
Static Checking for Correctness of Functional
Coverage Models

Wael Mahmoud

1

Agenda
• Introduction
• Functional coverage closure problems
• Static enhancements of functional coverage models

– Part A: Enhancements of input/output functional coverage
– Part B: Enhancements of design-centric functional coverage

• Results and conclusion

© Accellera Systems Initiative 2

Introduction
• Today’s designs are getting more bigger and more complex (SoC and

ASIC)
• Achieving fully verified SoC is an arduous task.
• Recent industry studies, shows that the average total project time spent

in verification was 57%.
• Number of projects that spent more than 80% of time in verification has

been increased from the past.

© Accellera Systems Initiative 3

Motivation
• The intent of verifying “SoC” is to ensure that the design is an accurate

representation of the specification.
• Functional coverage provides visibility into the verification process.
• Writing a complete, correct, and concise functional coverage models,

that conform design functionality to specs.
• Accelerate functional coverage closure.
• Assist verification teams with techniques to write concise functional

coverage models.

© Accellera Systems Initiative 4

Agenda
• Introduction
• Functional coverage closure problems
• Static enhancements of functional coverage models

– Part A: Enhancements of input/output functional coverage
– Part B: Enhancements of design-centric functional coverage

• Results and conclusion

© Accellera Systems Initiative 5

Functional coverage closure problems

• Functional coverage closure can’t be achieved due
to many problems, like:
1. Problems with input stimuli, like: incomplete,

insufficient, and/or redundant stimuli
2. Incorrect implementation of functional coverage model.
3. Non-optimized forms of functional coverage.

© Accellera Systems Initiative 6

1- Incomplete/redundant input stimuli
• Write more directed tests to cover specific corner

case scenarios.
• Run test cases multiple times with different random

seeds, and hope more interesting scenarios are
covered.

• Alternatively, try out other methodologies (e.g.
intelligent test-bench automation “iTBA” tools)
when applicable.

© Accellera Systems Initiative 7

2- Incorrect implementation of functional coverage
model

• Functional coverage model is contradicting with test-bench’s or design’s
constraints.

• The proposed methodology will shows that there are no possible solutions.

© Accellera Systems Initiative 8

rand logic unsigned [0:3] a;

constraint C {
a inside {[10:15]};

}

cp_a: coverpoint a {
bins b1[] = {[0:9]};

}

No input stimuli
can achieve

coverage closure

3- Non-optimized forms of functional coverage

© Accellera Systems Initiative 9

rand bit [3:0] A;

constraint A_constr {
A < 8;

}
…
covergroup cov;

A_cp: coverpoint A;
endgroup

Input functional coverage

Design-centric functional coverage

Coverage of
A_cp is 50 %

covergroup sm_cvg @(posedge pins.clk);
coverpoint int_state;

endgroup

Coverage of
wait_idle is 0 %

Functional coverage model is not written in an optimized
form (i.e. it is not considering unreachable bins).

Agenda
• Introduction
• Functional coverage closure problems
• Static enhancements of functional coverage models

– Part A: Enhancements of input/output functional coverage
– Part B: Enhancements of design-centric functional coverage

• Results and conclusion

© Accellera Systems Initiative 10

Static enhancements of functional coverage models

© Accellera Systems Initiative 11

This paper proposes a complete framework to
enhance functional coverage models of both

“input/output” and “design-centric”

“Part A”
Intelligent test-bench automation (iTBA)

tool, which internally use constraint solver
technologies, is used to enhance

“input/output” functional coverage model

“Part B”
Formal-based coverage analysis tool, which
internally use formal-based analysis, is used

to enhance “design-centric” functional
coverage model

Intelligent test-bench automation (iTBA) tools

• iTBA tools achieves input coverage 10-100x faster than random
stimulus.

• More than 100x productive than directed test
– It provides an efficient description of stimulus scenarios
– It reduces time spent in writing testbenches

• Mote than 10X efficient than constrained random tests
– No redundant tests
– It helps to find tough corner case bugs easier and earlier

• This paper is using iTBA tool to enhance input/output
functional coverage models.

© Accellera Systems Initiative 12

CRT
DT

iTBA

Project Timeline

Fu
nc

tio
na

l C
ov

er
ag

e

Less Time

Mo
re

 C
ov

er
ag

e

Part A: Enhancements of input/output functional
coverage (1/3)

© Accellera Systems Initiative 13

Import the test-bench into
Questa inFact

Questa inFact automatically extracts test-bench’s
variables, constraints of stimulus class and
functional coverage model

Internally solving all variables contributing in
functional coverage item against the test-
bench’s constraint

Generate an enhanced
functional coverage model

Part A: Enhancements of input/output functional
coverage (2/3)

© Accellera Systems Initiative 14

A_cp : coverpoint A {
option.weight = 8;
bins cfg_item_inst_A[] = {[64'd0:64'd7]};
}

rand bit [3:0] A;
constraint A_constr {

A < 8;
}
covergroup cov;

A_cp: coverpoint A;
endgroup

Original F.C. Enhanced F.C.

Part A: Enhancements of input/output functional coverage (3/3)

© Accellera Systems Initiative 15

rand logic unsigned [0:3] A, B;
constraint add_constr {

A + B >= 0;
A + B <= 10;

}
…
covergroup cov;
A_cp: coverpoint A;
B_cp: coverpoint B;
cr1: cross A_cp, B_cp;
endgroup

Original F.C.

