont, CA 94538
408-451-5516

mark_glasser@mentor.com

Shabtay Matalon
Mentor Graphics, Corp.
46871 Bayside Parkway

Fremont, CA 94538
408-451-7456

shabtay_matalon@mentor.com

Dan Gardner
Mentor Graphics, Corp.
8005 SW Boeckman Rd
Wilsonville, OR 97070

503-685-7993
dan_gardner@mentor.com

ABSTRACT
For ultra-scale SoC designs that are now commonplace, it has
become impractical to use only traditional RTL design and
verification techniques. ESL methodologies, used for designing at
levels of abstraction above RTL, are instrumental in determining
design feasibility, honing requirements, and experimenting with
architectures and algorithms to meet functionality as well as
performance and power requirements. However, applying ESL
techniques requires building abstracted transaction-level models that
traditionally do not have a direct path to RTL implementation.

A stepwise refinement and reuse flow is necessary to realize the
complete benefits of ESL. It preserves each subsequent modeling
investment through the transformation and verification of
transaction-level models from their initial highly abstracted
representation to fully verified RTL. It utilizes transaction-level
models as reference models during RTL verification and reuses the
initial TLM platform as a “system level testbench” for downstream
implementations.

In this paper we will illustrate the essential elements of a five step
refinement flow. The first four steps in the flow have been realized in
TSMC’s Reference Flow 11 and work is ongoing for reference flow
12. We will briefly show results from reference flow 11 and discuss
the work underway for reference flow 12.

Categories and Subject Descriptors
B.5.2 [REGISTER-TRANSFER-LEVEL IMPLEMENTATION]:
Design Aids –automatic synthesis, optimization, simulation,
verification

General Terms
Design, Verification

Keywords
Electronic System Level, ESL, transaction-level models, TLM

1. INTRODUCTION
Market data suggests that the total number of highly-integrated basic,
enhanced, and smart phones will be over 2 billion by 2012. When
tablet PCs, iPADs, and other small form factor, connected devices
are included, the number is projected to reach over 15 billion by
2015. These devices will require high-end graphic performance in
the range of 200 million triangles per second by 2011 and will need
to support multiple concurrent software applications. Lastly, all of
these devices will require very low power to deliver longer battery
life.

These trends combined with transistor density reaching over 40
million transistors per mm2 at 20 nm has caused an explosion of
design complexity. However, design productivity is growing by only
about 21% per year. This disparity is depicted in Figure 1.

Figure 1. Chip complexity versus design productivity.

Contributing to the increasing gap between complexity versus
productivity are current RTL-centric design and verification
methodologies that do not scale with the complexity of new devices.
Software is impossible to develop on RTL designs and relying on
emulated platforms that require synthesizable RTL forces software
integration and verification to occur too late in the game.

It has been well established that software development and
functional verification are the two most resource and time intensive
activities of any hardware design project (Figure 2). RTL-centric
methodologies continue to exacerbate this dilemma.

Figure 2. Cost of design tasks per technology.

Methodologies that support abstractions higher than RTL are needed.
These electronic system level (ESL) methodologies are the best hope
to speed up the initial architectural exploration phase for
software/hardware partitioning as well as support early software
development, functional verification, and weighing power,
performance, and area trade-offs before committing to RTL.

Establishment of the SystemC TLM2.0 standard has paved the way
to create modular, reusable, transaction level methodologies at the
ESL. But ESL methodologies used in isolation from the RTL flows
do not sufficiently advance the move from RTL to ESL, and the
benefits therein. A methodology is needed that provides a path from
ESL to RTL that reuses and leverages the ESL design and
verification work at the RTL.

A stepwise refinement and reuse flow preserves each subsequent
modeling investment through the transformation and verification of
transaction-level models from their initial highly-abstracted
representation to fully verified RTL. It utilizes transaction-level
models (TLM) as reference models during RTL verification and
reuses the initial TLM platform as a “system level testbench” for
downstream implementations.

2. FIVE STEP REFINEMENT FLOW
In this paper we will illustrate the essential elements of a five step
refinement flow.

1. Algorithmic
Models are represented in pure C/C++ algorithmic form
and verified using C++ testbench.

2. Transaction Level Model

The algorithmic models are transformed to transaction-
level models and assembled into a transaction-level
platform representing the system architecture. The design
requirements can be validated and debugged at this stage,
and the architecture can be optimized to meet performance
and power requirements.

