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ABSTRACT  

Power management is a necessity today to achieve the power-targets 

of a design. Verification is a key aspect in ensuring the design is 

functional on silicon while aiming to achieve its power targets. It 

includes both dynamic and static verification. This paper will focus 

on static verification and cover the challenges faced and solutions 

applied in static verification of Cypress's PSoC® Programmable 

System-on-Chip for embedded systems. It covers various stages in 

the design flow - from power-intent definition to sign-off 

verification/validation. It will cover how the programmable macros 

pose a challenge in low-power static verification but also in defining 

their power attributes. It will highlight the pitfalls a verification team 

must look out for when doing static verification and the desirable 

features of a low power static checker solution. The paper will give 

an overview of a solution deployed on the PSoC® chips and future 

challenges/enhancements being considered to meet the complex 

power architectures of advanced low-power SoCs. 
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1 INTRODUCTION  
Advanced power-management techniques are a necessity for a 

product to remain competitive in the current consumer portable 

market, as designs pack more features on progressively smaller die 

sizes.  Power management techniques primarily aim at keeping alive 

the regions of the chip which are functional and operating the 

functional regions at a voltage no higher than needed to achieve the 

performance targets. Based on the region alive in the chip, each 

power-mode allows only a subset of features to be used. As the 

device changes from one feature to another, it now requires changing 

the power-mode, based on functional, power and performance 

requirements of the chip. To add to the complexity, the power-

management scheme of a design must be programmable (to save 

cost) as it’s often aimed for multiple end products with different 

power architectures.  

 

With this increased complexity, the problem space to be covered by 

verification also increases significantly. The design must be verified 

in all its functional and power modes and various configurations 

(possible use models/architectures). Verifying such a low-power SoC 

solely by dynamic verification techniques (simulation) will lead to 

significant increase in verification time/effort and impact design 

schedules. Static verification becomes very critical in power-

managed designs, with its ability to catch bugs without vectors with 

much lesser setup/runtime cost as compared to dynamic verification. 

It can clean up the structural, semantic and architectural issues in the 

design/power-intent before simulations execute towards achieving 

the power-aware functional coverage goals. Used appropriately, it 

can even be improved to catch bugs which conventionally would 

require simulation to catch them. This paper aims to discuss various 

aspects of static power-management verification in detail and share 

relevant examples from the Cypress’ PSoC experiences. This paper 

assumes basic knowledge of power techniques and discusses mainly 

the static verification flow.  

2 DESIGN OVERVIEW 
Cypress’s PSoC family of designs chips are a low-power solution for 

embedded systems, combining an 8-bit microcontroller, flash 

memory, and SRAM with programmable analog and digital blocks. 

PSoC® devices contain up to 16 digital and 12 analog blocks. These 

digital and analog blocks are programmable enabling designers to 

create and quickly change advanced mixed-signal embedded 

applications. The same programmability that - helps a designer is a 

challenge for low-power verification as it significantly increases the 

number of power modes possible for the macro/chip. Some of these 

macros can have multiple power supplies, adding another level of 

complexity to the power-management verification, as discussed later 

in the paper. PSoC designs can be used in a variety of power-

management techniques depending on the power goals of the end 

application. Power techniques discussed in this paper would include 

power-gating, retention, substrate biasing and dynamic voltage 

scaling with associated low-power structures required to enable these 

techniques –viz.-isolation, retention, level-shifter and power-switch 

cells. The power-management static verification for this design was 

done using a flow built around tool MVRC (Multi Voltage Rule 

Checker) from Synopsys Inc.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 1: PSoC Design Architecture 

 

3 STATIC VERIFICATION 
Regardless of whether a power-management technique is used in a 

design, various static verification checks in any design flow can 

broadly be categorized in to following three buckets: 

1. Structural checks, which include verifying the presence, 

placement, connectivity and context of different design 

structures. This could verify the cell instances in a post 

synthesis verilog netlist or LV/DRC rules on a post-layout 

design view (e.g. GDS).   

