
Source Control…$100
Regression Script…$500

Good Automated Release Steps…$Priceless

Jeffrey Wren
Paradigm Works

 300 Brickstone Square
 Andover, Ma 01810

 1-978-824-1400
 jeff.wren@paradigm-works.com

ABSTRACT
Release management is critical to the success of every hardware
development environment. However, it is typically the most
overlooked and underestimated task in most development teams. In
this ever increasing complex world of ASIC and FPGA designs, the
ability to manage the changes made by both design and verification
members in a sufficient way is needed where one can quickly
determine faulty RTL, synthesis, schematic, and layout updates. This
paper will address the drawbacks of a typical release flow, and will
put forth a proven 5 step process a design team can implement which
can be then be automated. . It also presents a case study, where a free
open source software tool ReleaseWorks® [3] was successfully used
to automate this 5 step process.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids - Verification
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement – Version Control

General Terms
Reliability, Standardization, Verification.

Keywords
Release Management

1. INTRODUCTION
Release management is critical to the success of every hardware
development environment. However, it is typically the most
overlooked and underestimated task in most development teams. In
this ever increasing complex world of ASIC and FPGA designs, the
ability to manage the changes made by both design and verification
members in a sufficient way is needed where one can quickly
determine faulty RTL, synthesis, schematic, and layout updates.
Often, the solution has been to write out a step by step process (parts
of which are scripted) that one should follow before changes are
committed to the main line of one’s source tree. This formalizing of
the release process is to be commended. However, the fact that it
places the responsibility on the user to follow a manual procedure to
verify changes is faulty. Frequently, the user may overlook a step
and even if all the steps are followed may still make a mistake, e.g.
forgets to check-in a file, or implements an environment variable
which was set to get things to work and is only available in the user’s
local shell. The result is that the HEAD code of the development tree
becomes broken. This can be relatively straightforward to debug in a
small team environment. However, in large and possibly

geographically dispersed teams where the database is changing
rapidly, the ability to determine the broken area and to back out the
changes can be time consuming.

Another issue is the release manager problem. This is where an
engineer is tasked with making sure that all of the changes
committed since a certain time are passing the verification testing.
Again, this is faulty because the release manager has no easy way of
isolating what is wrong and whose changes are the culprit for
causing test failures. Also, this individual is most likely not well
versed on the entire design and who to assign relevant issues to. The
result is that many hours or up to several days can be spent cleaning
up a snapshot release. Following which, the design has changed
significantly and the whole onerous procedure has to begin again.
This paper will address these drawbacks in release management, and
will put forth a proven 5 step process a development team can
implement which can be used to automate the whole release flow.
The 5 steps to be outlined are as follows:

1. Create/Update Workspace
2. Modify Source Code
3. Submit
4. Integrate
5. Publish

A case study is provided detailing how utilizing a free open software
tool, ReleaseWorks® [3], Company X went from a release process of
up to 2 weeks between releases to just hours or at most a day.

2. Release Management Defined
Before continuing it is important that the concept of release
management be defined. Ultimately, release management is the set of
steps taken to guarantee that one’s source code, schematic, layout,
etc, is ready for distribution to the customer. The customer is defined
as another team member, another division within the company, or a
customer in the traditional sense.

3. Design and Verification Release Problems
There are three overall problems that a proper release methodology
addresses, the user problem, the release manager problem, and the
reproducibility problem.

3.1 The User Problem

Typically, users1 want to be about the task of performing their job of
designing the latest feature, writing tests to find bugs, etc. They don’t
want to be bogged down with the steps of performing release
management of their code. However, most release methodologies
place a great burden on the end user to perform a checklist of steps
before they are allowed to commit their code changes to the
repository. A common list of steps is as follows:

1. Creates workspace from Source Control.
2. Makes modifications
3. Runs local tests or regression list to verify changes
4. Update to latest changes on trunk
5. Re-run tests to make sure everything still works
6. Commits changes to source control.

