
Static power-management verification of Cypress's PSoC®
Programmable System-on-Chip for embedded systems

Johnie Au

Cypress Semiconductor
198 Champion Court,

San Jose, CA
+1 408 943 2149
jca@cypress.com

Prapanna Tiwari
Synopsys Inc

3075 W. Ray Road
Chandler, AZ, 85226

+1 650 215 8606
prapanna@synopsys.com

ABSTRACT

Power management is a necessity today to achieve the power-targets

of a design. Verification is a key aspect in ensuring the design is

functional on silicon while aiming to achieve its power targets. It

includes both dynamic and static verification. This paper will focus

on static verification and cover the challenges faced and solutions

applied in static verification of Cypress's PSoC® Programmable

System-on-Chip for embedded systems. It covers various stages in

the design flow - from power-intent definition to sign-off

verification/validation. It will cover how the programmable macros

pose a challenge in low-power static verification but also in defining

their power attributes. It will highlight the pitfalls a verification team

must look out for when doing static verification and the desirable

features of a low power static checker solution. The paper will give

an overview of a solution deployed on the PSoC® chips and future

challenges/enhancements being considered to meet the complex

power architectures of advanced low-power SoCs.

Keywords

Power-gating, isolation, level-shifter, power-switch, power-state

table (PST), UPF, Voltage Scaling, Dynamic Voltage Scaling,

Adaptive Voltage Scaling, Dynamic Voltage and Frequency Scaling,

Adaptive Voltage and Frequency Scaling, Power Management Unit

(PMU), retention, DRC

1 INTRODUCTION
Advanced power-management techniques are a necessity for a

product to remain competitive in the current consumer portable

market, as designs pack more features on progressively smaller die

sizes. Power management techniques primarily aim at keeping alive

the regions of the chip which are functional and operating the

functional regions at a voltage no higher than needed to achieve the

performance targets. Based on the region alive in the chip, each

power-mode allows only a subset of features to be used. As the

device changes from one feature to another, it now requires changing

the power-mode, based on functional, power and performance

requirements of the chip. To add to the complexity, the power-

management scheme of a design must be programmable (to save

cost) as it’s often aimed for multiple end products with different

power architectures.

With this increased complexity, the problem space to be covered by

verification also increases significantly. The design must be verified

in all its functional and power modes and various configurations

(possible use models/architectures). Verifying such a low-power SoC

solely by dynamic verification techniques (simulation) will lead to

significant increase in verification time/effort and impact design

schedules. Static verification becomes very critical in power-

managed designs, with its ability to catch bugs without vectors with

much lesser setup/runtime cost as compared to dynamic verification.

It can clean up the structural, semantic and architectural issues in the

design/power-intent before simulations execute towards achieving

the power-aware functional coverage goals. Used appropriately, it

can even be improved to catch bugs which conventionally would

require simulation to catch them. This paper aims to discuss various

aspects of static power-management verification in detail and share

relevant examples from the Cypress’ PSoC experiences. This paper

assumes basic knowledge of power techniques and discusses mainly

the static verification flow.

2 DESIGN OVERVIEW
Cypress’s PSoC family of designs chips are a low-power solution for

embedded systems, combining an 8-bit microcontroller, flash

memory, and SRAM with programmable analog and digital blocks.

PSoC® devices contain up to 16 digital and 12 analog blocks. These

digital and analog blocks are programmable enabling designers to

create and quickly change advanced mixed-signal embedded

applications. The same programmability that - helps a designer is a

challenge for low-power verification as it significantly increases the

number of power modes possible for the macro/chip. Some of these

macros can have multiple power supplies, adding another level of

complexity to the power-management verification, as discussed later

in the paper. PSoC designs can be used in a variety of power-

management techniques depending on the power goals of the end

application. Power techniques discussed in this paper would include

power-gating, retention, substrate biasing and dynamic voltage

scaling with associated low-power structures required to enable these

techniques –viz.-isolation, retention, level-shifter and power-switch

cells. The power-management static verification for this design was

done using a flow built around tool MVRC (Multi Voltage Rule

Checker) from Synopsys Inc.

