

Stepping into UPF 2.1 world: Easy solution to complex Power Aware Verification

Amit Srivastava

Madhur Bhargava

Agenda

- Introduction
- Power Aware Verification
- Unified Power Format
- Evolution of UPF
- Why UPF 2.1
- Verification Challenges
- General Migration Tips
- Conclusion

Introduction

Electronic Devices have become

- Complex
- Energy Aware

Require sophisticated Power Management

- Power Gating
- Multi Voltage
- Biasing
- DVFS

Advanced Power Aware Verification

To ensure functional correctness

Verifying Power Management is even more **Complex**!!

- Many strategies used in conjunction
 - Power gating, multi voltage, etc.
- Power management structures interact
 - Affect design functionality
- More scenarios to verify
 - Power Modes, Complex protocols
- Various stages of the design flow
 - RTL, Gate Level, Place & Route
- Complete knowledge about power management
 - Power Architecture, Power Cell behavior
- HDLs are not equipped to provide such information
 - Power Intent Specification formats

Unified Power Format (UPF)

- IEEE Standard for expressing Power Intent
 - To define power management
 - To minimize power consumption
 - Especially static leakage
 - Enables early verification of power intent
- An Evolving Standard
 - Accellera UPF in 2007 (1.0)
 - IEEE 1801-2009 UPF (2.0)
 - IEEE 1801-2013 UPF (2.1)

- Based upon Tcl
 - Tcl syntax and semantics
 - Can be mixed with non-UPF Tcl
- And HDLs
 - SystemVerilog, Verilog, VHDL
- For Verification
 - Simulation or Emulation
 - Static/Formal Verification
- And for Implementation
 - Synthesis, DFT, P&R, etc.

Evolution of UPF

- UPF 1.0 was defined by Accellera
 - Focused on adding power intent to HDL
 - Relatively simple concepts and commands
- UPF 2.0 approved in March 2009
 - Backward compatible with UPF 1.0
 - Supports IP development, refinement

- UPF 2.0, 2.1 were defined by IEEE
 - Building on UPF 1.0 concepts
 - Adding new abstractions, flow support

- UPF 2.1 approved in March 2013
 - Clarifies and enhances UPF 2.0 features
 - Adds a few new capabilities

Why UPF 2.1

UPF 2.0 has some limitations

- Inability to capture complex scenarios
 - Missing information
 - Gap in Power Aware Verification
- Unclear and inconsistent concepts
 - Different interpretations
 - Non-portable

UPF 2.1 to the rescue!

- New features to address limitations of UPF 2.0
- Provides more clear and consistent semantics
 - Promotes interoperability

Verification Challenge: Repeater Insertion

- Repeaters are inserted at long boundary crossings
- May use incorrect supplies
 - Result in a functional bug
- Need to guide tools to use proper supplies
 - Same information can be used by verification tools
- UPF 2.0 provides some capability
 - Incomplete and lacked proper semantics
- Use proprietary commands to achieve the desired behavior

UPF 2.1 Solution: Repeater Insertion

- UPF 2.1 provides a new strategy command
 - set_repeater
- Similar to other strategy commands
 - Well defined semantics
- More flexible
- Enables verification at RTL stage

```
create_power_domain PD_Src \
    -supply {primary aon_ss}
create_power_domain PD_Mid \
    -supply {primary sw_ss}
create_power_domain PD_Snk \
    -supply {primary aon_ss}
set_repeater rep_sw \
    -domain PD_Mid \
    -repeater_supply_set \
    PD_Src.primary \
    -source PD_Src.primary \
    -sink PD_Snk.primary
```


Verification Challenge: Retention Cells

- Master/Slave-alive retention flops
 - Value is retained in always on master/slave latch
 - Occupies lesser area than balloon style retention
 - No additional controls
- UPF 2.0 didn't model them
 - Verification was dependent on proprietary implementation

UPF 2.1 Solution: Retention Cells

- UPF 2.1 extended retention to master/slave alive cells
 - Well defined semantics to enable early verification
- Use set_retention without –save/restore_signal

Verification Challenge: Soft IP Constraints

```
Create_power_domain pd_softIP \
-include_scope

load_upf soft_ip.upf \
-scope softIPinst
#... Integrate the softIP ...

Potentially
Dangerous

SoC

Valid UPF
Usage

Potentially
Dangerous
```

- IP providers define constraints related to power management
 - Powering of regions within IP
 - Clamping constraints
 - Retention constraints
 - Power States
- IP integrator has to ensure that constraints are not violated
- UPF 2.0 can model the constraints, but has a limitation

UPF 2.1 Solution: Soft IP Constraints

```
Create_power_domain pd_softIP \
-include_scope -atomic \

load_upf soft_ip.upf \
-scope softIPinst
#... Integrate the softIP ...

create_power_domain_pd_other \
-elements { softIPinst/child }

Causes Error
```

- Defines Atomic Power Domains
 - create_power_domain -atomic
- Cannot remove elements from Atomic power domain
- Verification tools can flag error if atomic property is lost during integration

