
1

Stepping into UPF 2.1 world: Easy solution to

complex Power Aware Verification

Amit Srivastava

Mentor Graphics

amit_srivastava@mentor.com

Madhur Bhargava

Mentor Graphics

madhur_bhargava@mentor.com

Abstract—The increasing complexity and growing demand

for energy efficient electronic systems has resulted in

sophisticated power management architectures. To keep up with

the pace, the power formats have also evolved over the years.

With the recent release of the IEEE P1801-2013 (UPF 2.1),

several new features have been added along with improving

clarity on existing features. It has also bridged the gap between

UPF and CPF to provide much needed convergence. However, it

has also posed some questions about the compatibility,

differences, and challenges related to migration and its impact on

verification. In this paper, we will provide an in-depth analysis

and relevant examples of all the new features introduced by the

UPF 2.1 along with highlighting any semantics differences with

the earlier versions to help the user easily migrate to the new

standard.

Keywords—Power Management, Power Aware Verification, IP,

UPF.

I. INTRODUCTION

A. Power Management

The growing demand for energy efficient electronic systems

has resulted in sophisticated power management architectures.

The constant need to minimize energy consumption to

increase battery life for portable devices, and reduce heat

dissipation for non-portable devices to minimize cooling costs

ensure that power management is critical part of any

electronics designs. Designers employ a variety of advanced

techniques ranging from clock gating and power gating to

multiple voltages and dynamic scaling of voltages and

frequency. These techniques affect the functionality of the

system if not executed correctly. Hence, it becomes important

to verify the power management to ensure functional

correctness of designs.

The power management consideration starts as early as the

system design phase to achieve maximum benefits. It gets

refined at various phases of the design cycle. Thus it becomes

important to verify the power management at every stage in

the design flow so that any functional bugs are rectified.

The traditional Hardware Description Languages (HDL)

were not designed to consider the power related information in

the description. Power intent specification formats were

introduced to address this limitation. These formats allow the

user to express the power intent related to power management,

which can be overlaid on top of HDL description without

requiring any change in normal design functionality. This

specification can be used by various tools to perform

verification and implementation of power managed designs.

B. Verification complexity

Power management in today’s complex SoCs involves

various techniques. The result is the modification of the

original design and insertion of special power management

structures like isolation, level shifters, retention, etc. at various

places in the design. Due to the complex interaction of these

structures with the normal design functionality, it poses a

serious challenge to verification. To add to it, the various IPs

with their own power management need proper verification to

remove any integration issues related to power management.

To aid the verification process, power intent specification

formats can share the burden by defining clear and consistent

semantics enabling tools to automate various tasks related to

power management.

C. Evolution of UPF

Back in 2007, the first version of UPF was developed and

released by Accellera. UPF 1.0 introduced the basic concepts

relating to power management, i.e. corruption, isolation,

retention and level shifting. In March 2009, IEEE released

UPF 2.0 [1] and introduced various concepts like Supply Sets

and power states to ease specification at higher levels of

abstraction. Although, it was a significant upgrade from UPF

1.0 and provided lot more automation capabilities, the

adoption has been slow over the years. Lack of clarity and

preciseness on semantics didn’t help the adoption further. The

P1801-2013 (aka UPF 2.1) [2], recently released in May 2013,

has addressed the issues of the previous version and also

introduced new concepts to provide greater precision,

accuracy and fidelity of power intent expression.

D. Why Migrate To UPF 2.1

The new UPF 2.1 has taken leaps in addressing most of the

verification challenges that the former versions of UPF failed

to address. This paper highlights some of these verification

challenges and demonstrates the capability of UPF 2.1 by

relevant examples. It also highlights the limitations with the

earlier UPF versions, along with providing migration tips

which will help users easily migrate to UPF 2.1 standard.

2

II. BASIC CONCEPTS OF UPF

Some of the important concepts and terminology used in

power intent specification are the following:

 Power domain: A collection of HDL module

instances and/or library cells that are treated as a

group for power management purposes. The

instances of a power domain typically, but do not

always, share a primary supply set and typically are

all in the same power state at a given time. This

group of instances is referred to as the extent of a

power domain.

 Power state: The state of a supply net, supply port,

supply set, or power domain. It is an abstract

representation of the voltage and current

characteristics of a power supply, and also an

abstract representation of the operating mode of the

elements of a power domain or of a module

instance (e.g., on, off, sleep).

 Power state table (PST): A table that captures the

legal combinations of power states for a set of

supply ports and/or supply nets.

 Isolation Cell: An instance that passes logic values

during normal mode operation and clamps its

output to some specified logic value when a control

signal is asserted. It is required when the driving

logic supply is switched off while the receiving

logic supply is still on.

 Level Shifter: An instance that translates signal

values from an input voltage swing to a different

output voltage swing.

 Retention: Enhanced functionality associated with

selected sequential elements or a memory such that

memory values can be preserved during the power-

down state of the primary supplies.

 Repeaters: If the distance between driver and receiver

is long, special buffers may be required to boost the

strength of the signal, or to ensure that it stabilizes

within the required time. These buffers are typically

called repeaters.

 Supply net: an abstraction of a power rail.

 Supply set: an abstraction of a collection of supply

nets that in aggregate provide all the supply

connections required by a given logic element. The

individual nets are referred to as functions of a

supply set.

 Driver supply (source supply): the supply set

providing power to the logic that is the ultimate

source (driver) of a net.

 Receiver supply (sink supply): the supply set

providing power to the logic that is the ultimate

sink (load) of a net.

 Soft IP: a synthesizable module in HDL such as

SystemVerilog or VHDL. It is designed to be

implemented using logic synthesis and place-and-

route tools.

 Hard IP: an IP which is pre-implemented and has

power management already built into it. These IPs

are already verified for power management at the

IP level.

III. VERIFICATION CHALLENGES

A. Repeater insertion

In typical designs, it is possible that there are signal

crossings that span across several power domains, some of

which can be switchable. These crossings require special

buffers to boost the strength of the signal. These buffers,

typically called repeaters, can be placed anywhere along the

path depending upon the fanout and load requirements. It

becomes important to use the correct supplies for these

repeaters as incorrect switching of supplies may affect the

functionality of the design.

The repeaters are typically inserted automatically by

implementation tools late in the design flow. Due to late

insertion of these buffers, the verification process done at an

earlier stage is ignorant of their existence and hence cannot

verify the intent properly. In some cases, designers are

required to direct tools to pick specific supplies for the

insertion of these repeaters according to their unique

requirements.

1) UPF 2.0 Specification

UPF 2.0 has some capability to allow users to specify the

supply of repeaters by specifying the -repeater_supply

attribute.

UPF Code
set_port_attributes –domain pd_sw \

 –ports $DOMAIN_PORTS \

 -repeater_supply always_on_ss

a) Limitations

Due to the lack of proper semantics in UPF for this attribute,

the option is not widely used. It only restricts insertion of

buffers at the outputs and doesn’t clearly define the placement

of the buffers. It fails to define the interaction of the buffers

with other power management cells like isolation or level

shifter cells. Moreover, it fails to provide sufficient

information for tools to perform verification and

implementation of repeaters.

These limitations have resulted in users relying on

proprietary commands or semantics to express the intent. This

causes some significant problems to verification tools to

mimic the behavior and achieve effective verification early in

the design flow.

2) UPF 2.1 Solution

UPF 2.1 has introduced a new strategy command,

set_repeater, similar to existing strategy commands for

isolation and level shifter. This allows the user to define a

strategy for the insertion of repeaters with greater control over

placement. The repeaters inserted for these commands act as

new source/sink for the determination of isolation and level

shifter strategies hence providing a well-defined semantics for

the effect of placement of repeater cells.