Figure 1: PSoC Design Architecture

3 STATIC VERIFICATION
Regardless of whether a power-management technique is used in a

design, various static verification checks in any design flow can

broadly be categorized in to following three buckets:

1. Structural checks, which include verifying the presence,

placement, connectivity and context of different design

structures. This could verify the cell instances in a post

synthesis verilog netlist or LV/DRC rules on a post-layout

design view (e.g. GDS).

2. Functional checks, which include semantic checks on the

design elements based on the data available. This could

verify clock domain partitioning rules at RTL stage,

control signal polarities on a post-synthesis netlist, or any

heuristic rules which are design to ensure correct

functional behavior. Functional checks may not always be

sign-off and often based on heuristics as they enforce static

rules aimed at ensuring correct dynamic behavior. Certain

assumptions have to be made about dynamic scenarios that

a design would face and verify the design accordingly.

These assumptions may run into an occasional exception.

Finding functional bugs is traditionally the domain of

dynamic verification but with increasingly complex

designs, static verification is becoming instrumental in

catching as many bugs as possible before going starting

dynamic verification.

3. Equivalence checks, which include comparison of

functional behavior of two separate design views. Unlike

structural and functional checks which apply rules to a

single design view and verify it to be a functional design,

equivalence checks take two design views which are

individually expected to be functional and compare them to

check if they are identical in behavior.

Power management techniques impact all three aspects of static

verification in a design flow.

 New power structures in the design (such as isolation, level-shifter,

retention, power-switch cells) require structural checks to ensure

they are inserted and connected correctly and in the right context.

Power domain partitions now require functional check on power-

control signals to ensure they are connected with right polarity and

routed through appropriate regions to ensure functionality in all

power-modes. Functional checks are also necessary on non-low

power signals (e.g. clock-enable, clock-networks, reset etc) to ensure

access to them is available in all active regions of the design in a

given power mode.

Equivalence checks must also be power aware to ensure any

difference in power-connectivity and associated functional behavior

between the two design views being compared is caught. Without

knowledge of power-partitions and connectivity an equivalence

checker will not be able to comprehend the effect of power-modes on

functional behavior of the active and inactive regions of the design.

Although all the static checks can be covered by dynamic

verification with appropriate RTL, Netlist or Spice simulations,

however, the completeness of the verification is dependent on the

coverage achieved by the tests run. Given infinite time and resource,

dynamic verification could theoretically catch all the bugs in the

design. But in today’s competitive markets, product development

schedules are only getting shorter with time. In such a market, static

verification is indispensable in catching design bugs early in the flow

and with minimal effort. A good static verification methodology can

be the difference between a successful and a failed product.

This is even more applicable to designs using power-management

techniques. A unique aspect of power-management techniques is

that majority of rules to be enforced is dependent on the power-

technique being used, irrespective of the design type. For example,

any design using power-gating will require isolation cells at the

output of the OFF domains in the design. There can be numerous

kinds of isolation cells used but the fact that isolation logic of some

kind is necessary to protect the ON regions from the OFF logic is

true, irrespective of the design category. There are a few exceptions

to this rule but in general it applies to all aspects of power-

management static verification. This in turn implies that all except

the power-sequencing and certain functional completeness related

issues could be theoretically caught using static verification. This can

be boon to a design team trying to incorporate power-management

techniques into an existing design on a tapeout schedule which is

equal, if not shorter, than the last time.

In summary, a well planned static verification methodology in a

power-managed design can help catch bugs earlier in the flow with

minimal effort and to some extent reduce the dependence on

dynamic verification for identifying low-power bugs.

4 POWER MANAGEMENT STATIC

VERIFICATION
From power-architecture definition to tapeout, all stages in the

design flow require static verification. The subsequent sections will

cover for each stage in the design the kind of static checks that must

be done to ensure a smooth design cycle.