3. Block Level

The TLM is now implemented in RTL either via High
Level Synthesis or coded manually. An OVM testbench is
used to verify that the RTL block is functionally correct.
The original TLM is used as a reference in the scoreboard
to determine functional equivalency. Stimulus is reused
from the Algorithmic step.

4. Bus Integration
The RTL block is connected to a standard bus. Stimulus is
reused from the Block Level step. Testbench layering
techniques in OVM enable reuse of the stimulus and
scoreboards.

5. System Level
The block is now integrated with other blocks on the bus to
form a complete system. Stimulus reused from the Block
Level step is included. The system-level testbench and
software driven stimulus are reused from the TLM step.

TSMC defined the ESL-Verification step-wise refinement flow
requirements as part of its new ESL scope for the Reference Flow
11. Mentor implemented the flow on an IDCT block design using the
Vista™, Catapult® C Synthesis, and Questa® tools and
methodologies. The example described here was donated by Mentor
to TSMC Reference Flow 11.

2.1 Algorithmic Step
The “golden model” and testbench for an Inverse Discrete Cosine
Transform (IDCT) model was created in untimed ANSI C++. The
IDCT block reconstructs a sequence from its DCT coefficients to
bring back the spatial information from a JPEG/MPEG stream. It is a
key block in consumer electronic devices for the dissemination and
consumption of audio and video, amongst other applications.

The starting point is the IDCT from the International JPEG Group
(IJG). While this highly optimized software code is not well suited
for high level synthesis, it is an excellent reference model to verify
the synthesizable code against.

The C++ model and C++ testbench was considered the “golden
source.” They were used to verify that the C++ model was correctly
exercised by the C++ testbench as compared against the IJG
reference. Verifying IDCT at the algorithm level allowed verifying
the C++ model and C++ testbench much more quickly than at RTL,
more quickly debugging and changing the C++ model and/or
testbench than the RTL, and ensuring that the C++ models worked
correctly before adding additional timing and communication
information further on in the flow.

2.2 Transaction Level Model Step
In this step, TLM 2.0 wrappers are added to the C++ model and the
testbench from Step 1. The TLM models are created from the C++
source and assembled to create the TLM platform that is used to
validate and debug the TLM models. This allows reuse of the
algorithmic C++ model and testbench and faster validation and
debug of the IDCT at TLM over RTL. This is also a step towards
building virtual platforms. Each TLM component is built and
verified on its own before it is used in building the complete SoC
virtual platform. A coverage collector is added to evaluate coverage
at the TLM level. The algorithmic to TLM model migration,
validation and debug is depicted in Figure 3.

Figure 3. Vista used for Algorithmic-to-TLM model
migration, validation, and debug.

The TLM testbench is used to validate the SystemC algorithm. The
TLM DUT contains, of course, the algorithm we are validating. The
testbench contains two main elements: the stimulus generator that
generates a stream of input data and retrieves responses; and the
coverage collectors that monitor transaction level activity to
determine if the algorithm has been sufficiently exercised.

In this example, the IDCT and Stimulus C++ code is wrapped in a
TLM2.0 wrapper using these three steps:

1. For all slave sockets, callback functions were created to
enable the model to react to an incoming transaction.

2. For all master sockets, convenience functions were created

to initiate outgoing transactions.

3. The behavior of the component was modeled by
embedding master convenience functions on the slave
callback functions.

The sockets can be either master (to initiate transactions) or slave (to
react to transactions), so we defined the master and the slave ports
and their width. We then defined the registers, the address for each,
and the type of access allowed for each register. Finally we
associated a callback reusing the algorithmic model which triggered
when the register was read or written. The sockets can instantiate
specific protocols. In the absence of a specific protocol, we used the
“generic” protocol. Then we proceeded to define the timing relations
between transaction boundaries using policies. These policies can be
of several types: delay, split, sequential, pipeline buffering, or
pipeline interleaving. We have chosen to define sequential and delay
policies.