2. Functional checks, which include semantic checks on the 

design elements based on the data available. This could 

verify clock domain partitioning rules at RTL stage, 

control signal polarities on a post-synthesis netlist, or any 

heuristic rules which are design to ensure correct 

functional behavior. Functional checks may not always be 

sign-off and often based on heuristics as they enforce static 

rules aimed at ensuring correct dynamic behavior. Certain 

assumptions have to be made about dynamic scenarios that 

a design would face and verify the design accordingly. 

These assumptions may run into an occasional exception. 

Finding functional bugs is traditionally the domain of 

dynamic verification but with increasingly complex 

designs, static verification is becoming instrumental in 

catching as many bugs as possible before going starting 

dynamic verification.  

3. Equivalence checks, which include comparison of 

functional behavior of two separate design views. Unlike 

structural and functional checks which apply rules to a 

single design view and verify it to be a functional design, 

equivalence checks take two design views which are 

individually expected to be functional and compare them to 

check if they are identical in behavior. 

 

Power management techniques impact all three aspects of static 

verification in a design flow. 

 New power structures in the design (such as isolation, level-shifter, 

retention, power-switch cells) require structural checks to ensure 

they are inserted and connected correctly and in the right context.  

 

Power domain partitions now require functional check on power-

control signals to ensure they are connected with right polarity and 

routed through appropriate regions to ensure functionality in all 

power-modes. Functional checks are also necessary on non-low 

power signals (e.g. clock-enable, clock-networks, reset etc) to ensure 

access to them is available in all active regions of the design in a 

given power mode.  

 
Equivalence checks must also be power aware to ensure any 

difference in power-connectivity and associated functional behavior 

between the two design views being compared is caught. Without 

knowledge of power-partitions and connectivity an equivalence 

checker will not be able to comprehend the effect of power-modes on 

functional behavior of the active and inactive regions of the design. 

 

Although all the static checks can be covered by dynamic 

verification with appropriate RTL, Netlist or Spice simulations, 

however, the completeness of the verification is dependent on the 

coverage achieved by the tests run. Given infinite time and resource, 

dynamic verification could theoretically catch all the bugs in the 

design. But in today’s competitive markets, product development 

schedules are only getting shorter with time. In such a market, static 

verification is indispensable in catching design bugs early in the flow 

and with minimal effort. A good static verification methodology can 

be the difference between a successful and a failed product. 

 

This is even more applicable to designs using power-management 

techniques.  A unique aspect of power-management techniques is 

that majority of rules to be enforced is dependent on the power-

technique being used, irrespective of the design type. For example, 

any design using power-gating will require isolation cells at the 

output of the OFF domains in the design. There can be numerous 

kinds of isolation cells used but the fact that isolation logic of some 

kind is necessary to protect the ON regions from the OFF logic is 

true, irrespective of the design category. There are a few exceptions 

to this rule but in general it applies to all aspects of power-

management static verification. This in turn implies that all except 

the power-sequencing and certain functional completeness related 

issues could be theoretically caught using static verification. This can 

be boon to a design team trying to incorporate power-management 

techniques into an existing design on a tapeout schedule which is 

equal, if not shorter, than the last time.  

 
In summary, a well planned static verification methodology in a 

power-managed design can help catch bugs earlier in the flow with 

minimal effort and to some extent reduce the dependence on 

dynamic verification for identifying low-power bugs. 

  

4 POWER MANAGEMENT STATIC 

VERIFICATION 
From power-architecture definition to tapeout, all stages in the 

design flow require static verification. The subsequent sections will 

cover for each stage in the design the kind of static checks that must 

be done to ensure a smooth design cycle.  

  



Figure 2: Typical Design Flow 

 

4.1 Power Intent Definition & Validation 
The first step in any design flow is to define the power intent for the 

design. Power intent is captured as a separate text file that 

accompanies the design. It include information about power 

domains, chip low-power states, control signals, isolation/level-

shifter/retention/power-switch strategy details etc. MVRC supports 

two mechanisms – UPF and an internal power intent format. There 

are also other industry formats available which can capture the power 

information. For sake of generality, we’ll refer to it as the power-

intent file. Power intent file captures both structure and semantics of 

the power architecture. To avoid legacy RTL changes, power 

structures (like isolation/retention/level-shifter/always-on-

buffer/power-switch cells) are initially defined in the power intent 

file. Hence it’s safe to say that power-intent file not only capture the 

power information but also part of the design structures which will 

be inserted into the design at a later stage in the design flow. The 

semantics part of power-intent identifies primarily the various legal 

power modes and voltage values for different parts of design and the 

supply network.  