Figure 2: Typical Design Flow

4.1 Power Intent Definition & Validation
The first step in any design flow is to define the power intent for the

design. Power intent is captured as a separate text file that

accompanies the design. It include information about power

domains, chip low-power states, control signals, isolation/level-

shifter/retention/power-switch strategy details etc. MVRC supports

two mechanisms – UPF and an internal power intent format. There

are also other industry formats available which can capture the power

information. For sake of generality, we’ll refer to it as the power-

intent file. Power intent file captures both structure and semantics of

the power architecture. To avoid legacy RTL changes, power

structures (like isolation/retention/level-shifter/always-on-

buffer/power-switch cells) are initially defined in the power intent

file. Hence it’s safe to say that power-intent file not only capture the

power information but also part of the design structures which will

be inserted into the design at a later stage in the design flow. The

semantics part of power-intent identifies primarily the various legal

power modes and voltage values for different parts of design and the

supply network.

Once the power intent file has been defined, the first stage in

verification is to validate this power intent to ensure that combined

with the RTL, it provides a complete and coherent power description

which can be expected to work on silicon. At this early stage in the

design, following checks must be performed on the power intent of

the design:

1. Structural checks should be performed on the power-intent

itself to ensure it defines the necessary isolation and level-

shifter requirements for the designed based on the power-

modes of the chip.

a. These checks should also ensure that the

isolation and level-shifter requirements defined

are no less AND no more than necessary. Having

redundant (more than necessary) power

structures in the design can also lead to

functional bugs. E.g. isolation cell between two

ON domains would tie down the signal when it

needs to be functional and toggling.

Figure 3: Redundant Isolation in Power Intent

2. Functional checks should be performed to ensure power

architecture itself is not causing bad silicon by design.

a. For each power mode of the design, ensure all

necessary signals required to keep the ON region

functional is not being driven by any of the OFF

domains in that mode. E.g. if a clock PLL’s

power domain is OFF in a chip level power-

mode while the power-domain of the register that

uses the clock is ON, it is an obvious functional

issue even if that clock signal has an appropriate

isolation cell defined on it.

Figure 4: Bad partitioning (Functional error)

b. Power management state, transition and

sequences for the design should be critiqued to

ensure no unsafe rail transitions are likely to

happen. This is not a sign-off check but more of

a best-practices analysis to avoid any rush

current related issues later in the flow.

c. Library for the design must be validated to

ensure it has the necessary cells and necessary

attributes/info about them, required to

successfully implement the power-intent on the

current design. This check would help catch any

library issues upfront and avoid late surprises.

Fairly accurate analysis of the library can be

done even before a design reaches the synthesis

stage.

Power structures in RTL
For various reasons outside the scope of this paper, some design

teams may choose to insertion isolation cells and level-shifters in

RTL itself. In such cases, the power-intent should still capture the

definition for those cells as they would have been if the cells didn’t

exist in RTL. The static verification tool should then ensure that the

behavior defined in power-intent matches with that inserted in the

RTL. This is crucial to ensure a correct dynamic verification and

avoid late surprises in the flow. Catching a missing or incorrect

isolation/level-shifter cell in RTL is dependent on the tests being run

and assertions being checked. It is possible for dynamic verification

to miss such bugs and establish a golden reference design with this

bug. In such cases all subsequent stages of the design flow will

continue on the same incorrect assumption and a bug might go

undetected until very late in the design flow. Static checks are the

best way to catch any power structure related bugs early in the design

cycle without any ambiguity.

4.2 Post –Synthesis Static Verification
As design progresses through various stages, the power intent,

captured as a separate file originally, progressively gets implemented

and becomes part of the design itself. A synthesis tool can take the

RTL and the power-intent file and synthesize the power structures

necessary for isolation, level-shifter and retention requirements of

the design. It may need to insert always-on buffers while connecting

signals depending on the power partitions and any placement

planning info fed to the tool. Always-on buffers are primarily dual

rail buffer cells which have a back-up supply that helps them remain

functional even when their primary supply turns OFF. They are

mainly used in connecting feed through signals through OFF

domains. Power switches are typically not synthesized at this stage

as power-routing information is unavailable. With these changes

done to the design (in addition to the regular logic synthesis), static

verification must now be done on the output netlist to ensure it is

electrically correct and is consistent with the power intent.