3

Similar to other strategies, the set_repeater command

inherits the well-known semantics like filters, precedence

rules and predictable placement of cells. There is also an

ability to provide existing repeater instances in the same way

as other existing special cells like an isolation cell.

Design Example

A signal originates in transmitter domain (pd_tx), span

across switchable domain (pd_sw) and terminates in receiver

domain (pd_rx). To boost the signal strength, repeaters are

required to be inserted in switchable domain pd_sw

UPF Code
create_power_domain pd_tx \

 –elements {tx} \

 –supply {primary aon_ss}

create_power_domain pd_sw \

 –elements {mid} \

 –supply {primary sw_ss}

create_power_domain pd_rx \

 –elements {rx} \

 –supply {primary aon_ss}

Insert repeaters powered by always on supply

 set_repeater rep_sw \

 –domain pd_sw \

 –repeater_supply_set pd_tx.primary \

 –source pd_tx.primary \

 -sink pd_rx.primary

a) Verification Impact

With the dedicated strategy for the insertion of repeaters,

verification tools can easily understand the location and

properties of repeaters. This will help them to mimic their

behavior in simulation to catch errors related to incorrect

supplies and placement of these repeater cells.

3) Migration Tips

Users who were using proprietary commands need to translate

them to the appropriate set_repeater strategies for

consistent behavior across various tools.

B. Modeling soft IP power management constraints

A large number of SoC designs use configurable soft IPs.

These IPs typically define constraints related to power

management which should be followed for the proper

functioning of the IP. Some of these constraints are following:

 Certain regions should always belong to specific

power domains and should be powered by the same

supply of the power domain.

 The isolation cells inserted in the IP should follow

specific clamping requirements as determined by

the IP provider.

 If the IP has retention, the critical registers should

always be retained during the power down period.

It becomes important for an IP integrator to ensure that these

constraints are not violated when the soft IP is integrated into

their system and configured according to their requirement.

Hence, it is important for verification tools to validate the

constraints of the soft IPs and catch any scenarios that fail to

honor these constraints. As a result, the power intent should be

able to express these constraints to enable tools to interpret

and validate them.

1) UPF 2.0 Specification

UPF 2.0 can be used to express the constraints for the soft IP

as demonstrated in the DVCon 2012 paper titled” Low Power

SoC Verification: IP Reuse and Hierarchical Composition

using UPF”[3].

UPF Code
#---------------------

#soft_ip.upf

#---------------------

#Power Domains for Soft IP

create_power_domain pd_softIP \

 -include_scope \

 -supply { cpu_ss } \

 -supply { mem_ss }

#Isolation Constraints

set_port_attributes -ports $PORTS \

 -clamp_value 1

#Retention Constraints

set_retention_elements critical_regs \

 -elements { reg_a reg_b } \

 -retention_purpose required

#... Other Constraints ...

#---------------------

#soc.upf

#---------------------

Load UPF of Soft IP

load_upf soft_ip.upf \

 -scope softIPinst

Connect Supplies

associate_supply_set pd_SoC.primary \

 -handle softIPinst/pd_softIP.cpu_ss

associate_supply_set pd_SoC.mem_ss \

 -handle softIPinst/pd_softIP.mem_ss

Update Supply Constraints

add_power_state pd_SoC.primary ..

Connect Logic Controls

connect_logic_net ...

#---------------------

4

a) Limitations

Although, UPF 2.0 can be used to model the constraints for

the IP but it still lacks clear semantics in some areas and this

can easily be missed by the verification semantics.

The regions within the power domain can easily be carved

out and added into another power domain. The semantics of

UPF provide no mechanism to catch such a scenario.

UPF Code
soc.upf

load_upf soft_ip.upf \

 -scope softIPinst

#.... Other UPF Commands ...

#Potential Problem

create_power_domain pd_other \

 -elements { softIPinst/child }

It could be possible that an IP integrator has accidently

configured the IP in such a way that an element inside the soft

IP (softIPinst/child) is added into another power domain

(pd_other) powered by a different supply (other_ss) and

the tools will not be able to catch such a scenario.

The semantics of set_retention_elements are not

properly defined for tools to interpret it and validate the

retention constraint. Although, there is some indication that

there should be error checking to ensure retention behavior but

lack of a proper description makes it difficult for tools to have

consistent behavior.

2) UPF 2.1 solution

UPF 2.1 introduced the concept of atomic power domains

(by using command create_power_domain -atomic). It

allows the user to add constraints to the IP that once an atomic

power domain is created it cannot be further split during

implementation. To enforce this, atomic power domains have

the highest precedence and are created first before non-atomic

power domains.

UPF 2.1 has also clarified the semantics of the command

set_retention_elements. It allows users to create an

atomic list of critical registers all of which needs to be

retained, if the IP has retention capability.

UPF Code
#---------------

#soft_ip.upf

#---------------

#Power Domains for Soft IP

create_power_domain pd_softIP \

 -elements {.} \

 -supply { cpu_ss } \

 -supply { mem_ss } \

 -atomic

#Isolation Constraints

set_port_attributes \

 -ports $PORTS \

 -clamp_value 1

#Retention Constraints

set_retention_elements critical_regs \

 -elements { reg_a reg_b } \

 -retention_purpose required

#... Other Constraints ...

#---------------------

#soc.upf

#---------------------

#.... UPF Commands ...

Load UPF of Soft IP

load_upf soft_ip.upf \

 -scope softIPinst

Connect Supplies

associate_supply_set pd_SoC.primary \

 -handle softIPinst/pd_softIP.cpu_ss

associate_supply_set pd_SoC.mem_ss \

 -handle softIPinst/pd_softIP.mem_ss

Update Supply Constraints

add_power_state pd_SoC.primary ..

Connect Logic Controls

connect_logic_net ...

#.... Other UPF Commands ...

#ERROR

create_power_domain pd_other \

 -elements { softIPinst/child }

Adding retention only on reg_a

ERROR: Retention not added on reg_b

set_retention ret_soft \

 -domain softIPinst/pd_softIP

 -elements { softIPinst/reg_a }

#---------------

a) Verification Impact

If pd_softIP has been defined as atomic, then adding any

child instances that belong to it into some other power domain

will cause errors in UPF processing. This avoids any scope of

accidently carving out of regions within any soft IP atomic

power domains. If only some of the registers of

set_retention_elements list are retained and rest of the

registers are not retained, then it will cause an error in UPF

processing.

3) Migration Tips

Users have to modify the existing power domains of the IP

and make them atomic. If the IP provider wants to specify

additional power domains within an atomic power domain,

they have to use –exclude_elements during the creation of

atomic power domains. The changes related to

set_retention_elements are mostly in terms of

clarification so there isn’t any need to change anything if they

are already using this command in their UPF 2.0 code.

5

However, if they are using –expand option of the command

then they need to remove it as it has been marked as

deprecated in the 2.1 standard. Removing this option will not

impact their power intent.

C. Modeling of Hard IP

In some cases, the SoC directly reuses an IP that is pre-

implemented and the power management is already built into

it. These IPs, called hard IPs, are already verified for power

management at the IP level. It becomes important for the IP

integrator to ensure that the IP has been connected to proper

supplies and that the boundary of IP are properly protected

with respect to the environment in which the IP is present.