The above steps are wrought with problems. For step 1, how does the
user know that sandbox being generated even works, i.e. compiles
and executes basic tests? Many project teams expect that if the above
steps are followed, all one needs to do is create the sandbox to the
HEAD revision. However, what if the user forgets to commit one of
the files, or in order to get things to work locally, had an
environment variable set? The result is that the HEAD is broken.
Since the user cannot be guaranteed that the HEAD is clean, then he
can spend time trying to debug an issue that is not even related to the
changes that he made.

Step 4 is an attempt to solve the problem of two users submitting
conflicting changes. However, in large teams, there is still a race
condition that another user could commit changes during the time the
first user is performing steps 4, 5, and 6.

The overall result is that the development branch becomes broken,
and it takes time to debug and fix it. During this time, anyone who
updates to the HEAD is also broken. The brokenness can be blatant
such as the case of the testbench no longer compiles, or it can be
subtle, where something functionally changed, and the behavior is
modified where it could be hours before the problem is discerned and
debugged.

3.2 The Release Manager Problem
Unlike the user whose focus is his own changes, the release
manager’s focus is on the entire project. Specifically, making sure
that all changes from the team integrate together to make a
deliverable to the customer. Just like the user, the release manager
also has a checklist of tasks to perform. For example:

1. Determine latest good code.
2. Compile a workspace
3. Run regression suit of tests
4. Interpret results and resolve issues
5. Label the files
6. Notify project team
7. Repeat

In some teams the above list is performed by hand which can be
prone to user mistakes. Often times the release manager will script
several of the steps together to make their life easier. Regardless, the
big issue is with step 4, interpreting the results. If everything passes
then the job is done and the release manager can move on. However,
what if it fails? What set of changes caused the problem? Who is

1 A user is defined as anyone who modifies the source files of the
repository that make up the project. This can be a designer, a
verification engineer, schematic entry tech, etc.

responsible for the fix? Once the problem is found, should it be fixed
and integrated in before moving forward, or should the change be
backed out? What if the fix actually causes a different area of code to
break? In the failing case of step 4, this can be a very time
consuming process of determining the broken code and performing
the fix. It can be iterative, and time consuming depending on how
long the regression is. Also, what if the responsible user is out sick or
on vacation? A more common issue today with distributed teams is
the time zone problem. The release manager and the responsible
code changer can be on opposite sides of the globe. Even for a
simple fix it could be a minimum of 12 hours for the release manager
to communicate the problem to the user and for that individual to
submit a fix. All of this serves to keep the release from being
performed.

While debugging any found issues, people may be committing
changes. These changes could further hamper the release manager.
For example, the release manager traces a problem to file foo.v. He
contacts User A to fix the problem. However, during the time that
User A is fixing the problem User B commits a change to foo.v. This
change is then dependent on several other files. Now, the release
manager has to update to another set of changes, which may cause
other problems.

To address this problem, some teams have “code freezes”. This is a
time where no one is able to commit any changes to the repository
until the release is performed. This actually can hinder development
because it becomes difficult for team members to share changes and
even though it doesn’t stop development, it can slow it down
significantly. This is because users will just do the minimum of what
they can, and then they wait for the code freeze to end before they
start being fully productive again.

3.3 The Reproducibility Problem
As verification methodologies have matured, the use of random test
environments has increased. One of the downsides to this though is
given the same seed value, a change to the source code can change
the results of a test. If this happens, it can make it difficult for a team
to reproduce a bug. One solution is to have the user who found the
bug create a label that marks all of the relevant files. However, this
can be time consuming, and also error prone, because for this to
work everything has to be identical in the user’s workspace as to
what is trying to be regenerated. Basically, the user is performing
many of the steps of a release and has several of the issues
previously mentioned.

4 Five Steps for a Good Release Flow
A proper release flow will take the burden of acceptance testing out
of the hands of the user, make the job for the release managers easier
so that they can work on other project tasks rather than performing
the release steps, and make the development area completely
reproducible at any incremental stage of the design with minimal
effort.