Enhanced F.C.

Agenda
• Introduction
• Functional coverage closure problems
• Static enhancements of functional coverage models

– Part A: Enhancements of input/output functional coverage
– Part B: Enhancements of design-centric functional coverage

• Results and conclusion

© Accellera Systems Initiative 16

Manual coverage closure (design-centric)

© Accellera Systems Initiative 17

 Coverage verification is to verify that coverage goal is achieved in simulation
 Testing all possible scenarios and states are generally so hard
 Coverage holes indicate:

 Some blocks, states and transactions in the design are unreachable
 Some coverage items are reachable with complex test scenarios

 Huge effort and time are consumed to determine unreachable code and to create
complex tests

Manual Coverage Closure challenges

Coverage closure using formal-based analysis
(design-centric)

© Accellera Systems Initiative 18

 Save time that would been spent for manually analyzing coverage holes
 CoverCheck provides an automatic solutions for the Coverage Closure challenges

 Automatically exclude coverage items for unreachable code
 Automatically generate Witness waveforms for reachable code

 Customers can easily improve the code and the tests for better coverage metrics

Formal-based analysis tool for automatic Coverage Closure

Part B: Enhancements of design-centric functional
coverage

© Accellera Systems Initiative 19

Run Questa CoverCheck on DUT
and pass the UCDB generated

from a simulation run

Questa CoverCheck automatically analyzes DUT
for formal/static reachability using formal-based
analysis

Exclusions file is generated with unreachable
functional coverage bins, which is applied to
simulation UCDB to exclude unreachable functional
coverage

Agenda
• Introduction
• Functional coverage closure problems
• Static enhancements of functional coverage models

– Part A: Enhancements of input/output functional coverage
– Part B: Enhancements of design-centric functional coverage

• Results and conclusion

© Accellera Systems Initiative 20

Results

© Accellera Systems Initiative 21

Coverage item
name

Type Coverage results
without new

approach

Coverage results
with new
approach

up_cvg::upcov
_data

Cover-
point

0.7% 100%

up_cvg::upcov
_sync

Cover-
point

40% 100%

up_cvg::up_d
elay

Cover-
point

95% 100%

Coverage item name Type Coverage results
without new

approach

Coverage
results with

new approach

sm_cvg::int_state Cover-
point

92.3% 96%

sm_cvg::in_hsXint_state Cross 46.1% 92.3%

sm_cvg::out_hsXint_state Cross 46.1% 100%

Coverage item
name

Type Coverage results
without new

approach

Coverage
results with

new approach
ethmac_rxtx_seq_c
g::tx_size

Cover-
point

85.9% 92%

ethmac_rxtx_seq_c
g::rx_size

Cover-
point

84.4% 84.6%

ethmac_rxtx_seq_c
g::rx_tx_size

Cross 2.9% 3.1%

Coverage item name Type Coverage
results without
new approach

Coverage
results with

new
approach

HASH0_1_Cvg::BYTE2 Cover-point 0.7% 100%
HASH0_1_Cvg::BYTE3 Cover-point 0.7% 100%
HASH0_1_Cvg::BYTE4 Cover-point 0.7% 100%
HASH0_1_Cvg::BYTE5 Cover-point 0.7% 100%
EthRw_Cvg::wrXaddrXdata Cross 25% 25%

Input/Output F.C. Design-Centric F.C.

In
te

rle
av

er
De

sig
n

Et
he

rn
et

 D
es

ig
n

Functional coverage development become easier

• Automatically exclude unreachable coverage bins, and provide concise forms of F.C.,
which leverage coverage results

Testbench constraints

• Automatically exclude unreachable bins, which leads to improve DUT for better
coverage metrics

Design conditions

• Constraints and original functional coverage conflict can be easily detected

Detect conflicts

• Manual writing of exclusion bins is a common source of mistakes

Minimize manual mistakes

© Accellera Systems Initiative 22

Conclusion
• Writing complete, correct, and concise functional coverage models to

verify the correctness of SoC is a challenging task.
• The proposed methodology uses constraint solvers and formal-based

analysis to enhance functional coverage models.
• The proposed methodology is helpful in writing correct and concise

functional coverage models.
• The proposed methodology helps verification engineer to start writing

functional coverage models, or re-calibrate existing coverage metrics.
• Proposed methodology saves effort and time to determine unreachable

code or coverage bins.

© Accellera Systems Initiative 23

Thank You!

Any questions?

© Accellera Systems Initiative 24

	Static Checking for Correctness of Functional Coverage Models
	Agenda
	Introduction
	Motivation
	Agenda
	Functional coverage closure problems
	1- Incomplete/redundant input stimuli
	2- Incorrect implementation of functional coverage model
	3- Non-optimized forms of functional coverage
	Agenda
	Static enhancements of functional coverage models�
	Intelligent test-bench automation (iTBA) tools
	Part A: Enhancements of input/output functional coverage (1/3)
	Part A: Enhancements of input/output functional coverage (2/3)
	Part A: Enhancements of input/output functional coverage (3/3)
	Agenda
	Manual coverage closure (design-centric)
	Coverage closure using formal-based analysis�(design-centric)
	Part B: Enhancements of design-centric functional coverage
	Agenda
	Results
	Functional coverage development become easier
	Conclusion
	Thank You!��Any questions?