Although the power intent of Hard IP is already verified, it is

important for the SoC environment to be aware of the power

management of hard IP. This will ensure that verification tools

can validate the power management in the SoC environment

and can catch issues related to it early in the design flow. The

following information is necessary for the integration of hard

IP:

 Information about related supplies of boundary ports

of hard IP

 Information about external and internal supplies of

the hard IP and their characteristics

 Information about isolation/level shifter cells already

implemented for the hard IP and the supplies.

 Information about system power states of the hard IP

1) UPF 2.0 Specification

UPF 2.0 has capabilities to specify the power intent of a hard

IP.

UPF Code
#---------------

#hard_ip.upf

#---------------

#Power Domains for Hard IP

create_power_domain pd_hardIP \

 -include_scope \

 -supply { backup_ssh } \

 -supply { primary }

#Related Supply Constraints

set_port_attributes -domain pd_hardIP \

 -applies_to outputs \

 -driver_supply pd_hardIP.primary

set_port_attributes -ports portA \

 -driver_supply pd_hardIP.backup_ssh

set_port_attributes -domain pd_hardIP \

 -applies_to inputs \

 -receiver_supply pd_hardIP.primary

#Internal switchable supply

create_power_switch ...

Isolation/level shifter and retention cells

set_isolation ...

set_level_shifter ...

set_retention ...

System states for hard IP

add_power_state pd_hardIP ...

#... Other Constraints ...

#---------------------

#soc.upf

#---------------------

Load Hard IP UPF

load_upf hard_ip.upf \

 -scope hardIPinst

Connect Supplies

associate_supply_set pd_SoC.primary \

 -handle hardIPinst/pd_hardIP.primary

associate_supply_set pd_SoC.backup \

 -handle hardIPinst/pd_hardIP.backup

Update Supply Constraints

add_power_state pd_SoC.primary ..

Connect Logic Controls

connect_logic_net ...

#---------------

a) Limitations

The UPF specification is directive in nature as it directs

verification and implementation tools to apply the necessary

changes required for power management. Since, power

management for the hard IP is already implemented; the UPF

specification should only be used to describe the power intent

of hard IP for validating in the SoC environment. This implies

that in the presence of an UPF for hard IP, tools should be able

to detect the hard IP instance and ensure that the UPF

specification doesn’t end up having re-implemented.

2) UPF 2.1 Solution

In order to create a well-defined boundary for hard IP power

intent, new dedicated commands (begin_power_model,

end_power_model) have been added in UPF 2.1 standard.

Along with these commands a new command

(apply_power_model) to provide easy association of the

model to design has also been provided. The semantics of

UPF commands within begin_power_model and

end_power_model has been explicitly changed to be

descriptive in nature, implying that implementation will

automatically ignore the commands within a power model.

UPF Code
#---------------

#hard_ip.upf

#---------------

Power Model for Hard IP

begin_power_model hardMacro

#Power Domains for Hard IP

create_power_domain pd_hardIP \

 -include_scope \

 -supply { backup_ssh } \

 -supply { primary }

#Related Supply Constraints

set_port_attributes -domain pd_hardIP \

6

 -applies_to outputs \

 -driver_supply pd_hardIP.primary

set_port_attributes -ports portA \

 -driver_supply pd_hardIP.backup_ssh

set_port_attributes -domain pd_hardIP \

 -applies_to inputs \

 -receiver_supply pd_hardIP.primary

#Retention Constraints

set_retention_elements critical_regs \

 -elements { reg_a reg_b } \

 -retention_purpose required

#Internal switchable supply

create_power_switch

Isolation/level shifter and retention cells

set_isolation ...

set_level_shifter ...

set_retention ...

System states for hard IP

add_power_state pd_hardIP ...

... Other Constraints ...

end_power_model

#---------------------

#soc.upf

#---------------------

Load the Power Models.

load_upf hard_ip.upf

Apply the Power model for hard Macro

and connect supplies

apply_power_model hardMacro \

 -supply_map {

 { pd_hardIP.primary pd_SoC.primary } \

 { pd_hardIP.backup_ssh pd_SoC.backup_ssh }

\

 }

Update Supply Constraints

add_power_state pd_SoC.primary ..

Connect Logic Controls

connect_logic_net ...

#---------------

a) Verification Impact

Verification tools can now understand the power intent of

hard macros and catch any integration issues by validating the

constraints.

3) Migration Tips

If users are already following the methodology described in

DVCon 2012 paper titled “Low Power SoC Verification: IP

Reuse and Hierarchical Composition using UPF” [3] then they

can simply add begin/end_power model at the beginning

and end of interface UPF.

If the information about hard IP is captured in liberty or

other formats then they need to be translated into equivalent

UPF commands and added into the power model

corresponding to the IP.

D. Isolation cells at Hard Macro boundary

UPF allows insertion of power aware cells only at the power

domain boundaries.

1) UPF 2.0 Specification

In order to apply isolation/level-shifter/buffer cells at a Hard

IP boundary, these IPs need to be explicitly added as extent to

a power domain.

UPF Code
Power domain for DUT

create_power_domain pd_dut \

 –include_scope \

 -supply {primary always_on_ss}

Hard IP Modeling: Boundary constraints

set_scope hard_ip

Some output pins have switched supply

as driver supply

set_port_attributes \

 –ports {pin1 pin2}\

 –driver_supply {sw_ss}

Some output pins have always on supply

as driver supply

set_port_attributes \

 –ports { pin3 pin4}\

 –driver_supply {always_on_ss}

Just to isolate the boundary of HardIP,

will have to create power domain for

Hard IP

create_power_domain pd_hardIP \

 –include_scope

set_isolation iso \

 –domain pd_hardIP \

 –applies_to both

a) Limitations

Creating additional power domains for Hard IPs leads to

unnecessary complexities and burden on the designer to

ensure UPF is matching the intent. They need to explicitly put

–no_isolation on ports that share the same supply or define

strategies in such a way that redundant isolation cells are not

inserted because of power domain boundary. The

implementation tools need to tackle such power domains in a

special way so that it doesn’t cause problems in

implementation.

UPF Code
Redundant isolation placed on pin3 and

pin4 as source and sink both are

always_on_ss

Specify -no_isolation on pin3 and pin4

set_isolation iso1 –domain pd_hardIP \

 -elements {pin3 pin4}

 -no_isolation

7

2) UPF 2.1 solution

UPF 2.1 no longer requires user to add Hard IPs to extent of

power domain just for creating domain boundary. According

to UPF 2.1, lower boundary of a domain consists of the

HighConn side of each port on each child instance that is in

some other power domain or is a port of a macro cell instance

that is powered differently from the rest of the domain.

UPF Code
No need for domain boundary for hardIP

Apply isolation on lower boundary of

pd_dut

set_isolation dut_iso \

 -domain pd_dut \

 -elements {hard_ip}

Pins pin1 and pin2 of hard_ip

constitutes lower boundary of pd_dut as

these are powered by different supply

sw_ss

Isolation not applied on pin3 and pin4

as these are powered by always_on_ss

which is also primary supply of pd_dut

a) Verification Impact

This takes the burden from user to create unnecessary power

domains. Users will now have to use fewer commands to

express the power intent, thus reducing the burden on

verification and minimize the bugs introduced by incorrect

power intent.

3) Migration Tips

Some IPs may already have isolation capability inside them.

Users will have to take extra care when integrating such IPs in

a SOC. As these Hard IPs now constitute lower boundary of a

domain, it could potentially lead to redundant isolation at

boundary of macro cell. To avoid such redundant isolation

cells, user will need to use define the strategies carefully by

using -source/sink filters or explicitly specify -

no_isolation on lower boundary of hard macro.

