
Static Checking for Correctness of Functional
Coverage Models

Wael Mahmoud

1

Agenda
• Introduction
• Functional coverage closure problems
• Static enhancements of functional coverage models

– Part A: Enhancements of input/output functional coverage
– Part B: Enhancements of design-centric functional coverage

• Results and conclusion

© Accellera Systems Initiative 2

Introduction
• Today’s designs are getting more bigger and more complex (SoC and

ASIC)
• Achieving fully verified SoC is an arduous task.
• Recent industry studies, shows that the average total project time spent

in verification was 57%.
• Number of projects that spent more than 80% of time in verification has

been increased from the past.

© Accellera Systems Initiative 3

Motivation
• The intent of verifying “SoC” is to ensure that the design is an accurate

representation of the specification.
• Functional coverage provides visibility into the verification process.
• Writing a complete, correct, and concise functional coverage models,

that conform design functionality to specs.
• Accelerate functional coverage closure.
• Assist verification teams with techniques to write concise functional

coverage models.

© Accellera Systems Initiative 4

Agenda
• Introduction
• Functional coverage closure problems
• Static enhancements of functional coverage models

– Part A: Enhancements of input/output functional coverage
– Part B: Enhancements of design-centric functional coverage

• Results and conclusion

© Accellera Systems Initiative 5

Functional coverage closure problems

• Functional coverage closure can’t be achieved due
to many problems, like:
1. Problems with input stimuli, like: incomplete,

insufficient, and/or redundant stimuli
2. Incorrect implementation of functional coverage model.
3. Non-optimized forms of functional coverage.

© Accellera Systems Initiative 6

1- Incomplete/redundant input stimuli
• Write more directed tests to cover specific corner

case scenarios.
• Run test cases multiple times with different random

seeds, and hope more interesting scenarios are
covered.

• Alternatively, try out other methodologies (e.g.
intelligent test-bench automation “iTBA” tools)
when applicable.

© Accellera Systems Initiative 7

2- Incorrect implementation of functional coverage
model

• Functional coverage model is contradicting with test-bench’s or design’s
constraints.

• The proposed methodology will shows that there are no possible solutions.

© Accellera Systems Initiative 8

rand logic unsigned [0:3] a;

constraint C {
a inside {[10:15]};

}

cp_a: coverpoint a {
bins b1[] = {[0:9]};

}

No input stimuli
can achieve

coverage closure

3- Non-optimized forms of functional coverage

© Accellera Systems Initiative 9

rand bit [3:0] A;

constraint A_constr {
A < 8;

}
…
covergroup cov;

A_cp: coverpoint A;
endgroup

Input functional coverage

Design-centric functional coverage

Coverage of
A_cp is 50 %

covergroup sm_cvg @(posedge pins.clk);
coverpoint int_state;

endgroup

Coverage of
wait_idle is 0 %

Functional coverage model is not written in an optimized
form (i.e. it is not considering unreachable bins).

Agenda
• Introduction
• Functional coverage closure problems
• Static enhancements of functional coverage models

– Part A: Enhancements of input/output functional coverage
– Part B: Enhancements of design-centric functional coverage

• Results and conclusion

© Accellera Systems Initiative 10

Static enhancements of functional coverage models

© Accellera Systems Initiative 11

This paper proposes a complete framework to
enhance functional coverage models of both

“input/output” and “design-centric”

“Part A”
Intelligent test-bench automation (iTBA)

tool, which internally use constraint solver
technologies, is used to enhance

“input/output” functional coverage model

“Part B”
Formal-based coverage analysis tool, which
internally use formal-based analysis, is used

to enhance “design-centric” functional
coverage model

Intelligent test-bench automation (iTBA) tools

• iTBA tools achieves input coverage 10-100x faster than random
stimulus.

• More than 100x productive than directed test
– It provides an efficient description of stimulus scenarios
– It reduces time spent in writing testbenches

• Mote than 10X efficient than constrained random tests
– No redundant tests
– It helps to find tough corner case bugs easier and earlier

• This paper is using iTBA tool to enhance input/output
functional coverage models.

© Accellera Systems Initiative 12

CRT
DT

iTBA

Project Timeline

Fu
nc

tio
na

l C
ov

er
ag

e

Less Time

Mo
re

 C
ov

er
ag

e

Part A: Enhancements of input/output functional
coverage (1/3)

© Accellera Systems Initiative 13

Import the test-bench into
Questa inFact

Questa inFact automatically extracts test-bench’s
variables, constraints of stimulus class and
functional coverage model

Internally solving all variables contributing in
functional coverage item against the test-
bench’s constraint

Generate an enhanced
functional coverage model

Part A: Enhancements of input/output functional
coverage (2/3)

© Accellera Systems Initiative 14

A_cp : coverpoint A {
option.weight = 8;
bins cfg_item_inst_A[] = {[64'd0:64'd7]};
}

rand bit [3:0] A;
constraint A_constr {

A < 8;
}
covergroup cov;

A_cp: coverpoint A;
endgroup

Original F.C. Enhanced F.C.

Part A: Enhancements of input/output functional coverage (3/3)

© Accellera Systems Initiative 15

rand logic unsigned [0:3] A, B;
constraint add_constr {

A + B >= 0;
A + B <= 10;

}
…
covergroup cov;
A_cp: coverpoint A;
B_cp: coverpoint B;
cr1: cross A_cp, B_cp;
endgroup

Original F.C.

