

1

Step-up your Register Access Verification

Nisha Kadhirvelu, Cypress Semiconductor Technology India Pvt. Ltd., Bangalore, India

(nish@cypress.com)

Sundar Krishnakumar, Cypress Semiconductor Technology India Pvt. Ltd., Bangalore, India

(skb@cypress.com)

Rimpy Chugh, Mentor Graphics India Pvt. Ltd., Bangalore, India (Rimpy_Chugh@mentor.com)

Wesley Park, Mentor, A Siemen Business, Inc., Fremont, United States (Wesley_Park@mentor.com)

Abstract—Even small IPs have dozens of memory-mapped control & status registers, many with complex access

policies. Additionally, verifying a retention registers’ robustness early-on can save many simulation cycles down-the-

road. While simulations leveraging UVM_REG can exercise the primary use cases, numerous corner-cases are left

uncovered, creating the risk of show stopper bugs going undetected. In short, a formal-based solution is needed to

ensure exhaustive coverage of the state space [1]. Hence, in this paper we will show how we replaced our simulation-

based flow with an automated formal-based flow to reduce our setup and run time from weeks down to minutes,

simultaneously enjoying exhaustive results.

Keywords—memory-mapped registers, register access policy, retention registers, formal solution

I. INTRODUCTION

The configuration and run-time behaviors of all our IPs are governed by memory-mapped registers. They reside

in address spaces that are accessible with interfaces like AMBA, and they have a wide variety of bit widths,

internal fields, and access policies (W, RW, RO, W1C, etc.) These control & status register banks are effectively

the heart of each IP, so if there is a bug in them, the corrective surgery (with firmware patches and such) can

usually cure the patient, but the issue will be expensive to diagnose, and the ongoing health / performance of the

patient will be forever compromised.

Consequently, we must diligently verify that the RTL implementation of the registers meet their specifications.

As such, our verification checklist starts with:

 Checks for register accessibility

 Address correctness

 Correct default values on reset

 Basic Write-to/Read-from checks

 Tests for the access policy implementation

 Correctness of all the fields

 Stability of the register

 Front-door and Back-door access

Multiply this by a dozen to a thousand in a larger IP, and it’s easy to see that the scalability requirements of our

register verification can threaten our resource capacity and project schedule.

II. PRIOR METHODOLOGY AND CHALLENGES

A. Simulation approach

We originally employed a conventional, constrained-random, coverage-driven testbench simulation approach.

Specifically, once the overall DUT testbench was far enough along we would integrate in the register modeling

to the environment, write parameterized tests and coverage points for each register, run the simulations, analyze

failures, track code and functional coverage, etc.

2

All of this must be effectively repeated if the given DUT has multiple operational configurations. In short, it

was a state-of-the-art testbench simulation flow.

B. Challenges

The problem for us was that this simulation flow started breaking – becoming un-scalable when the DUT

configuration changes & IPs complexity raises (due to increase in number of registers). For starters, even for

teams that are very experienced in SV/UVM and are expert script writers, the number of tests and sequences for

the “easy” registers were getting to be unmanageable (in-spite of automation built around it).

Adding to this was the time-consuming (and error prone) process of understanding and developing tests for

the unconventional, customized register access APIs, longer run-time & coverage closure. Inevitably some corner

cases were initially missed and not caught until late in the design cycle.

Further challenges with our IPs include lesser reusability of the setup for different configurations of the IP,

modelling & verification of interdependency between registers, accounting of hardware latency in updating the

registers plus the need of separate agents & test cases for retention checks. Above all, the major downside is that

the flow must be iterated for various register interfaces like AHB5, APB, etc., that are standard protocols (or) any

custom interface.

III. NEW PROCESS

A. Formal approach

Being aware of formal analysis’ ability to deliver exhaustive verification of control logic, we adopted a formal-

based flow to exhaustively verify our registers. Questa RegCheck tool was used for this approach. The benefits

were immediate: there was no requirement to create a testbench/register model/test setup – the formal-based

register checking application takes-in the XML or CSV register spec as input directly, automatic negative

checking capability, support for front-door & back-door accesses.

Along with the DUT RTL, the formal tool generates all it needs under-the-hood and illustrates any

discrepancies if it finds between the spec and the DUT with “counter example” waveform showing how the spec

can be violated by the current DUT implementation.