E. Verifying supply constraints

It could happen that the power intent which was successfully

verified at the RTL stage was rejected by backend tools as it

did not meet the constraints of power rails availability at the

backend. This is because certain cells got placed at a location

by UPF where the supply rail to power these cells is missing.

This causes several problems to backend tools where

designers are forced to either make costly ECOs or do some

significant modifications in power intent to make the power

intent successfully pass through backend tools.

1) UPF 2.0 Specification

UPF 2.0 doesn’t have any capability to express these

constraints. As a result, users have to rely on proprietary ways

to specify this constraint which causes portability issues.

UPF Code
create_power_domain pd_aon \

 –elements {feedthru_inst}

pd_aon doesnot have availability of ss_sw

set_port_attributes \

 –ports {feedthru_inst/out} \

 –repeater_supply ss_sw

a) Limitations

Lack of constraint specification in UPF makes it difficult for

verification tools to do constraint checking early in the design

cycle.

Repeater cell powered by switched supply sw_ss got placed

in an always on domain pd_aon where this switched supply is

not available. Such issues are caught only at later stages

during implementation.

2) UPF 2.1 solution

UPF 2.1 has introduced a new concept of supply availability

to specify the constraints about which supplies are available in

a power domain.

The predefined supply set handles of a power domain and

the supply sets identified by options of the strategies
(set_isolation, set_retention, set_repeater,

set_level_shifter) associated with the domain are

referred to as the locally available supplies of that domain.

These locally available supplies can be used by tools to power

cells inserted into a domain.

In addition to the locally available supplies, the UPF

command
create_power_domain -available_supplies

specifies whether any additional supplies are also available for

use, and if so, which supplies are available for use by tools to

power cells inserted into the power domain.

UPF Code
create_power_domain pd_aon \

 –elements {feedthru_inst} \

 –available_supply {ss_sw}

set_repeater –domain pd_aon \

 –elements {feedthru_inst/out} \

 –repeater_supply {ss_sw}

a) Verification Impact

Verification tools can do constraint checking and ensure that

supplies used to power the inserted cells are available in the

domain where these cells get inserted. Any incorrect usage is

caught immediately at RTL stage itself.

3) Migration Tips

If users are using proprietary syntax to express the same

information, they need to translate it to the new UPF 2.1

syntax.

F. Supply Equivalence

Power management cells like isolation and level shifter are

often dependent upon the supplies powering the logic driving

and receiving a signal.

Isolation is required when the source supply is switched off

while the sink supply is still on. Similarly, level shifters are

required when source and sink supplies operate at different

voltage levels when they are on.

As a result, the source and sink supplies are often used as

filters in selecting the ports needed for isolation and level

8

shifters. This requires tools to match the source and sink

supplies with descriptions present in power intent.

For the above usage of selection of ports based on –

source/sink supply filters; proper matching of supplies

needs to be done.

1) UPF 2.0 Specification

UPF 2.0 didn’t explicitly define the definition of supply

equivalence. This resulted in inconsistent interpretation and

discrepancies between different tools over the definition of

matching of supplies.

UPF Code
#---------------

UPF 2.0

#---------------

ss1 and ss2 are equivalent

create_supply_set ss1 \

 -function { power vdd1 } \

 -function { ground vss }

create_supply_set ss2 \

 -function { power vdd1 } \

 -function { ground vss }

create_supply_set ss3 \

 -function { power vdd2 } \

 -function { ground vss }

create_power_domain pd1 \

 -supply {primary ss1}

create_power_domain pd2 \

 -supply {primary ss2}

create_power_domain pd3 \

 -supply {primary ss3}

Will match only pd1.primary as

no equivalence semantics defined

in UPF 2.0

set_isolation iso \

 -sink ss1 \

 # ... Other options ...

set_level_shifter only allows \

power domains in -source/-sink

Will match only pd1 as sink

set_level_shifter ls \

 -domain pd_Src \

 -sink pd1 \

 # ... Other options ...

a) Limitations

 Some tools do not honor supply equivalence and match the

supplies only if they are identical. This may result in

incomplete matching and thus may miss some power aware

cells when using -source/-sink filters.

For the UPF strategies using (set_isolation –

diff_supply_only) some tools may insert redundant cells

even if source/sink supplies were equivalent as they didn’t

consider supply equivalence; thereby these redundant cells

taking extra area on the chip.

2) UPF 2.1 solution

UPF 2.1 has explicitly defined the rules for matching of

supplies by introducing the concept of supply equivalence.

Two supply ports or nets are said to be electrically

equivalent if the two objects are electrically connected

somewhere. Similarly, two supply sets are electrically

equivalent if the two are directly associated with each other

using the UPF command (associate_supply_set) or all

the corresponding functions and their associated supply nets

are respectively equivalent.

In certain cases the electrical connection may not be evident

in the design. UPF 2.1 has defined a new command

(set_equivalent) to explicitly state the supply equivalence.

UPF Code
#---------------

UPF 2.1

#---------------

create_supply_set ss1

create_supply_set ss2

create_supply_set ss3

set_equivalent \

 -sets { ss1 ss2 }

create_power_domain pd1 \

 -supply {primary ss1}

create_power_domain pd2 \

 -supply {primary ss2}

create_power_domain pd3 \

 -supply {primary ss3}

Will match both pd1.primary

and pd2.primary

set_isolation iso \

 -sink ss1 \

 # ... Other options ...

set_level_shifter extended to

allow both power domains or

supply sets.

Will match both pd1 and pd2

as pd1 will default to pd1.primary

set_level_shifter ls \

 -domain pd_Src \

 -sink pd1 \

 # ... Other options ...

Will match only pd1

set_level_shifter ls \

 -domain pd_Src \

 -sink pd1.primary \

 -use_equivalence FALSE \

 # ... Other options ...

#---------------

a) Verification Impact

Power management strategy commands like

set_isolation, set_level_shifter and

set_repeater will by default use supply equivalence in

determining which ports are to be isolated when filtering is

specified with a –sink/–source or –diff_supply_only

filters.

9

For the cases where the user wants the supply matching to

be done only when these are identical, they can specify it by

setting–use_equivalence to be FALSE.

These clarified semantics will result in consistent behavior

across various tools and will improve interoperability between

tools.

3) Migration Tips

The default behavior as per UPF 2.0 was to match the supply

only if the two are same, however this has been changed in

UPF 2.1. In the later version, the two supplies will match if

these are electrically equivalent.

So in certain cases when the user wanted the power aware

cells insertion only for identical supplies, they will have to

explicitly use -use_equivalence FALSE.

G. Interactions of power management strategies

In a large SoC design comprising of several power domains,

each with a number of strategies defined on them, can often

result in a scenario where multiple strategies affect a domain

crossing. This can result in the placement of multiple

isolation/level shifter and repeater cells in the path. The

relative ordering of these cells becomes critical as functional

and electrical bugs may be introduced if the placement is

incorrect.

1) UPF 2.0 Specification

There are no clear semantics defined to address the relative

placement of power management cells. In such situations, it is

left to the tools to make their own interpretation of relative

placements which can lead to discrepancies between

verification and implementation.

UPF Code
create_power_domain pd_tx \

–elements {tx} \

–supply {primary sw_ss}

create_power_domain pd_sw \

–elements {mid} \

–supply {primary sw_ss}

create_power_domain pd_rx \

–elements {rx} \

–supply {primary always_on_ss}

set_port_attributes –domain pd_sw \

–applies_to outputs \

–repeater_supply always_on_ss

set_isolation iso_tx –domain pd_tx \

–sink pd_rx.primary \

–applies_to outputs

set_isolation iso_rx –domain pd_rx \

 –source pd_tx.primary \

 –applies_to inputs

Image1

a) Limitations

Different tools have interpreted this in different ways,

causing the problems related to interoperability.