We used a debug and verification environment for obtaining a
general view of transactions (READS/WRITE) and their timing
relations as well as detailed transaction data structures, status, and
phases. To better understand model behavior, both thread execution
and event triggering were used. We viewed the transaction in a
display waveform viewer and transaction sequences in a transaction
sequence view (TSV) window. We also could see the state of each
process, its process stack, and local variables, and we could observe
when a process was suspended or resumed using the Vista animated
process view.

For the IDCT design example we added two coverage collectors, an
input coverage model, and an output coverage model. The input
coverage model counts the number of times each of the sixty-four
words in an input data block have odd parity and even parity. 100
percent coverage was reached when each of the sixty-four words
exhibits odd parity and even parity once. There are 64 things that can
each have odd or even parity, which means there are a total of 128
bins. The output coverage model counts the number of times each of
the sixty-four words in an output data block was saturated at zero
(i.e., all zeros), saturated at one (i.e., all ones), or not saturated. For
the output coverage model, each of the 64 positions in the output
data block can have one of three different saturation modes for a total
of 192 bins.

The coverage collectors were implemented as subscribers— devices
which connect to analysis ports. The coverage collectors each
implemented the write() function in the analysis interface. The
write() function extracts data, as necessary, from the transaction
passed to it and increments the coverage counters accordingly. In
SystemVerilog, the counters were implemented using coverpoints
and covergroups. In SystemC, the counters were implemented with
local variables.

Once the IDCT TLM was completely validated reaching its
functional coverage goal, we had to take an extra step to prepare it
for reuse in the OVM RTL verification environment. Currently, the
connection between SystemC ports and SystemVerliog ports is done
through an interface that supports only TLM1.0 style ports. For
reusing the IDTC TLM having TLM2.0 style ports (sockets) as a
reference model to the RTL DUT, a translator had to be provided.
When the translator receives a TLM1.0 request, it stores the request

in memory and creates a generic payload that points to that memory.
This payload is written (via b_transport) to the TLM2.0 DUT and
processed. Then the processed payload is read (again via
b_transport) and translated into an appropriate TLM1.0 response and
sent back.

2.3 Block Level Step
The RTL block is created using high-level synthesis to synthesize the
C++ functional core used to define the model of the behavior of the
IDCT TLM. Catapult includes built-in support (named, SCVerify) to
verify the generated RTL against the C source. It wraps the generated
RTL in an automatically created SystemC driver and monitor that
allows comparison of the generated RTL code to the synthesizable
C++. It generated all the verification models and shell scripts, which
allowed us to launch interactive simulation in order to compare and
view simulation results.

Figure 4. Catapult SCVerify used to produce

and verify the IDCT RTL block.

To verify the IDCT DUT we treat the pins on the device as a
communication protocol. It is not a standard protocol, but by treating
it as such we can build an OVM agent to drive the DUT. The agent is
a container that holds a driver, monitor, sequencer, and a coverage
collector.

The agent has three interfaces:

1. A sequencer interface
The sequencer is used to host sequences, behaviors that
generate stimulus for the DUT. A reference to the
sequencer is used to initiate sequences.

2. An analysis port

The analysis port makes available the transactions
recognized by the monitor to components outside the
agent, such as a scoreboard.

3. A virtual interface

The virtual interface is a reference to an interface object
(i.e. the SystemVerilog interface construct) that contains
the pins that the testbench uses to talk to the DUT. In this
case the virtual interface is the bundle of pins that are on
the IDCT DUT.

The other major elements of the block level testbench include:

1. Sequences
Sequences are behaviors that generate streams of

transactions, also called sequence items, which are used to
stimulate the DUT

2. Scoreboard

The scoreboard is responsible for determining whether or
not the DUT provided the correct response for any
particular stimulus. The scoreboard contains some
machinery for sending requests to the reference model,
retrieving responses, and comparing the responses from the
reference model with responses from the DUT. The
reference model is written in SystemC, so the scoreboard
has to communicate across the language boundary.

Figure 5. The testbench.

The testbench is a conventional OVM testbench with the exception
of the internal construction of the sequences and the scoreboard, as
shown in Figure 5. The sequences come from the C++ stimulus
reused in the SystemC TLM. In the SystemC model, the C function
is linked directly into the model. The stimulus generator provides
data to the DUT using SystemC datatypes. Since these datatypes are
not available in C, a conversion must be done to convert the data
generated by the C stimulus functions into a SystemC datatype for
use by the stimulus generator.