Verification Challenge: Hard Macro Boundary

- Isolation/level shifters need to be placed at the boundary of Hard Macros
- UPF 2.0 requires explicit domain boundary
- Need to be careful of redundant isolation
- Large number of such instances increases the verification complexity

UPF 2.1 Solution: Hard Macro Boundary

- Automatically considers hard macro boundary pin powered by different supply as a boundary
- Avoids creation of explicit power domains

Verification Challenge: Supply Equivalence

- Iso/LS cells depend on source/sink supplies
- Strategy commands use supply sets as source/sink filters
 - requires supply matching
- UPF 2.0 does not define semantics for supply matching
 - Inconsistent interpretation between tools


```
# ss1 and ss2 are equivalent
create_supply_set ss1 -function { power vdd1 } -function { ground vss }
create_supply_set ss2 -function { power vdd1 } -function { ground vss }
create_supply_set ss3 -function { power vdd2 } -function { ground vss }

create_power_domain pd1 -supply { primary ss1 }
create_power_domain pd2 -supply { primary ss2 }
create_power_domain pd3 -supply { primary ss3 }

set_isolation iso \
    -sink ss1 \
    # ... Other options ...
```


UPF 2.1 Solution: Supply Equivalence

- UPF 2.1 defines rules for matching of supplies
 - Concept of "Supply Equivalence" defined
- New command "set_equivalent"
 - Explicitly state the supply equivalence incase it is not evident in design
- Default to match equivalent supplies
 - When matching to be done only for identical supplies, use option "use_equivalence" to be FALSE


```
create_supply_set ss1
create_supply_set ss2
create_supply_set ss3

set_equivalent -sets { ss1 ss2 }

create_power_domain pd1 -supply {primary ss1}
create_power_domain pd2 -supply {primary ss2}
create_power_domain pd3 -supply {primary ss3}

set_isolation iso \
    -sink ss1 \
    # ... Other options ...
```


Verification Challenge: Strategy interactions

- A complex system may have hundreds of strategies
 - Many strategies may interact
- Relative placement of power management cells
 - How insertion of one strategy cells affects placement subsequent cells
- UPF 2.0 was unclear about strategy interactions
- Problem of interoperability
 - Different tools have interpreted this in different ways


```
create_power_domain pd_tx -elements {tx} \
    -supply {primary sw_ss}
create_power_domain pd_sw -elements {mid} \
    -supply {primary sw_ss}
create_power_domain pd_rx -elements {rx} \
    -supply {primary always_on_ss}
set_isolation iso_tx -domain pd_tx \
    -sink pd_rx.primary \
    -applies_to outputs
set_isolation iso_rx -domain pd_rx \
    -source pd_tx.primary \
    -applies_to inputs
set_port_attributes -domain pd_sw \
    -applies_to outputs \
    -applies_to outputs \
    -repeater_supply always_on_ss
```


UPF 2.1 Solution: Strategy interactions

- UPF 2.1 defines clear semantics for strategy interaction
- UPF 2.1 defines order of strategy implementation
 - Retention > Repeater > Isolation > Level Shifter
 - A strategy may affect the -source/sink filters of a subsequent applied strategy
- Consistent behavior across tools


```
create_power_domain pd_tx -elements {TX} \
    -supply {primary sw_ss}
create_power_domain pd_sw -elements {MID} \
    -supply {primary sw_ss}
create_power_domain pd_rx -elements {RX} \
    -supply {primary always_on_ss}
set_isolation iso_tx -domain pd_tx \
    -sink pd_rx.primary \
    -applies_to outputs
set_isolation iso_rx -domain pd_rx \
    -source pd_tx.primary \
    -applies_to inputs
set_repeater -domain pd_sw \
    -source pd_tx.primary -sink pd_rx.primary \
    -repeater_supply always_on_ss
```


And many more UPF 2.1 features...

- Some more additions/extensions
 - Power cell modeling
 - Hard Macro modeling
 - Supply constraints
- Some deprecations/restrictions
 - Supply set functions
 - Supply nets for strategies
- More clarifications
 - Supply sets

Refer to full paper for Exhaustive List

General Migration Tips

- Need to translate proprietary commands to new UPF 2.1 commands
- Be aware of deprecations and avoid using them in new UPF code
 - Refer to UPF 2.1 lrm for details
- Careful about the syntax changes and migrate towards new syntax
 - Refer to Table 2 in the Appendix section of the paper
- Understand the semantics differences and update UPF code to honor the updated semantics
 - Refer to the Verification challenges and Table 1 in the Appendix
- Be aware of restrictions added in the standard and avoid using styles that violate the restrictions
- Use proper methodology for achieving verification success and interoperability

Conclusion

- Power Aware Verification has become complex
 - Lots of challenges to verify power management
- **Limitations** in UPF 2.0 and 1.0 has started to limit power aware verification
- UPF 2.1 has taken leaps to ease the verification burden
 - New additions to fill the gap
 - Clarification of many concepts
 - Some deprecations/restrictions to simply concepts
- A more powerful and finely tuned standard

THANK YOU

Questions ??