2) UPF 2.1 Solution

The new standard has clearly defined how the power

management strategies interact with each other and has

defined a precedence order in which these strategies apply.

Strategies are implemented in the following order: 1)

retention strategies, 2) repeater strategies, 3) isolation

strategies, and 4) level-shifter strategies. Each strategy may

affect the driving or receiving supply of the port and thus

affect the –source/sink filters of a subsequently applied

strategy.

#Same upf code as specified in UPF 2.0 section

#iso_rx does not get placed as source is now

changed to always_on_ss

Image2

a) Verification Impact

Clarified semantics will result in consistent behavior across

various tools and will improve interoperability

3) Migration Tips

Users may have to update their strategies to account for the

new semantics. This will help them get consistent behavior

across various tools and avoid the chance of mismatch

between verification and implementation.

H. Power States

 Power states play a significant role in describing the power

intent. There will be a tremendous impact if the power states

are not defined properly as they are used for both verification

and implementation of power management. The verification

tools use it for checking the power management structures

whereas implementation tools use it to insert the power

management logic.

1) UPF 2.0 Specification

UPF 2.0 defines two separate styles of capturing power state

information.

a) Power State Tables (PST)

Power State Tables (PST) are inherited from UPF 1.0 which

allowed specification of power states in terms of supply

nets/ports and their possible combinations of values. It is a

tabular representation of the possible state combinations for

the given supplies. The tabular representation makes it easier

for users to comprehend the power state dependencies and

possibilities. However, this style has several limitations which

prompted UPF 2.0 to introduce a new way of representing

power state information.

10

UPF Code
#---------------

PST Example

#---------------

Port States

add_port_state vdd1 \

 -state { OFF off } \

 -state { ON_1d0V 1.0 }

add_port_state vdd2 \

 -state { OFF off } \

 -state { ON_1d0V 1.0 }

PST Definition

create_pst PST_IP \

 -supplies { vdd1 vdd2 }

add_pst_state -pst PST_IP \

 IP_ONH -state { ON_1d0V ON_1d0V }

add_pst_state -pst PST_IP \

 IP_STB -state { ON_1d0V OFF }

add_pst_state -pst PST_IP \

 IP_OFF -state { OFF OFF }

#---------------

Limitations

The dependency on supply port/nets makes it difficult for

designers to capture state information early in the design

process where the supply information is not available.

Tabular representation causes an explosion of states in large

designs that have a large number of supplies and states defined

on them. This forces users to split the PST information into

multiple smaller PSTs that are easier to manage but at the cost

of a loss of information about all state combinations.

The lack of hierarchical composition capability in PSTs

forces the user to rely on tools to automatically merge the

PSTs together to compose a larger table for the whole system

to get required information. The UPF LRM doesn’t define any

rules or semantics for merging the PST and hence tools have

to depend on proprietary algorithms for the merging. This

causes incompatibility across tools aggravating the

verification problem.

b) Power States

To overcome the shortcomings of PST representation, UPF

2.0 introduced a completely new style of expressing power

state information via the add_power_state command. This

allows users to define power states on supply sets and power

domains.

The add_power_state command requires users to express

power states in terms of boolean expressions via –

logic_expr and –supply_expr switches. Although, this is

very powerful in capturing more complex relationships

including hierarchical dependencies, it has the potential of

causing problems if not used properly. The absence of

sufficient restrictions and guidelines in the LRM implies that

tools cannot catch improper usage. The hierarchical

composition capability is built right into the command itself

and promises to reduce the state explosion. However, the lack

of methodology and semantics imply that users are slow in

adopting add_power_state for representing power states.

UPF Code
#---------------

Power State Example

#---------------

Power States on Supply Sets

add_power_state pd_IP.primary \

 -state IP_SS_ON { \

 -supply_expr { (pd_IP.primary.power ==

{FULL_ON, 1.0}) \

 && (pd_IP.primary.ground == {FULL_ON,

0.0 }) \

 } \

 } \

 -state IP_SS_OFF { \

 -supply_expr { pd_IP.primary.power == OFF

} \

 }

add_power_state pd_IP.gpu_ssh \

 -state GPU_SS_ON { \

 -supply_expr { (pd_IP.gpu_ssh.power ==

{FULL_ON, 1.0}) \

 && (pd_IP.gpu_ssh.ground == {FULL_ON,

0.0 }) \

 } \

 } \

 -state GPU_SS_OFF { \

 -supply_expr { pd_IP.gpu_ssh.power == OFF

} \

 }

System Power States on Power Domain

add_power_state pd_IP \

 -state PD_IP_ONH { \

 -logic_expr { (pd_IP.primary == IP_SS_ON)

\

 && (pd_IP.gpu_ssh == IP_GPU_SS_ON_1d0V)

\

 } \

 } \

 -state PD_IP_STB { \

 -logic_expr { (pd_IP.primary == IP_SS_ON

) \

 && (pd_IP.gpu_ssh == IP_GPU_SS_OFF) \

 } \

 } \

 -state PD_IP_OFF { \

 -logic_expr { (pd_IP.primary == IP_SS_OFF

) \

 && (pd_IP.gpu_ssh == IP_GPU_SS_OFF) \

 } \

 }

#---------------

Limitations

UPF 2.0 doesn’t define proper semantics about how the

states are handled when supply sets are associated with other

supply sets or handles. UPF 2.0 does not restrict the transfer of

power states in the supply set associations. So the power states

defined on one power domain may incorrectly affect some

other power domains which are associated with the same

supply set.

11

Insufficient restrictions may lead to circular dependence of

power states and also makes these difficult for methodical

usage.

UPF Code
add_power_state PD.SS –state OFF {\

 -supply_expr {power == OFF} \

 -logic_expr {PD==OFF}\

}

add_power_state PD –state OFF {\

 -logic_expr {PD.SS == OFF}\

}

2) UPF 2.1 Solution

UPF 2.1 has clarified a lot of semantics to enable greater

adoption of the add_power_state command. The standard

has marked PSTs as legacy – implying that the command,

although present in standard, is only present for backward

compatibility and is not recommended for future use. The

legacy commands will not be considered for future extensions

of the standard hence their use should be discouraged and

users are advised to migrate to add_power_state command.

The following are the clarifications and new additions to this

command:

 Clarified that supply set handles are local supply sets.

Power states do not get transferred. Power states

added to supply set handles are a property of supply

set handles and not its associated supply set.

 Added –supply, -domain and –complete to
add_power_state

 Addition of another simstate

“CORRUPT_STATE_ON_ACTIVITY”

A number of restrictions have also been imposed on the

add_power_state command as follows:

 For power states added on supplies

o -supply_expr can refer to supply

ports/nets or its own functions. It cannot

refer to functions of another supply set;

o -logic_expr can refer to logic ports/nets,

interval functions and its own power states

however it cannot refer to functions of a

supply set, power states of another supply

set or power states of a domain

 For power states added on power domains:

o It cannot have a -supply_expr.

o –logic_expr can refer to logic ports,

logic nets, interval functions, power states

of supply sets or supply set handles, or

power states of other power domains.

o It is an error if –logic_expr refers to

supply ports, supply nets, or functions of a

supply set or supply set handle.