In the SystemVerilog/OVM testbench, the same C function is used in
the stimulus generation sequence to provide the actual stimulus data.
The C function is linked with the SystemVerilog via DPI. Just like
with SystemC, a conversion must take place to convert data
generated in the C domain to be used in the SystemVerilog domain.
This this case, the DPI facility takes care of the conversion.

2.4 Bus Integration Step
As we continue with the stepwise refinement process, the next step is
to start integrating the block with the system, as shown in Figure 6.
To do that we must be able to connect the IDCT block to an AXI
bus, as the system is designed using an AXI bus. We connect an
adapter to the IDCT block that enables the block to appear as an AXI
slave. The DUT now consists of the AXI slave adapter and the IDCT
block. Since the device now has an AXI interface we can drive it
with and AXI agent.

Figure 6. Integrating the block with the system.

The AXI agent we used is from the Mentor MVC library. The MVC
library is a collection of verification IP that has SystemVerilog/OVM
wrappers so that they can easily be used in OVM testbenches. Like
any OVM testbench, each MVC contains a monitor, driver, and
sequencer.

In order to use elements from previous steps we have to create
layers, agents that talk to other agents, not directly to the DUT. In
this case we have two layers, an IDCT layering agent and a register
layering agent. The IDCT agent converts IDCT transactions to
protocol-independent bus transactions. IDCT transactions are just
blocks of numbers that are operated on by the IDCT block. The
IDCT agent converts those to read and writes on an abstract bus. In
the reverse direction, the IDCT agent converts protocol-independent
transactions to IDCT transactions.

Note that the register agent converts the protocol-independent
transactions to protocol-dependent transactions, sometimes called
concrete transactions. A protocol-independent transaction may say
something like “read register A”. The register agent looks up the
address of A and converts the transaction to perform a read on the
address where register A resides. Finally, the AXI agent will convert
the protocol-dependent transaction into pin activity on the RTL bus.

The IDCT agent also has a whitebox connection on DUT. The DUT
wrapper contains an interface that connects to the internal IDCT bus.
This interface is made available externally. This enables some of the
internal activity to be made visible externally. In this example we
connect the IDCT agent to the interface. The IDCT agent operates in
“passive” mode, meaning that the sequencer and driver are turned
off. The monitor and coverage collector remain on. Effectively, the
agent operates like a monitor. We instantiate the agent and run it in
passive mode instead of just instantiating and connecting a monitor
because the agent is the reusable element. It’s much easier to
instantiate the agent then to have to understand how to instantiate
and connect each internal component.

The sequences generate randomized IDCT input data, pack the data
into AXI transactions, and send them off to the AXI agent. The AXI
agent converts the AXI transactions to pin-level activity on the AXI
bus. The AXI slave, which contains the IDCT block, processes the
input data, performs the IDCT computation, and returns the result
back to the AXI bus. The AXI agent retrieves the results and makes
them available to the sequences. The sequences can get the result by
issuing a bus read.

2.5 System Level Step
The final stage in our stepwise refinement process is to connect our
IDCT slave to the AXI switch. That enables it to be used in a
complete system.

AXI
SWITCH

IDCT
SLAVE

REGISTER
LAYERING

AGENT

AXI
AGENT

IDCT
LAYERING

AGENT

ARM
PROCESSOR

SYSTEMVERILOG
SCOREBOARD

IDCT
SYSTEMC

TLM
MODEL

SOFTWARE

Figure 7. The complete system.

We retain the transactors and the layering from the previous step. We
add a processor and whatever other masters and slaves are necessary
to form the complete system.

3. CONCLUSION
We have shown that using a stepwise refinement flow we can take
advantage of architectural models written in SystemC in the RTL
verification flow. At each refinement step we reuse design and
verification components from the previous step. This not only saves
time by avoiding re-writing models that already exist, but it ensures
that the verification results achieved at each step can be recreated at
subsequent steps. This provides for greater confidence that the final
design is correct and reduces the number of bugs and the entire
verification effort.

4. ACKNOWLEDGMENTS
Thanks to Todd Burkholder, Senior Writer, Mentor Graphics for
editorial support.