 

Once the power intent file has been defined, the first stage in 

verification is to validate this power intent to ensure that combined 

with the RTL, it provides a complete and coherent power description 

which can be expected to work on silicon.  At this early stage in the 

design, following checks must be performed on the power intent of 

the design: 

1. Structural checks should be performed on the power-intent 

itself to ensure it defines the necessary isolation and level-

shifter requirements for the designed based on the power-

modes of the chip.  

a. These checks should also ensure that the 

isolation and level-shifter requirements defined 

are no less AND no more than necessary. Having 

redundant (more than necessary) power 

structures in the design can also lead to 

functional bugs. E.g. isolation cell between two 

ON domains would tie down the signal when it 

needs to be functional and toggling. 

 

 

Figure 3: Redundant Isolation in Power Intent 

 
 

 

2. Functional checks should be performed to ensure power 

architecture itself is not causing bad silicon by design.  

a. For each power mode of the design, ensure all 

necessary signals required to keep the ON region 

functional is not being driven by any of the OFF 

domains in that mode. E.g. if a clock PLL’s 

power domain is OFF in a chip level power-

mode while the power-domain of the register that 

uses the clock is ON, it is an obvious functional 

issue even if that clock signal has an appropriate 

isolation cell defined on it.  

 

Figure 4: Bad partitioning (Functional error) 

 
 

 

b. Power management state, transition and 

sequences for the design should be critiqued to 

ensure no unsafe rail transitions are likely to 

happen. This is not a sign-off check but more of 

a best-practices analysis to avoid any rush 

current related issues later in the flow.   

c. Library for the design must be validated to 

ensure it has the necessary cells and necessary 

attributes/info about them, required to 

successfully implement the power-intent on the 

current design. This check would help catch any 

library issues upfront and avoid late surprises. 

Fairly accurate analysis of the library can be 

done even before a design reaches the synthesis 

stage.  

 



Power structures in RTL 
For various reasons outside the scope of this paper, some design 

teams may choose to insertion isolation cells and level-shifters in 

RTL itself.  In such cases, the power-intent should still capture the 

definition for those cells as they would have been if the cells didn’t 

exist in RTL. The static verification tool should then ensure that the 

behavior defined in power-intent matches with that inserted in the 

RTL. This is crucial to ensure a correct dynamic verification and 

avoid late surprises in the flow. Catching a missing or incorrect 

isolation/level-shifter cell in RTL is dependent on the tests being run 

and assertions being checked. It is possible for dynamic verification 

to miss such bugs and establish a golden reference design with this 

bug. In such cases all subsequent stages of the design flow will 

continue on the same incorrect assumption and a bug might go 

undetected until very late in the design flow. Static checks are the 

best way to catch any power structure related bugs early in the design 

cycle without any ambiguity. 

4.2 Post –Synthesis Static Verification 
As design progresses through various stages, the power intent, 

captured as a separate file originally, progressively gets implemented 

and becomes part of the design itself. A synthesis tool can take the 

RTL and the power-intent file and synthesize the power structures 

necessary for isolation, level-shifter and retention requirements of 

the design. It may need to insert always-on buffers while connecting 

signals depending on the power partitions and any placement 

planning info fed to the tool. Always-on buffers are primarily dual 

rail buffer cells which have a back-up supply that helps them remain 

functional even when their primary supply turns OFF. They are 

mainly used in connecting feed through signals through OFF 

domains. Power switches are typically not synthesized at this stage 

as power-routing information is unavailable.  With these changes 

done to the design (in addition to the regular logic synthesis), static 

verification must now be done on the output netlist to ensure it is 

electrically correct and is consistent with the power intent.  

 

Structural checks 
 

Power structures in the design 

Regardless of what has been captured in the power-intent file, the 

first check that should be done on a netlist is to verify if the power 

structures inserted in the netlist are necessary and sufficient for 

functional silicon.  