B. Flow

As shown in the Figure 1, this simple flow takes a register spec, an interface spec, and any necessary constraints

along with the DUT RTL as input, generates the properties and binds them to the in-built assertion module (in

case of standard AMBA interface) / custom interface module & stores the results in the form of status logs and

waveforms.

Figure 1. Formal approach – A Pictorial representation

Register Spec

Interface Spec

Constraints

 DUT

“Questa RegCheck”

Formal based register-

access verification

Assertion bind

Output Log

Waveforms

3

C. Inputs

The first input for this is the register spec in CSV format that followed IP-XACT register access policy

descriptions. It is described in the specified format below:

Figure 2. Partial Snippet of CSV format

While the definition of the CSV is simple, the effort in creating it for different configurations of the IP increases

with increase in registers. To overcome this, an in-house script was developed to automate the CSV generation

from our register specification format, which is only a ONE-TIME effort.

Figure 3. Interface definition

Next input is the interface spec which is to be stated in a simple .txt format as in Figure 3. All it includes is

the path of the register module in the design, IP AMBA/custom interface, the base address of the IP, format of

register specification used (IPXACT/UVM), mapping of the DUT’s interface to the tool’s inbuilt assertions

module ports and the pointer on back-door (or) front-door access.

Third is the constraint file as shown in Figure 4, that incorporates any constraints on the reset signals, clock

frequencies, specific inputs/assumptions to the DUT IO’s for the formal run, black-boxing of modules along with

formal compile & verify commands.

Figure 4. Constraint input file

And finally, the DUT compilation file list should be passed together with the top-level configuration parameters.

After these inputs were provided, the tool generated all the necessary verification environments including

target properties to verify the register behaviors and then the exhaustive formal engines assure the complete

behavior verification of the given registers. The target properties are designed to cover complete behaviors of

individual registers that comprises of:

 Global/local reset behaviors

 Bus read/write operations

 Any conflict behaviors

 Volatility

 No operation (where the register value should not be modified by any other transactions on the bus)

D. Outputs

Assertion bind output (Figure 5) that is generated from the tool contains information on the in-built assertion

module that is instantiated for every register field, with a instance name created as a concatenation of assertion

module name, register base + offset address, register/field name, access policies.

4

Figure 5. Assertion bind to a register field

Once the formal engine is run, the status of the properties is logged as one of the 6 types of status below:

 Assumed – The assumptions as passed in the constraints file

 Proven – Number of passing properties (like read, write operation)

 Covered – Number of properties that are covered

 Inconclusive – Properties that could not be concluded by the formal engine as proven/dis-proven

 Fired – Number of failing properties

 Uncoverable – Number of properties that could not be covered in anyway

 Any failures could then be debugged with a simpler Visualizer GUI (Figure 6) that dumps all related signals

causing failure, failing timestamp, clear transaction on the failure point for all the assertions.

Figure 6. Assertion bind to a register field

IV. RESULTS

We deployed this new process in 3 of our IPs – 2 with APB/custom interface & 1 with AHB-Lite interface.

The result of this was a drastic improvement in register verification that helped us in faster IP-level verification.

Table I, II represents the results of IPs that uses APB interface. Since a simpler implementation of APB interface

is supported by the design rather the standard protocol, a custom interface was declared & used for these IPs.

Table I. Results - APB IP#1

S. No
Number of registers: 8

Property Count

1 Assumed 2

2 Proven 220

3 Covered 127

4 Inconclusive 0

5 Fired 0

6 Uncoverable 33

7 TOTAL 382

TIME TAKEN: 1 minute 14 seconds!!!

5

Table II. Results - APB IP#2

S. No
Number of registers: 5

Property Count

1 Assumed 1

2 Proven 112

3 Covered 64

4 Inconclusive 0

5 Fired 0

6 Uncoverable 16

7 TOTAL 193

TIME TAKEN: 1 minute 8 seconds!!!

Table III below represents the result of the IP using AHB-Lite protocol. The time taken for this IP is little

higher not because of the increase in registers compared to the above IPs, but due to the registers spread across

multiple modules and so the formal was run separately for each module. The result is the consolidated one that

has a overhead of formal compilation/loading/optimization time for each of the individual runs.