Structural checks

Power structures in the design

Regardless of what has been captured in the power-intent file, the

first check that should be done on a netlist is to verify if the power

structures inserted in the netlist are necessary and sufficient for

functional silicon.

Power modes for the design should be the guideline on which these

checks should be based on. Each power mode indicates the voltage

value of each power domain in the design. Combining this with the

design connectivity information, static verification should infer the

isolation and level-shifting requirements for each power domain in

the design. These requirements should then be compared against the

cells instantiated in the synthesized netlist. All instances of isolation

(ISO) and level-shifters (LS) cells must be verified to ensure there

are no occurrences of missing, redundant, incorrect-type, incorrect-

output polarity (ISO only), incorrect voltage range (LS only) and

incorrect enable connectivity (ISO only).

Figure 5: Examples of errors on isolation cells

Power Intent V/s Design

In addition to verifying the design, a comparison must be done

between the power-intent and the design to ensure they are consistent

in the isolation and level-shifter requirements for the design. Cells

inserted in the design must be consistent with the isolation and level-

shifting directives power-intent. Any difference must be reviewed in

detail.

Occasionally a situation may arise where the power-intent may NOT

be consistent with the isolation/level-shifting requirements inferred

purely based on power-modes of the chip. This happens when there

are macros which have inbuilt isolation or level-shifting logic or

have some purely analog pins on their interface. Such information

must be captured in the library as cell attributes and also in power-

intent file as overriding directives from the user. Without this

information, MVRC would end up giving false violations basing its

analysis purely on power-modes of the chip.

Another common exception possible in this check is when the

following three items are not all in sync:

1. Isolation/level-shifting directives based on power-modes

2. Explicit isolation/level-shifting directives from user

3. Isolation/level-shifter instances in the netlist

If (1) and (2) are same but different from (3), it is likely to be a

synthesis issue and appropriate logs should be checked.

If (1) and (3) are same but different from (2), careful review must be

made to identify if (2) has been defined incorrectly or the

synthesized netlist has incorrect structures and (2) should be an

overriding directive for netlist

If (2) and (3) are same but different from (1), careful review must be

done to identify the root cause of these differences. Common reason

for such differences is cells in the design with exception conditions

such as inbuilt isolation/level-shifting or pure analog pins which

don’t require isolation/level-shifter cells on them.

Multi-rail macros and challenges in PSoC designs

Cypress’ PSoC design had a unique challenge were the several multi-

rail analog and digital blocks instantiations. Each of these macros has

multiple power pins including both digital and analog voltages.

Consequently, interface of these macros consists of various ports

associated to its different power-pins of the macro. For static

verification, the following aspects had to be accounted for:

1. Information about supply rails connected to all the power

pins of these multi-rail macros must be defined. This helps

MVRC correctly associate logic pins of a cell to its power

pins. Multiple instances of the same macro may be

instantiated in different power contexts (i.e. with different

power pin connectivity).

2. Information about any inbuilt isolation and level-shifter

logic must be captured. This will help avoid any false

errors when verifying the design. This information cannot

be inferred based on the verilog netlist and must be defined

as an explicit attribute of the cell in library or in power-

intent file.

Figure 6: Multi-rail Macro

Without this information, MVRC could make incorrect assumptions

about the voltage level for the macro ports and give spurious errors.

However, with this information provided, all the exceptions can be

avoided and a clean analysis can be done.