 

Power modes for the design should be the guideline on which these 

checks should be based on. Each power mode indicates the voltage 

value of each power domain in the design. Combining this with the 

design connectivity information, static verification should infer the 

isolation and level-shifting requirements for each power domain in 

the design. These requirements should then be compared against the 

cells instantiated in the synthesized netlist. All instances of isolation 

(ISO) and level-shifters (LS) cells must be verified to ensure there 

are no occurrences of missing, redundant, incorrect-type, incorrect-

output polarity (ISO only), incorrect voltage range (LS only) and 

incorrect enable connectivity (ISO only). 

Figure 5: Examples of errors on isolation cells 

  

 

Power Intent V/s Design 

In addition to verifying the design, a comparison must be done 

between the power-intent and the design to ensure they are consistent 

in the isolation and level-shifter requirements for the design. Cells 

inserted in the design must be consistent with the isolation and level-

shifting directives power-intent. Any difference must be reviewed in 

detail.  

 

Occasionally a situation may arise where the power-intent may NOT 

be consistent with the isolation/level-shifting requirements inferred 

purely based on power-modes of the chip. This happens when there 

are macros which have inbuilt isolation or level-shifting logic or 

have some purely analog pins on their interface. Such information 

must be captured in the library as cell attributes and also in power-

intent file as overriding directives from the user. Without this 

information, MVRC would end up giving false violations basing its 

analysis purely on power-modes of the chip.  

 

Another common exception possible in this check is when the 

following three items are not all in sync: 

1. Isolation/level-shifting directives based on power-modes 

2. Explicit isolation/level-shifting directives from user 

3. Isolation/level-shifter instances in the  netlist 

 

If (1) and (2) are same but different from (3), it is likely to be a 

synthesis issue and appropriate logs should be checked.  

 

If (1) and (3) are same but different from (2), careful review must be 

made to identify if (2) has been defined incorrectly or the 

synthesized netlist has incorrect structures and (2) should be an 

overriding directive for netlist 

 

If (2) and (3) are same but different from (1), careful review must be 

done to identify the root cause of these differences. Common reason 

for such differences is cells in the design with exception conditions 

such as inbuilt isolation/level-shifting or pure analog pins which 

don’t require isolation/level-shifter cells on them. 

 

Multi-rail macros and challenges in PSoC designs 

Cypress’ PSoC design had a unique challenge were the several multi-

rail analog and digital blocks instantiations. Each of these macros has 

multiple power pins including both digital and analog voltages. 

Consequently, interface of these macros consists of various ports 

associated to its different power-pins of the macro. For static 

verification, the following aspects had to be accounted for:  

 

1. Information about supply rails connected to all the power 

pins of these multi-rail macros must be defined. This helps 

MVRC correctly associate logic pins of a cell to its power 

pins. Multiple instances of the same macro may be 



instantiated in different power contexts (i.e. with different 

power pin connectivity). 

2. Information about any inbuilt isolation and level-shifter 

logic must be captured. This will help avoid any false 

errors when verifying the design. This information cannot 

be inferred based on the verilog netlist and must be defined 

as an explicit attribute of the cell in library or in power-

intent file.  

 

Figure 6: Multi-rail Macro 

 
 

 

Without this information, MVRC could make incorrect assumptions 

about the voltage level for the macro ports and give spurious errors. 

However, with this information provided, all the exceptions can be 

avoided and a clean analysis can be done.   

 

Retention cell checks 

If retention scheme is being used in a design, following checks must 

be done: 

1. Each retention region marked in the power-intent file must 

be checked in the design to ensure that all registers in that 

region are of the retention cell type.  

a. Each retention cell instance should be verified to 

ensure its primary and back-up power pins are 

connected as directed in the power intent file. 

b. Each of retention cell instances should be 

verified to ensure save/restore connectivity as per 

the power-intent file. 

c. Voltage values for supply rails connected to the 

retention cells should be analyzed for all power 

modes to ensure the cell will be able to perform 

save/restore functions appropriately.  