UPF Code
#---------------

UPF 2.1 Example

#---------------

Power States on Supply Sets

add_power_state pd_IP.primary \

 -supply \

 -state IP_SS_ON { \

 -supply_expr { (power == {FULL_ON, 1.0}) \

 && (ground == {FULL_ON, 0.0 }) \

 } \

 } \

 -state IP_SS_OFF { \

 -supply_expr {power == OFF } \

 }

add_power_state pd_IP.gpu_ssh \

 -supply \

 -state GPU_SS_ON { \

 -supply_expr { power == {FULL_ON, 1.0}) \

 && (ground == {FULL_ON, 0.0 }) \

 } \

 } \

 -state GPU_SS_OFF { \

 -supply_expr {power == OFF } \

 }

System Power States on Power Domain

add_power_state pd_IP \

 -domain -complete \

 -state PD_IP_ONH { \

 -logic_expr {(primary==IP_SS_ON) \

 &&(gpu_ssh == IP_GPU_SS_ON) \

 } \

 } \

 -state PD_IP_STB { \

 -logic_expr { (primary == IP_SS_ON) \

 && (gpu_ssh == IP_GPU_SS_OFF) \

 } \

 } \

 -state PD_IP_OFF { \

 -logic_expr { (primary == IP_SS_OFF) \

 && (gpu_ssh == IP_GPU_SS_OFF) \

 } \

 }

#---------------

a) Verification Impact

The clarified semantics helps the user define power states in

a much better way and in less amount of code avoiding

creation of explicit supply sets. Proper restrictions promote

better methodology for power intent modeling.

3) Migration Tips

As the states added on supply set do not get transferred to its

handles, users will need to explicitly define power states on

supply set handles if they are different than default states.

Due to various restrictions added in the 2.1, the user may

have to modify the power state definitions if it is not

complying with the restrictions.

I. Retention Semantics

Retention registers come in various types depending on how

the retained value is stored and retrieved. There are at least

two types of retention registers, as follows:

a) Balloon-style retention: In a balloon-style retention

register, the retained value is held in an additional latch, often

called the balloon latch. In this case, the balloon element is not

in the functional data-path of the register.

12

b) Master/slave-alive retention: In a master/slave-alive

retention register, the retained value is held in the master or

slave latch. In this case, the retention element is in the

functional data-path of the register.

1) UPF 2.0 Specification

UPF 2.0 mainly defines the semantics of balloon-style

retention.

UPF Code
#---------------

UPF 2.0

#---------------

Balloon Latch

set_retention ret_balloon \

 -domain pd \

 -save_signal { ret high } \

 -restore_signal { ret low } \

 # ... Other options ...

#---------------

Master/Slave Alive Latch

set_retention ret_ms \

 -domain pd \

 -save_signal { ret high } \

 -restore_signal { ret low } \

 -retention_condition { ret }

 # ... Other options ...

Explicitly specify a behavioral model

to provide master-slave alive retention

behavior.

map_retention_cell ret_ms \

 -domain pd \

 -lib_model_name master_slave_model { \

 -port CP UPF_GENERIC_CLOCK \

 -port D UPF_GENERIC_DATA \

 -port SET UPF_GENERIC_ASYNC_LOAD \

 -port VDDC pd.primary.power \

 -port VDDRET pd.default_retention.power \

 -port VSS pd.primary.ground \

 -port RET ret \

 }

a) Limitations

When using this new style of retention, users have to

explicitly use simulation models to enable early verification of

retention or delay the verification to a later stage when

retention registers have been inserted in the design.

2) UPF 2.1

UPF 2.1 provides special syntax and clear semantics to

model master/slave alive retention flops.
For master-/slave alive implementations, the -

save_signal/-restore_signal should not be specified in

the set_retention command. The retention behavior of this

style is specified through the -retention_condition

UPF Code
#---------------

UPF 2.1

#---------------

Balloon Latch

set_retention ret_balloon \

 -domain pd \

 -save_signal { ret high } \

 -restore_signal { ret low }

 # ... Other options ...

#---------------

Master/Slave Alive Latch

set_retention ret_ms \

 -domain pd \

 -retention_condition { ret }

 # ... Other options ...

#---------------

a) Verification Impact

Verification tools can identify the retention registers that are

behaving as master/slave and can do an early verification

because of the pre-defined behavior for them present in the

UPF LRM. This ensures that verification at an early stage is

much closer to the actual implementation improving the

verification effectiveness.

3) Migration Tips

Users will need to change proprietary uses to new UPF 2.1

commands.

J. Power Management Cell modeling commands

For a complete and accurate verification of power intent, it

is important to define the characteristics of the instances of

power management cells that get inserted during the

implementation of a power management, e.g. isolation, level-

shfiting, always on cells, and retention cells.

1) UPF 2.0 Specification

 UPF 2.0 doesn’t define any dedicated commands that

capture the specific details of the power management cells that

get inserted. Although, the set_port_attributes

command can be used to express some of the attributes, it still

is not sufficient for completely modeling the power aware cell

so that it can be properly implemented and verified.

a) Limitations

The user has to rely on library formats to specify this

information to the verification tools. Sometimes libraries are

out of date and incomplete in capturing power information

which needs to be communicated to the verification tools.

Changing the library becomes difficult as there can be

severe side-effects. Moreover some verification tools are

unaware of library specification formats resulting in

inconsistent interpretation of power intent and implementation

2) UPF 2.1 Solution

UPF 2.1 has introduced dedicated commands to model these

power aware cells. Inspired by CPF, this command removes

the dependency of UPF on external library formats thereby

providing a comprehensive specification of power intent.

These commands also provide capability to perform much

more accurate verification of power aware cells that get

inserted during the implementation. The semantics are defined

13

such that users can use these commands in conjunction with

any library formats to model non-power aware behavior. The

commands will automatically override any incorrect

information related to power present in external library

formats, without requiring users to go through the costly and

risky process of modifying the library specification.

UPF Code
#---------------

Power Management Cell Modeling

#---------------

Isolation Cell Model

define_isolation_cell \

 -cells mbit_iso1 \

 -pin_groups { \

 { datain1 dataout1iso1 } \

 { datain2 dataout2 iso2 } \

 }

 -power VDD -ground VSS \

 -valid_location sink

Level Shifter Cell Model

define_level_shifter_cell

 -cells LSHL \

 -input_voltage_range {{1.0 1.0}} \

 -output_voltage_range {{0.8 0.8}} \

 -direction high_to_low \

 -input_power_pin VH -ground G

Switch Cell Model

define_power_switch_cell \

 -cells 2stage_switch \

 -stage_1_enable !I1 \

 -stage_1_output O1 \

 -stage_2_enable I2 \

 -stage_2_output !O2 \

 -type header

Retention Cell Model

define_retention_cell \

 -cells My_Ret_Cell \

 -power VDDC -ground VSS \

 -power_switchable VDD \

 -save_check {!clk} \

 -restore_check {!clk} \

 -save_function {save negedge}

#---------------

a) Verification Impact

These commands can be leveraged by verification tools to

perform accurate verification that closely matches the

implementation results, without any need to depend on

external library formats to get information.

3) Migration Tips

Users may need to capture the power intent present in library

formats in terms of UPF commands if the verification tool

doesn’t interpret the library formats.

IV. BACKWARD COMPAPITIBILITY

One of the biggest challenges faced whenever a new

standard comes out is ensuring backward compatibility and

providing for the reuse of existing IPs. UPF 2.1 deprecated

some of the UPF commands present in earlier versions and

also changed the semantics and syntax of few existing

commands and options. Although, these changes are intended

to simplify the concepts in the standard, it has already caused

some concerns among users regarding reuse of existing IPs.