Retention cell checks

If retention scheme is being used in a design, following checks must

be done:

1. Each retention region marked in the power-intent file must

be checked in the design to ensure that all registers in that

region are of the retention cell type.

a. Each retention cell instance should be verified to

ensure its primary and back-up power pins are

connected as directed in the power intent file.

b. Each of retention cell instances should be

verified to ensure save/restore connectivity as per

the power-intent file.

c. Voltage values for supply rails connected to the

retention cells should be analyzed for all power

modes to ensure the cell will be able to perform

save/restore functions appropriately.

2. Each non-retention region in the design should be checked

to ensure no retention cells have been instantiated. A

redundant retention cell instance could lead to functional

errors.

Power Switches

Power switches are typically not inserted at this stage and hence no

associated checks need to be done yet. These checks should be done

post-layout netlist, once the cells have been inserted and connected

in the design.

Functional checks
Functional checks are necessary at this stage to ensure the critical

signals in the design have not been connected up in a manner that

causes them to be corrupted or isolated unexpectedly or be connected

with a wrong polarity.

Keep Alive Signals

For each power domain in the design, there will be a certain list of

critical control signals which are necessary for its functionality both

in power-ON as well as power-OFF modes. In power-ON mode, the

keep alive signals are the ones required to ensure functional behavior

(e.g. clock, reset, clock-gating signal etc) while in power-OFF mode,

the signals help ensure the block is appropriately isolated from the

rest of the design (e.g. power-enable signal, isolation control signal,

clock-gating signal etc). It is a generic description that has been

given here and the list of these keep-alive signals will be dependent

on the design’s architecture and end application. The keep-alive

signals can broadly be bucketed into following categories:

1. All power control signals (e.g. isolation/power/save/restore

enable signals)

2. All clock/reset control signals (e.g. clock, clock-enable,

clock multiplexer selector, reset signals etc)

3. Boot strap signals for any all power domains

4. Any external power related interrupts indicating wake-up

or shutdown events

5. Scan control signals (depending on test methodology)

6. Any form of enable/disable signals or indicator signals

should be reviewed as candidates for these checks. (E.g. an

empty indicator signal for a queue if

partitioned/corrupted/isolated incorrectly could incorrectly

flag an empty queue to destination logic initiating a queue

write when infact the queue is full)

Although many heuristic rules can be applied, the process of

identifying these signals is predominantly manual beyond the

common categories mentioned above. However, this is a onetime

effort per project and is definitely well spent. Identifying power

domain boundaries at RTL stage itself can give an idea of the control

signal networks which need to be tested to ensure they are alive in all

power modes.

Having identified these signals, various checks must be done to

ensure they are accessible and alive in all the necessary regions of

the design, in all power modes of the chip. The simplest check is to

trace the network of these signals from source to each leaf level cell-

pin in the netlist and ensure that access to that signal is available at

each cell-pin in all power-modes defined in the power-intent. Even a

simple ill-connected buffer is sufficient to cause functional issues. If

missed in static checking, these bugs could be caught in simulations

if the specific test vector is run where the scenario gets simulated.

Figure 7: Functional bug on queue status indicator

Signal Polarity

In addition to the keep-alive checking, all power control signal

networks must be traced to ensure they reach destination cell pins

with expected polarity. Two factors should be checked:

1. Active polarity of the control signal as specified in power-

intent file (e.g. isolation enable signal isolates when high)

2. Polarity expected at the cell pin (e.g. AND gate isolates

when isolation enable pin is low).

Taking an example of isolation enable signal for a domain, simply

ensuring that the signal reaches the isolation cell with the same

polarity as at the source is not sufficient. An active high isolation

enable signal (isolates when high) connected to an AND based

isolation cell (isolates to low when enable low) would cause isolation

error. The polarity of the enable signal arriving at the cell-pin should

be validated against the functionality of the cell. The same signal

connected to an NOR based isolation cell (isolates to low when

enable high) would give correct functionality. As evident,

functionality of the isolation cell must also be considered when doing

the polarity checks.