2. Each non-retention region in the design should be checked 

to ensure no retention cells have been instantiated. A 

redundant retention cell instance could lead to functional 

errors. 

 

Power Switches 

Power switches are typically not inserted at this stage and hence no 

associated checks need to be done yet. These checks should be done 

post-layout netlist, once the cells have been inserted and connected 

in the design.  

Functional checks 
Functional checks are necessary at this stage to ensure the critical 

signals in the design have not been connected up in a manner that 

causes them to be corrupted or isolated unexpectedly or be connected 

with a wrong polarity.  

 

 

 

Keep Alive Signals 

For each power domain in the design, there will be a certain list of 

critical control signals which are necessary for its functionality both 

in power-ON as well as power-OFF modes. In power-ON mode, the 

keep alive signals are the ones required to ensure functional behavior 

(e.g. clock, reset, clock-gating signal etc) while in power-OFF mode, 

the signals help ensure the block is appropriately isolated from the 

rest of the design (e.g. power-enable signal, isolation control signal, 

clock-gating signal etc). It is a generic description that has been 

given here and the list of these keep-alive signals will be dependent 

on the design’s architecture and end application. The keep-alive 

signals can broadly be bucketed into following categories: 

1. All power control signals (e.g. isolation/power/save/restore 

enable signals) 

2. All clock/reset control signals (e.g. clock, clock-enable, 

clock multiplexer selector, reset signals etc) 

3. Boot strap signals for any all power domains 

4. Any external power related interrupts indicating wake-up 

or shutdown events 

5. Scan control signals (depending on test methodology) 

6. Any form of enable/disable signals or indicator signals 

should be reviewed as candidates for these checks. (E.g. an 

empty indicator signal for a queue if 

partitioned/corrupted/isolated incorrectly could incorrectly 

flag an empty queue to destination logic initiating a queue 

write when infact the queue is full) 

 

Although many heuristic rules can be applied, the process of 

identifying these signals is predominantly manual beyond the 

common categories mentioned above. However, this is a onetime 

effort per project and is definitely well spent. Identifying power 

domain boundaries at RTL stage itself can give an idea of the control 

signal networks which need to be tested to ensure they are alive in all 

power modes.  

 

Having identified these signals, various checks must be done to 

ensure they are accessible and alive in all the necessary regions of 

the design, in all power modes of the chip. The simplest check is to 

trace the network of these signals from source to each leaf level cell-

pin in the netlist and ensure that access to that signal is available at 

each cell-pin in all power-modes defined in the power-intent. Even a 

simple ill-connected buffer is sufficient to cause functional issues. If 

missed in static checking, these bugs could be caught in simulations 

if the specific test vector is run where the scenario gets simulated.  

 

Figure 7: Functional bug on queue status indicator 

 

 
 



Signal Polarity 

In addition to the keep-alive checking, all power control signal 

networks must be traced to ensure they reach destination cell pins 

with expected polarity. Two factors should be checked: 

1. Active polarity of the control signal as specified in power-

intent file (e.g. isolation enable signal isolates when high) 

2. Polarity expected at the cell pin (e.g. AND gate isolates 

when isolation enable pin is low). 

 

Taking an example of isolation enable signal for a domain, simply 

ensuring that the signal reaches the isolation cell with the same 

polarity as at the source is not sufficient. An active high isolation 

enable signal (isolates when high) connected to an AND based 

isolation cell (isolates to low when enable low) would cause isolation 

error. The polarity of the enable signal arriving at the cell-pin should 

be validated against the functionality of the cell. The same signal 

connected to an NOR based isolation cell (isolates to low when 

enable high) would give correct functionality. As evident, 

functionality of the isolation cell must also be considered when doing 

the polarity checks.  

 

Figure 8: Polarity validation 

 

Equivalence checks 
 

At this stage, it is strongly advisable to run the equivalence checks 

between the RTL+power-intent and Netlist+power-intent design 

views. Structural and functional checks can ensure each individual 

design view has no low-power bugs, however, only equivalence 

check can guarantee that indeed the original power-intent and 

functional behavior with which RTL verification was done and a 

golden reference was established, has been implemented into the 

post-synthesis netlist. Tools like Formality from Synopsys can do a 

power-aware equivalence and ensure original power intent has not 

been modified in any way by the synthesis step. 