1) Semantic compatibility

It can be possible that legacy UPF files of existing IPs may

be semantically incompatible with UPF 2.1. Reusing such IP’s

in a UPF 2.1 the environment will require editing the UPF

files to resolve the semantic differences.

Please refer to table-1 for the list of semantic difference’s

which are significant for verification.

2) Syntax compatibility

The existing IP whose UPF commands are syntactically

compatible with the latest version will not require any change

and will work as it is.

However the UPF of some IP’s may not be syntax

compatible with respect to UPF 2.1. In order to reuse such

IP’s in UPF 2.1 environment will require either of following:

 Verification tools will need to support syntax of all

the UPF versions and interpret all of them

correctly.

 User will need to modify the UPF to make it syntax

compatible with latest UPF 2.1 standard.

a) Deprecated Commands

Refer to UPF 2.1 (IEEE_1801_2013), Annex D “Replacing

deprecated and legacy commands and options” for list of

deprecated and legacy commands. It is recommended to avoid

using deprecated commands in the new code and replace the

usage of deprecated commands in legacy UPF with

corresponding UPF 2.1 commands.

b) Syntax Changes

Please refer to table-2 in the Appendix for the list of syntax

differences between UPF 2.0 and UPF 2.1.

REFERENCES

[1] IEEE Std 1801™-2009 for Design and Verification of Low Power
Integrated Circuits. IEEE Computer Society, 27 March 2009.

[2] IEEE Std 1801™-2013 for Design and Verification of Low Power
Integrated Circuits. IEEE Computer Society, 29 May 2013.

[3] Amit Srivastava, Rudra Mukherjee, Erich Marschner, Chuck Seeley and
Sorin Dobre : “Low Power SoC Verification: IP Reuse and Hierarchical
Composition using UPF”, DVCon 2012.

[4] Freddy Bembaron, Rudra Mukherjee, Amit Srivastava and Sachin
Kakkar : “Low Power Verification Methodology using UPF.”, DVCon
2009.

[5] Rudra Mukherjee, Amit Srivastava, Stephen Bailey: “Static and Formal
Verification of Low Power Designs at RTL using UPF”, DVCon 2008.

[6] Stephen Bailey, Amit Srivastava, Mark Gorrie, Rudra Mukherjee: “To
Retain or Not to Retain: How do I verify the states of my low power
design”, DVCon 2008.

14

V. APPENDIX

Table 1 – Semantic differences between UPF 2.0 and UPF 2.1

S.

No

Difference UPF 2.0 UPF 2.1 Migration Guidelines Reference

1 Default value of

unconnected supply ports

and nets

UNDETERMINED OFF Do not rely on default values,

instead use UPF HDL

package functions
supply_on / supply_off

to change the state and

voltage of supply ports and

nets.

IEEE 1801-

2013

Section

9.2.1

2 Default supply of

isolation cell

Isolation cell gets

powered from the
default_isolation

supply set of the

domain on which the

isolation strategy is

associated

Isolation cell gets

powered from
default_isolatio

n supply set of the

domain in which the

isolation cell gets

placed

 If the strategy was defined in

a way that
default_isolation

supply set was used, then it

needs to be modified to list

the supply set in –

isolation_supply_set

option of the strategy.

e.g.
set_isolation iso \

–domain pd \

-isolation_supply_set\

 pd.default_isolation

IEEE 1801-

2013

Section 6.41

3 Power states on supply set

handle.

Supply set handles are

considered as reference

to the associated supply

set. This implies that all

properties of the supply

set will be inherited by

the supply set handle –

including the power

states defined on the

associated supply set.

Supply set handles

are local supply sets

instead of a

reference. Power

states applied to a

supply set handle are

local and do not get

transferred.

If power states are applied on

only one supply set handle

assuming it will get

transferred to associated

supply set, then this needs to

be changed and explicitly

applied to all the supply set

handles as these will get not

transferred.

Section

III.H of this

paper,

“Power

States”

4 HDL delays in assign

statements

No information about

delays. Interpretation is

tool dependent

Delays are not

considered as

drivers/receivers

No change required if delay

is not expected as

driver/receiver.

If delays are to be treated as

driver/receiver, then the user

needs to create a direct cell

instantiation in HDL to be

considered as drivers.

IEEE 1801-

2013

Section

4.3.2

5 User defined functions in
create_supply_set

Allowed to use user

defined functions

User defined

functions are

removed from
create_supply_se

t

Avoid using user defined

function. If user defined

functions are used in a supply

set then it must be split into

multiple supply sets by

converting user defined

functions into predefined

functions.

IEEE 1801-

2013

Section 6.22

6 Restriction in
add_power_state

No restrictions in

-supply_expr and

-logic_expr of
add_power_state

Restrictions added

with respect to -

supply_expr and -
logic_expr

Follow the restrictions to

make the UPF compatible

Section

III.H of this

paper,

“Power

States”

15

7 set_simstate_behavi

or DISABLED …
Was an error if supply

port is not present in

verification model

Allows simstate to be

disabled even if

supply port is not

present in verification

model

No change required IEEE 1801-

2013

Section 6.53

8 set_design_top Used to specify root of

the design. It is not

clear that it accepts

instance path or module

name.

Used to specify

module for which the

subsequent UPF

commands are

written in the UPF

file.

May need to change the root

name from instance path to

module name.

IEEE 1801-

2013

Section 6.38

9 set_isolation \

-force_isolation

No clear semantics It was clarified that

without these options

the tool may optimize

away the isolation

cells if there is no

impact on

functionality. Hence,

if user intends to

place them, they have

to use –

force_isolation

May need to add –

force_isolation in some

cases depending on need.

IEEE 1801-

2013

Section 6.41

10 upf_version

load_upf –version

load_upf_protected

-version

The command allows

tools to change the

version as specified in

the command and

interpret the subsequent

commands as per the

specified version.

The command is now

used for

documentation

purpose and tools

will not change the

version if it is

specified to be lower

than 2.1.

The UPF version control has

been left to tool specific

control. Hence, it is advised

to avoid using commands and

syntax that has difference

with the latest UPF 2.1

standard.

IEEE 1801-

2013

Section 6.54

11 Default value of
set_level_shifter \

-input_supply_set \

-output_supply_set

The default is the

primary supply set of

the domain containing

the source of the level-

shifter input/output

when the source is

within the logic design

starting at the design

root.

The default is the

supply of the logic

driving the level-

shifter input/output.

Avoid relying on default

values.

IEEE 1801-

2013

Section 6.43

12 Default value of
set_isolation –

clamp_value

The default value is

“any”.

The default value if

“0”.

Avoid relying on default

values.

IEEE 1801-

2013

Section 6.41

16

Table 2 – Syntax differences between UPF 2.0 and UPF 2.1

S.No UPF 2.0 UPF 2.1 Details

1 Syntax Error: set_isolation
–applies_to –source –sink

Valid Syntax: set_isolation –

applies_to –source –sink
It gives more flexibility to select only

inputs/outputs for source/sink

considerations to avoid the placement of

redundant isolation cells at both input

and output of the domain for a feed-

through path. Without this, user need to

explicitly specify -no_isolation for

one of the boundary ports.

2 add_power_state pd -state

sleep { -logic_expr {

pd.primary == SLEEP } }

add_power_state pd

–supply –state { sleep

–supply_expr {pd.primary ==

SLEEP } }

In UPF 2.0, the syntax was to specify

state name outside the curly brace. This

has been changed to specify state name

within the curly braces as shown in the

example.