Figure 8: Polarity validation

Equivalence checks

At this stage, it is strongly advisable to run the equivalence checks

between the RTL+power-intent and Netlist+power-intent design

views. Structural and functional checks can ensure each individual

design view has no low-power bugs, however, only equivalence

check can guarantee that indeed the original power-intent and

functional behavior with which RTL verification was done and a

golden reference was established, has been implemented into the

post-synthesis netlist. Tools like Formality from Synopsys can do a

power-aware equivalence and ensure original power intent has not

been modified in any way by the synthesis step.

4.3 Post –Layout Static Verification

Post layout design database would contain the power-

routing/connectivity for the design. Power-switches, if specified in

power-intent file, would be instantiated into the netlist. This is the

final stage of static verification in the design flow and also the most

accurate. All power intent information has been implemented in the

design and is available in the design database. MVRC need not rely

entirely on the power-intent specified by the user.

Input formats

It is essential to capture the input formats available at this stage of

the design. In addition to the netlist formats (verilog/vhdl netlists)

commonly used by static verification tools in pre-layout design flow,

various physical databases are also available – such as – Milkyway

library, LEF/DEF, GDS. These databases can help provide more

information about the power-connectivity of the design as compared

to a verilog netlist. Static checkers can use that information to add to

the data extracted from the verilog netlists. Typically static

verification is done using a PG-netlist, which is a verilog netlist with

power-ground pin and associated connectivity present in the netlist

itself.

Power Connectivity checks
First check to be done at post-layout stage is to verify the

power/ground (PG) pin connectivity against the connectivity

specified in the power-intent file. All power and ground pins for each

cell in the design should conform to the information captured in the

power-intent file. Any discrepancy, even if it does not cause a

functional error, should be highlighted as an error. Entire design

flow, from RTL to layout phase, has relied on the power-intent file

for their checks and analyses. This includes any manual

checks/modifications/reviews done by engineering teams and

checks/analyses done by any software tools in the flow. A difference,

even though not necessarily an error as per the rules applied by a

static verification tool, could break the inputs/assumptions on which

the earlier steps were based on. Differences in PG pin connectivity

v/s power-intent file should be reviewed carefully to identify the root

cause.

Multi-rail checks offer unique challenge as their power/ground pin

connectivity can’t all be inferred based on instance level power-

domain partitioning. Each power pin can have a unique supply-rail

connection directive for it in the power-intent file. The power-

connectivity checks must take this into account to avoid incorrect

analysis. In PSoC designs, with their multiple programmable digital

and analog blocks instantiated across the design, this was a key

check to be done to ensure all macros are connected correctly to the

appropriate supply rails in the design. Different instances of the same

macro could be connected to completely different supply rail

networks on the same design, based on the context in which they are

being used.

Power Switch Networks
In a post layout netlist, power-switches will have synthesized and

connected based on the power-intent information and needs driven

by the physical layout.

Power Switch Network v/s power intent

A key challenge in PG netlist verification is to map the power-switch

requirement defined in the power-intent to the power-switch

architecture implemented in the netlist. Typically power-intent would

simply indicate a power-switched domain. This requirement will

almost always be converted into sever power-switches connected in a

specific pattern (daisy-chain, grid based etc) to achieve the expected

functional behavior (signal controlled ON/OFF) with correct

electrical constraints (E.g. IR-drop constraints). Accuracy of power-

switch network verification is tied to how accurately a static

verification tool can do this power-intent to PG-netlist mapping of

power-switch topologies.

Figure 9: Different power-switch implementations

Power Switch Connectivity Check

Once mapped, all the power-switches for a given power-domain

must be verified to ensure the appropriate connectivity for at least the

following ports:

1. Input and output supply rails (also called primary and

virtual rails)

2. Enable signal connectivity and polarity

a. Power down polarity/functionality of power-

switch cell should be considered here.

3. Acknowledge port connectivity, if applicable

Depending on the library being used, there may be other ports on the

power-switch and associated semantics that may need to be verified.