4.3 Post –Layout Static Verification 
 

Post layout design database would contain the power-

routing/connectivity for the design. Power-switches, if specified in 

power-intent file, would be instantiated into the netlist. This is the 

final stage of static verification in the design flow and also the most 

accurate. All power intent information has been implemented in the 

design and is available in the design database. MVRC need not rely 

entirely on the power-intent specified by the user. 

 

Input formats 

It is essential to capture the input formats available at this stage of 

the design. In addition to the netlist formats (verilog/vhdl netlists) 

commonly used by static verification tools in pre-layout design flow, 

various physical databases are also available – such as – Milkyway 

library, LEF/DEF, GDS. These databases can help provide more 

information about the power-connectivity of the design as compared 

to a verilog netlist. Static checkers can use that information to add to 

the data extracted from the verilog netlists. Typically static 

verification is done using a PG-netlist, which is a verilog netlist with 

power-ground pin and associated connectivity present in the netlist 

itself. 

Power Connectivity checks 
First check to be done at post-layout stage is to verify the 

power/ground (PG) pin connectivity against the connectivity 

specified in the power-intent file. All power and ground pins for each 

cell in the design should conform to the information captured in the 

power-intent file. Any discrepancy, even if it does not cause a 

functional error, should be highlighted as an error. Entire design 

flow, from RTL to layout phase, has relied on the power-intent file 

for their checks and analyses. This includes any manual 

checks/modifications/reviews done by engineering teams and 

checks/analyses done by any software tools in the flow. A difference, 

even though not necessarily an error as per the rules applied by a 

static verification tool, could break the inputs/assumptions on which 

the earlier steps were based on. Differences in PG pin connectivity 

v/s power-intent file should be reviewed carefully to identify the root 

cause.  

 

Multi-rail checks offer unique challenge as their power/ground pin 

connectivity can’t all be inferred based on instance level power-

domain partitioning. Each power pin can have a unique supply-rail 

connection directive for it in the power-intent file. The power-

connectivity checks must take this into account to avoid incorrect 

analysis. In PSoC designs, with their multiple programmable digital 

and analog blocks instantiated across the design, this was a key 

check to be done to ensure all macros are connected correctly to the 

appropriate supply rails in the design. Different instances of the same 

macro could be connected to completely different supply rail 

networks on the same design, based on the context in which they are 

being used.  

 

Power Switch Networks 
In a post layout netlist, power-switches will have synthesized and 

connected based on the power-intent information and needs driven 

by the physical layout. 

 

Power Switch Network v/s power intent 

A key challenge in PG netlist verification is to map the power-switch 

requirement defined in the power-intent to the power-switch 

architecture implemented in the netlist. Typically power-intent would 

simply indicate a power-switched domain. This requirement will 

almost always be converted into sever power-switches connected in a 

specific pattern (daisy-chain, grid based etc) to achieve the expected 

functional behavior (signal controlled ON/OFF) with correct 

electrical constraints (E.g. IR-drop constraints). Accuracy of power-

switch network verification is tied to how accurately a static 

verification tool can do this power-intent to PG-netlist mapping of 

power-switch topologies.   

 

 

 

 



 

Figure 9: Different power-switch implementations 

 
 

Power Switch Connectivity Check 

Once mapped, all the power-switches for a given power-domain 

must be verified to ensure the appropriate connectivity for at least the 

following ports: 

1. Input and output supply rails (also called primary and 

virtual rails) 

2. Enable signal connectivity and polarity 

a. Power down polarity/functionality of power-

switch cell should be considered here. 

3.  Acknowledge port connectivity, if applicable 

 

Depending on the library being used, there may be other ports on the 

power-switch and associated semantics that may need to be verified.  