3 add_power_state pd -state

sleep {-logic_expr {ctrl

== 1} –update }

add_power_state pd -state

sleep {-logic_expr {ctrl == 1}

} –update

In UPF 2.0, -update can be specified

inside the curly brace and selectively for

different state definitions.

In UPF 2.1, -update can only be specified

outside the curly brace and is applicable

for all the state definitions mentioned in

the particular command.

4 add_power_state pd -state

standby {-logic_expr {ctrl

== 1}} -illegal

add_power_state pd -state

standby {-logic_expr {ctrl

== 1}} -legal

add_power_state pd -state

standby {-logic_expr {ctrl ==

1} -illegal }

add_power_state pd -state

standby {-logic_expr {ctrl ==

1} -legal }

In UPF 2.0, -legal/-illegal can be

specified outside the curly brace which

can be applicable for all the states

defined for the particular command.

In UPF 2.1, -legal/-illegal can only be

specified inside the curly brace for

individual states.

5 create_supply_set set_name

[-function {func_name

[net_name]}]*

create_supply_set set_name

[-function {func_name

net_name}]*

Function needs to mandatorily associated

with corresponding net_name.

6 set_isolation

isolation_name

[-diff_supply_only <TRUE |

FALSE>]

set_isolation isolation_name

[-diff_supply_only [<TRUE |

FALSE>]]

It is not mandatory to specify the boolean

value if user intends to specify TRUE.

7 -transitive <TRUE | FALSE>

For various UPF Commands

-transitive [<TRUE | FALSE>]

For various UPF Commands
It is not mandatory to specify the boolean

value if user intends to specify TRUE.

8 create_composite_domain [-

supply {supply_set_handle

[supply_set_ref]}]*

create_composite_domain

[-supply {supply_set_handle

[supply_set_ref]}]

In UPF 2.0, -supply option on can be

used to specify any supply sets visible in

active scope.

In UPF 2.1, -supply option can only be

used to specify the primary supply set. It

is not possible to specify any other

supply sets on a composite power

domain.

9 map_retention_cell [-

lib_model_name name {-port

port_name net_ref}*]

map_retention_cell [-

lib_model_name name -port_map

{{port_name net_ref}*}]

In UPF 2.0, -port was used to provide

port mappings.

In UPF 2.1, -port option has been

changed to –port_map with a different

syntax. This is consistent with other

commands which accept port mapping.

17

10 use_interface_cell

[-map {{port net_ref}*}]

use_interface_cell [-port_map

{{port net_ref}*}]
In UPF 2.0, -map was used to provide

port mappings.

In UPF 2.1, -map option has been

renamed to –port_map. The syntax

remains same as the UPF 2.0 version.

This is consistent with other commands

which accept port mapping.

11 set_design_attributes

 [-attribute name value]*

set_design_attributes

[-attribute { name value }]*
In UPF 2.0, -attribute option accepted

two separate arguments, name and value.

In UPF 2.1, -attribute option accepts a

single argument which is a Tcl list

having name value pair.

12 set_retention_elements

retention_list_name

[{-applies_to <required |

not_optional |

not_required | optional>}]

set_retention_elements

retention_list_name

[-applies_to <required |

not_optional | not_required |

optional>]

Mandatory curly { } braces have been

removed from syntax in UPF 2.1

18

Table 3 – New Features and other differences

S.No Difference Description Reference

1 find_objects –object_type model Enables user to search all instances of a

particular model in the design.

IEEE 1801-2013

Section 6.26

2 add_power_state –supply,

 -domain,

 -complete

Addition of –supply/-domain option makes

UPF more clear in intent and readable. The –

complete option indicates that all the power

states have already been defined and hence

becomes a constraint that no new states can be

added during the IP integration.

IEEE 1801-2013

Section 6.4

3 create_power_switch -instance Allows inferring power switches which are

already present in the design.

IEEE 1801-2013

Section 6.18

4 create_power_switch -update Allows the addition of -instance. IEEE 1801-2013

Section 6.18

5 set_port_attributes -

feedthrough -unconnected
Allows users to explicitly specify ports as feed

through or unconnected on a hard macro, if it is

not inferred by verification tools automatically.

IEEE 1801-2013

Section 6.46

6 set_simstate_behavior –elements

–exclude_elements
Provides more fine grain control of disabling of

simstate semantics.

IEEE 1801-2013

Section 6.53

7 Using dot in various UPF commands to

refer to current scope.
create_power_domain pd –

elements {.}

Allow users to easily access current scope.

8 set_isolation -exclude_elements Allows user to filter out some ports/instances to

which this strategy does not apply

IEEE 1801-2013

Section 6.41

9 set_level_shifter -

exclude_elements
Allows user to filter out some ports/instances to

which this strategy does not apply

IEEE 1801-2013

Section 6.43

10 connect_logic_net -reconnect Allows a port that is already connected to a net

to be disconnected from the existing net and

connected to new net.

IEEE 1801-2013

Section 6.10

11 set_design_attributes –

is_leaf_cell –is_macro_cell
Allows users to explicitly mark a design

element as leaf_cell and/or a macro_cell

so that corresponding power aware semantics

can be applied to these.

IEEE 1801-2013

Section 6.37

12 set_isolation/set_level_shifter

strategy_name

 [-source <source_domain_name |

source_supply_ref >]

[-sink <sink_domain_name |

sink_supply_ref >]

Allows user to specify power domain in –

source/-sink option in addition to supply

sets. In that case, it automatically expands to

<domain_name>.primary.

IEEE 1801-2013

Section 6.41

13 Return value of UPF Commands changed

to “empty” string, if successful

The return value of most of the commands that

have deferred effect was changed to empty

string for consistency across various commands.

However, some commands return a valid string,

e.g. find_objects, set_scope,

upf_version. If users relied upon return

values of other commands, they need to update

their UPF and use other mechanism for getting

the information.

IEEE 1801-2013

Section 6

14 set_repeater Allows user to specify buffer strategy IEEE 1801-2013

Section 6.48

15 create_power_domain –atomic Allows user to create atomic power domains Section III.B of this paper,

“Modeling soft IP power

management constraints”

16 Macro cell modeling commands:
begin_power_model

end_power_model

apply_power_model

Allows user to create power model for macro

cells

Section III.C of this paper:

“Modeling of Hard IP”

19

17 create_power_domain –

available_supplies
Allows user to specify supply constraints Section III.E of this paper:

“Verifying supply

constraints”

18 set_equivalent

[-function_only]

[-nets supply_net_name_list]

[-sets supply_set_name_list]

Allows user to explicitly define the equivalent

supplies

Section III.F of this paper:

“Supply Equivalence”

19 -use_equivalence in
set_isolation,

set_level_shifter, set_repeater

Allows user to select the criteria to consider

supply equivalence or not

Section III.F of this paper:

“Supply Equivalence”

20 New simstate
“CORRUPT_STATE_ON_ACTIVITY”

Use this simstate when the power level is

sufficient to power normal functionality for

combinatorial logic but insufficient for

powering the normal operation on state

elements when there is any activity on the state

element.

IEEE 1801-2013

Section 9.4.6

21 Power Management Strategy commands
define_always_on_cell

define_diode_clamp

define_isolation_cell

define_level_shifter_cell

define_power_switch_cell

define_retention_cell

Use these commands to define the

characteristics of the instances of power

management cells used to implement and verify

the power intent of given design. These

commands provide shorthand to specify various

low power attributes for a special power aware

cells. They can also be used to override the

power aware information specified in a generic

library specification of the cell.

Section III.J of this paper:

“Power management cell

modeling commands”