This section will outline 5 steps that can be used by any development
team to construct a professional release flow. In actuality, this flow is
utilized by many software teams. Since much of the hardware world
is done in the software domain, this methodology works very well
[1]. If done properly, the flow can be automated allowing for greater
productivity.

The following steps are the beginning of a specification that one
could use to develop a release management tool. For example
purposes a tool will be defined called release_tool that will be used
to demonstrate how some steps could be implemented.

Figure 1 shows the five steps as a workflow.

4.1 Step 1: Create/Update to Known Working
Label
4.1.1 Create Workspace
The first thing that needs to be done is to have a command that will
create a user’s sandbox/workspace to a known working label. What
is meant by “working” is that at a minimum the workspace that is
generated will allow one to compile and run any tests that are defined
by the acceptance testing (Step 4). The default of the command

should just create the sandbox to the latest released label that was
created in Step 5. For example:

% release_tool create_sandbox sandbox_name

Where:

• release_tool The command line executable

• create_sandbox The subcommand call to the
release_tool that performs the create

• sandbox_name A user argument that defines what the
name of the sandbox should be

Having the tool automatically keep track of the release labels
removes the burden of the user keeping track and trying to figure out
what is the latest good code. For reproducibility purposes, the

Label Submits
that have
passed as

"Integrated"

Create/Update
Workspace to
Latest Release

(Step 1)

User1
Modify
Source
Files

(Step 2)

D1_submit_1
One or more
checked in

sources related
by functional

changes

D1_submit_n

Modify
Source
Files

(Step 2)

Dn_submit_1
One or more
checked in

sources related
by functional

changes

Dn_submit_2

UserN

STAGING
AREA

D1_submit_1
D1_submit_2

.

.

.
Dn_submit_n

Create a new
workspace to

the latest
release.

Retrieve
modified
sources

from staging
area and

overlay them
onto the

workspace

Perform
Accept
Testing

Integrate
(Step 4)

Failing
Submit
Group

Removed
and Email
notification

sent to
relevant
users

Failed

Create a new
workspace to the
latest integrated

release.

Create/Update
Workspace to
Latest Release

(Step 1)

Perform
Full

Regression

Too many tests
failed. Hold off
formal release.

Failed

Label
workspace
with new

release label

Unlock
Integrate
Process.

Send E-mail
notification

announcing new
release

Submit
(Step 3)

Publish
(Step 5)

Passed

SOURCE CONTROL RELEASE PROCESS

Admin
Forced
Release

Back to
Submit and
Integrate to

Fix
Problems

Lock
Integrate

process in
order to

maintain a
clean

release
label

Passed

D1_submit_2

Dn_submit_n

Figure 1: Release Process Steps

command should have an option that allows it to accept any previous
release label.

% release_tool create_sandbox \
 –label PROJ-REL_1_2_3 sandbox_name

4.1.2 Update Workspace
For day to day use, in order that a user doesn’t have to create a new
sandbox every time a new label is generated, a command needs to be
constructed that updates the workspace to the latest released code.
For example, while in the existing sandbox, one could execute:

% release_tool update_sandbox

The default behavior should update the workspace to the latest
release label from Step 5. However, a useful option would be one
that allows one to update to the latest code that has passed the
acceptance testing (Step 4), but has not yet passed the full regression
testing (Step 5).

% release_tool update_sandbox –latest_accepted

4.2 Step 2: Modify Source Code
This is where the user performs the changes to the source code and
then commits the changes to the source control tool. There are two
methodologies that can be utilized. One, everyone works off the
same branch. This is the mainline/trunk approach. Two, each user
works off of their own user branch. The purpose of this paper is not
to delve into this. Some pros and cons for each approach are listed
below:

Mainline/Trunk
Pros:

• Files can be locked so that two users cannot modify the file
at the same time. This can be specifically useful for binary
files.