Structural, functional and equivalence checks
Structural and functional checks to be done on post-layout netlist are

same as those done for the post-synthesis netlist. There are no new

checks that come up at the PG-netlist stage, except that the analysis

should be based on PG-pin connectivity in the design and not on the

power-intent file based partitioning. This is especially important if

power-intent v/s PG-pin connectivity comparison discussed earlier in

the paper could not be done for any reason. Only the power-modes

information should be taken from the power-intent file as this is not

available in the PG-netlist.

Equivalence checks should be done to ensure post-synthesis Netlist

and power-intent are functionally equivalent to the PG-netlist.

4.4 Transistor Checks
Details of transistor level implementation of a cell can provide

valuable information to MVRC, which is not available in a verilog

netlist or a library model. A spice netlist is the preferred way of

getting this information to the tool.

Transistor checks can mainly improve low-power checks in only

post-synthesis stages of the design. In doing structural checks at

post-synthesis and post-layout netlists, a spice netlist can provide

information on how a cell has been implemented and the kind of

structures seen at a specific port of the cell. For example, un-buffered

input of an OFF power-domain would require an isolation cell at that

input. Moreover, that isolation cell should isolate the signal to a low

value and not to a high value. Without such an isolation cell, the

design will have higher inactive state current for the OFF power

domain and could miss its power targets.

Figure 10: Input isolation requirement identified only based on

transistor checks

This kind of a check is not possible by using only verilog models of

the cells instantiated in the design – a spice level netlist for all cells

in the design is a must and can help avoid such bugs and catch them

as early as post-synthesis stage in the design flow.

Transistor level checks on a design can also help identify any sneak

leakage paths. These are paths existing between the power and

ground rails in the design which may be enabled continuously or be

controlled based on the logic state of the data pins of the cells. The

leakage paths can be entirely within a cell (intra cell) or can span

across multiple cells in the design (inter cell).

Again, it is impossible to identify such errors without incorporating

spice netlist information into the static verification flow.

There are similarly several other checks possible on the design once

the transistor level spice netlists are available to the static verification

tools. These checks can help identify design issues early in the

design flow and in the context of the power-intent of the design.

These checks are not a replacement to the existing LV/DRC or any

other spice netlist based verification/validation flows on a design.

They are only meant to improve the accuracy of existing verilog

netlist based static verification.

Needless to say, these issues will not be caught by the RTL/Netlist

simulations of the design and a full spice netlist simulation of a chip

will prove too costly to the product schedule. A static verification

methodology which accounts for transistor level information for the

cells in the design, can significantly improve static verification

accuracy.

Library checks at RTL

Although spice netlists mainly help in post-synthesis design flow,

they can also help with the library checks at RTL stage itself. At

RTL stage, based on the power-intent, the spice netlist of the low-

power cells (isolation, level-shifter, retention, power-switch, always-

on buffer) should be validated to ensure they can perform their

appropriate functions. E.g. an isolation cell spice netlist can be

validated to ensure that the data-pin of the cell is not an un-buffered

input (i.e. does not connect to a pass-transistor).

Figure 11: Pass transistor at data pin of isolation cell creates

leakage path – Connection rules must be enforced at chip level

The list of these cells can be identified based on the attributes

populated in the library and spice netlist from the library can be used

to validate if these cells are indeed the right choice for the design.

5 Summary
 In summary, static verification is instrumental at every stage in the

design flow. At library preparation and power-intent definition stages

it can help ensure correct and complete power intent and a library

consistent with that power intent. As parts of the power intent get

implemented into the design, static checks help validate those

changes against the original power intent and a goal of functional

silicon. Equivalence check ensures various versions of the design are

consistent with the original power-architecture intended and verified.

Static verification helps catch bugs early in the design cycle without

a need of any test vectors or simulation environment. It acts as a

persistent check at every stage of the design flow, ensuring no design

transformation (synthesis, clock-synthesis, layout, manual changes,

ECO’s etc) modifies the design in a manner which violates the

original power intent and/or causes an electrical or functional error

on the design.