Enhanced F.C.

Agenda
• Introduction
• Functional coverage closure problems
• Static enhancements of functional coverage models

– Part A: Enhancements of input/output functional coverage
– Part B: Enhancements of design-centric functional coverage

• Results and conclusion

© Accellera Systems Initiative 16

Manual coverage closure (design-centric)

© Accellera Systems Initiative 17

 Coverage verification is to verify that coverage goal is achieved in simulation
 Testing all possible scenarios and states are generally so hard
 Coverage holes indicate:

 Some blocks, states and transactions in the design are unreachable
 Some coverage items are reachable with complex test scenarios

 Huge effort and time are consumed to determine unreachable code and to create
complex tests

Manual Coverage Closure challenges

Coverage closure using formal-based analysis
(design-centric)

© Accellera Systems Initiative 18

 Save time that would been spent for manually analyzing coverage holes
 CoverCheck provides an automatic solutions for the Coverage Closure challenges

 Automatically exclude coverage items for unreachable code
 Automatically generate Witness waveforms for reachable code

 Customers can easily improve the code and the tests for better coverage metrics

Formal-based analysis tool for automatic Coverage Closure

Part B: Enhancements of design-centric functional
coverage

© Accellera Systems Initiative 19

Run Questa CoverCheck on DUT
and pass the UCDB generated

from a simulation run

Questa CoverCheck automatically analyzes DUT
for formal/static reachability using formal-based
analysis

Exclusions file is generated with unreachable
functional coverage bins, which is applied to
simulation UCDB to exclude unreachable functional
coverage

Agenda
• Introduction
• Functional coverage closure problems
• Static enhancements of functional coverage models

– Part A: Enhancements of input/output functional coverage
– Part B: Enhancements of design-centric functional coverage

• Results and conclusion

© Accellera Systems Initiative 20

Results

© Accellera Systems Initiative 21

Coverage item
name

Type Coverage results
without new

approach

Coverage results
with new
approach

up_cvg::upcov
_data

Cover-
point

0.7% 100%

up_cvg::upcov
_sync

Cover-
point

40% 100%

up_cvg::up_d
elay

Cover-
point

95% 100%

Coverage item name Type Coverage results
without new

approach

Coverage
results with

new approach

sm_cvg::int_state Cover-
point

92.3% 96%

sm_cvg::in_hsXint_state Cross 46.1% 92.3%

sm_cvg::out_hsXint_state Cross 46.1% 100%

Coverage item
name

Type Coverage results
without new

approach

Coverage
results with

new approach
ethmac_rxtx_seq_c
g::tx_size

Cover-
point

85.9% 92%

ethmac_rxtx_seq_c
g::rx_size

Cover-
point

84.4% 84.6%

ethmac_rxtx_seq_c
g::rx_tx_size

Cross 2.9% 3.1%

Coverage item name Type Coverage
results without
new approach

Coverage
results with

new
approach

HASH0_1_Cvg::BYTE2 Cover-point 0.7% 100%
HASH0_1_Cvg::BYTE3 Cover-point 0.7% 100%
HASH0_1_Cvg::BYTE4 Cover-point 0.7% 100%
HASH0_1_Cvg::BYTE5 Cover-point 0.7% 100%
EthRw_Cvg::wrXaddrXdata Cross 25% 25%

Input/Output F.C. Design-Centric F.C.

In
te

rle
av

er
De

sig
n

Et
he

rn
et

 D
es

ig
n

Functional coverage development become easier

• Automatically exclude unreachable coverage bins, and provide concise forms of F.C.,
which leverage coverage results

Testbench constraints

• Automatically exclude unreachable bins, which leads to improve DUT for better
coverage metrics

Design conditions

• Constraints and original functional coverage conflict can be easily detected

Detect conflicts

• Manual writing of exclusion bins is a common source of mistakes

Minimize manual mistakes

© Accellera Systems Initiative 22

Conclusion
• Writing complete, correct, and concise functional coverage models to

verify the correctness of SoC is a challenging task.
• The proposed methodology uses constraint solvers and formal-based

analysis to enhance functional coverage models.
• The proposed methodology is helpful in writing correct and concise

functional coverage models.
• The proposed methodology helps verification engineer to start writing

functional coverage models, or re-calibrate existing coverage metrics.
• Proposed methodology saves effort and time to determine unreachable

code or coverage bins.

© Accellera Systems Initiative 23

Thank You!

Any questions?

© Accellera Systems Initiative 24

	Static Checking for Correctness of Functional Coverage Models
	Agenda
	Introduction
	Motivation
	Agenda
	Functional coverage closure problems
	1- Incomplete/redundant input stimuli
	2- Incorrect implementation of functional coverage model
	3- Non-optimized forms of functional coverage
	Agenda
	Static enhancements of functional coverage models�
	Intelligent test-bench automation (iTBA) tools
	Part A: Enhancements of input/output functional coverage (1/3)
	Part A: Enhancements of input/output functional coverage (2/3)
	Part A: Enhancements of input/output functional coverage (3/3)
	Agenda
	Manual coverage closure (design-centric)
	Coverage closure using formal-based analysis�(design-centric)
	Part B: Enhancements of design-centric functional coverage
	Agenda
	Results
	Functional coverage development become easier
	Conclusion
	Thank You!��Any questions?