 

Structural, functional and equivalence checks 
Structural and functional checks to be done on post-layout netlist are 

same as those done for the post-synthesis netlist. There are no new 

checks that come up at the PG-netlist stage, except that the analysis 

should be based on PG-pin connectivity in the design and not on the 

power-intent file based partitioning. This is especially important if 

power-intent v/s PG-pin connectivity comparison discussed earlier in 

the paper could not be done for any reason. Only the power-modes 

information should be taken from the power-intent file as this is not 

available in the PG-netlist.  

 

Equivalence checks should be done to ensure post-synthesis Netlist 

and power-intent are functionally equivalent to the PG-netlist. 

 

 

4.4  Transistor Checks 
Details of transistor level implementation of a cell can provide 

valuable information to MVRC, which is not available in a verilog 

netlist or a library model. A spice netlist is the preferred way of 

getting this information to the tool.  

 

Transistor checks can mainly improve low-power checks in only 

post-synthesis stages of the design. In doing structural checks at 

post-synthesis and post-layout netlists, a spice netlist can provide 

information on how a cell has been implemented and the kind of 

structures seen at a specific port of the cell. For example, un-buffered 

input of an OFF power-domain would require an isolation cell at that 

input. Moreover, that isolation cell should isolate the signal to a low 

value and not to a high value. Without such an isolation cell, the 

design will have higher inactive state current for the OFF power 

domain and could miss its power targets.  

 

 

Figure 10: Input isolation requirement identified only based on 

transistor checks 

 

This kind of a check is not possible by using only verilog models of 

the cells instantiated in the design – a spice level netlist for all cells 

in the design is a must and can help avoid such bugs and catch them 

as early as post-synthesis stage in the design flow.   



 

Transistor level checks on a design can also help identify any sneak 

leakage paths. These are paths existing between the power and 

ground rails in the design which may be enabled continuously or be 

controlled based on the logic state of the data pins of the cells. The 

leakage paths can be entirely within a cell (intra cell) or can span 

across multiple cells in the design (inter cell).  

 

Again, it is impossible to identify such errors without incorporating 

spice netlist information into the static verification flow.  

 

There are similarly several other checks possible on the design once 

the transistor level spice netlists are available to the static verification 

tools. These checks can help identify design issues early in the 

design flow and in the context of the power-intent of the design. 

These checks are not a replacement to the existing LV/DRC or any 

other spice netlist based verification/validation flows on a design. 

They are only meant to improve the accuracy of existing verilog 

netlist based static verification.  

 

Needless to say, these issues will not be caught by the RTL/Netlist 

simulations of the design and a full spice netlist simulation of a chip 

will prove too costly to the product schedule. A static verification 

methodology which accounts for transistor level information for the 

cells in the design, can significantly improve static verification 

accuracy. 

 

Library checks at RTL 

 

Although spice netlists mainly help in post-synthesis design flow, 

they can also help with the library checks at RTL stage itself. At 

RTL stage, based on the power-intent, the spice netlist of the low-

power cells (isolation, level-shifter, retention, power-switch, always-

on buffer) should be validated to ensure they can perform their 

appropriate functions. E.g. an isolation cell spice netlist can be 

validated to ensure that the data-pin of the cell is not an un-buffered 

input (i.e. does not connect to a pass-transistor).  

 

 

 

 

 

 

 

 

 

Figure 11: Pass transistor at data pin of isolation cell creates 

leakage path – Connection rules must be enforced at chip level 

 
 

The list of these cells can be identified based on the attributes 

populated in the library and spice netlist from the library can be used 

to validate if these cells are indeed the right choice for the design. 

5 Summary 
 In summary, static verification is instrumental at every stage in the 

design flow. At library preparation and power-intent definition stages 

it can help ensure correct and complete power intent and a library 

consistent with that power intent. As parts of the power intent get 

implemented into the design, static checks help validate those 

changes against the original power intent and a goal of functional 

silicon. Equivalence check ensures various versions of the design are 

consistent with the original power-architecture intended and verified.  

 

Static verification helps catch bugs early in the design cycle without 

a need of any test vectors or simulation environment. It acts as a 

persistent check at every stage of the design flow, ensuring no design 

transformation (synthesis, clock-synthesis, layout, manual changes, 

ECO’s etc) modifies the design in a manner which violates the 

original power intent and/or causes an electrical or functional error 

on the design. 

 