Table III. Results - AHB-Lite IP

S. No
Number of registers: 64

Property Count

1 Assumed 39

2 Proven 1596

3 Covered 873

4 Inconclusive 0

5 Fired 0

6 Uncoverable 267

7 TOTAL 2775

TIME TAKEN: 18 minutes!!!

A. Verification of Retention Checks

Additionally, the AHB-Lite target design has a separate power island in it, and hence, has state retention

registers. At a RTL level IP verification this only means the toggle of retention/non-retention reset and verification

of registers for retained/reset value respectively. This was much tougher with simulation due to the need of

separate reset agents, proper handshaking of transactions to align with the reset toggle, etc., With the new process,

we only toggled the non-retention reset keeping retention reset in de-asserted state via the constraints file, added

a new column in the CSV to provide the retention reset name for the retention registers, and the retention registers

could then be completely verified.

Table IV. Results - AHB-Lite IP retention registers

Number of registers: 56

TOTAL properties: 2332

TIME TAKEN: 14.7 minutes!!!

B. Verification of some complex registers

Some registers were designed to have complex volatility behaviors that are affected by other registers through

variable delays. These complex behaviors cannot be described using IP-XACT register access policies. Instead,

we could describe them intuitively using the tool provided debug signals. This allowed us to update the original

register spec and we could finish our register verification completely with a push-button solution.

C. Issues caught

 With this new process, issues with address decoding, overlapping of hardware & software modification to the

registers and problems with definition on number of cycles between software write initiation and hardware update

to the register were seen.

6

Clearly, a big benefit of this exhaustive complete register verification is that it enables early retention checking

before starting compute and time-intensive power-aware sims. Ultimately, for a comparatively sized DUT that

took months to verify, after a few of days of initial setup this new flow exhaustively verified the registers in under

seconds to minutes!

V. FUTURE WORK

With successful usage with AHB-Lite & APB IPs, the process is also being tested on IPs with AHB5 interface.

The next step on this deployment is to explore on the way to include all the registers spanned across different

modules in a one formal run to reduce the time taken for IPs of type listed in Table III (there is a support in the

tool already to pass registers present in different modules in a single run). Later to this will be the automation of

creation of the full setup based on the standard protocols supported by the tool, while also supporting the custom

interface.

VI. CONCLUSION

With this new formal-based flow, beyond the delivery of exhaustive results in an incredibly short amount of

run-time, we now enjoy dramatically less user effort in environment setup with early retention checking. The

setup itself is more portable and reusable, the compute resource needed is substantially less, and the failure

analysis / debug is also quick and efficient. Consequently, this flow is now our plan-of-record.

ACKNOWLEDGMENT

I would like to thank Rimpy Chugh, Bathri Subramanian, Wesley Park from Mentor, A Siemens Business., for

their support during this execution.

REFERENCES

[1] “Questa Register Check User Guide”

	I. Introduction
	II. Prior Methodology And Challenges
	A. Simulation approach
	B. Challenges

	III. New Process
	A. Formal approach
	B. Flow
	C. Inputs
	The first input for this is the register spec in CSV format that followed IP-XACT register access policy descriptions. It is described in the specified format below:
	While the definition of the CSV is simple, the effort in creating it for different configurations of the IP increases with increase in registers. To overcome this, an in-house script was developed to automate the CSV generation from our register speci...
	Next input is the interface spec which is to be stated in a simple .txt format as in Figure 3. All it includes is the path of the register module in the design, IP AMBA/custom interface, the base address of the IP, format of register specification use...
	Third is the constraint file as shown in Figure 4, that incorporates any constraints on the reset signals, clock frequencies, specific inputs/assumptions to the DUT IO’s for the formal run, black-boxing of modules along with formal compile & verify co...
	After these inputs were provided, the tool generated all the necessary verification environments including target properties to verify the register behaviors and then the exhaustive formal engines assure the complete behavior verification of the given...

	D. Outputs
	Assertion bind output (Figure 5) that is generated from the tool contains information on the in-built assertion module that is instantiated for every register field, with a instance name created as a concatenation of assertion module name, register ba...

	IV. Results
	A. Verification of Retention Checks
	B. Verification of some complex registers
	C. Issues caught

	V. Future Work
	VI. Conclusion
	Acknowledgment
	References