• Commits cannot be performed until changes made by
another user are rectified. This can help to prevent merge
conflicts.

Cons:
• Two users cannot work on the same file at the same time.

More of an issue with distributed work teams.
• Commits are performed on same branch so that if two

users need to touch the same file for their change group to
pass the Integrate (Step 4) but user one’s changes don’t
work, user two changes can be blocked.

User Branches
Pros:

• Two users can work on the same file at the same time.
• Commits to the user branch do not affect anyone else.

Therefore, commits can be done frequently.

Cons:

• Files cannot be locked. This can be an issue for binary
files.

• More merge conflicts when integration to the trunk is
performed.

4.3 Step 3: Submit Changes
The Submit step is used to collect information on all the files that one has
modified and group them together into a single submission to the release

process. The requirement is that each of the files to be submitted must be
checked into the repository. This is required because Step 4 uses the
source control tool to generate the testing workspace. Depending on one’s
source control tool, the submit information can be a listing of each file and
the relevant version, or it can be a label that contains the specific files that
have changed. This information is then stored in a file in a staging area (A
directory) until the release tool’s acceptance testing (Step 4) is ready to
process them. One should not have to wait for the acceptance testing
process to start or end. One should be able to submit to the flow at any
time.

One of the main purposes of a Submit is to collect all of the files that have
changed and have dependencies on each other. For example, if three files
have changed, and each file’s changes are required in order to pass the
accept list of tests, then one would submit all three files together. Do not
submit each of the files independently. If there is a problem during the
acceptance testing, then each of the individual submits would most likely
fail, even if there was nothing wrong with the changes.

The final consideration before creating the Submit is to query the user for
a release note. It is strongly encouraged that a detailed note describing the
changes be entered. If the changes reflect a feature or bug fix in a change
control system, then the change control reference number should also be
included in the note. This information will travel with the submit group
and will be included in the formal release notes.

4.4 Step 4: Integrate the Submit Groups
The Integrate step really is at the heart of the release flow. It is what keeps
the code base in a known working state. It is used to verify changes that
are submitted by the users. If the changes pass the acceptance list of tests
the submitted group is promoted to the “Integrated” state. The acceptance
testing should be made up of the minimum requirements that the
submitted change groups should pass before being integrated into the
release. This is usually made up of a compile of each of the relevant test
benches and a simple test from each. Once the acceptance testing is
complete, an email can be sent notifying the users that new integrated
changes are available at which point they can perform an update
workspace if they so desire (section 4.1.2). If the changes fail, then the
release tool needs to determine which user’s submitted group caused the
failure. If there is only one Submit then this is easy. If there are multiple
ones, then a process needs to be defined on how to determine the failing
group. For this flow a straightforward binary search algorithm is used
(section 4.4.1) until the failing submit group has been found. Once the
failing submit group is found, it is labeled and an email detailing the
failure and how it can be reproduced can be sent to the users involved.

The reproducibility information is always available because the Integrate
step knows what version of the workspace was in use at the time of the
failure. In order to regenerate the problem, all the user needs to do is
create a new workspace (Step 1) to the label at the time of failure. Then
overlay the submitted change group.

4.4.1 Integrate – Step by Step
This section will go into more detail about each of the steps the
Integrate process should perform in order that it can be automated.
Figure 2 provides a flow diagram of each of the steps that are
performed.
The first thing that the Integrate step does is to check the staging area for
user Submit groups. If there are none, or another Integrate is running then
the Integrate process will exit. This behavior allows one to place the
Integrate step under cron control. That way the command can be kicked
off at any interval that one defines (Typically 5 to 15 minutes) and if
another process is running the exiting prevents process back-ups. If at
least one change group exists in the staging area then the Integrate process

will move the Submit group description files to a backup area. The Submit
groups remain in the backup area until the Integrate step has successfully
verified the changes and created a new source control label representing
the changes. The Submit groups are not removed until everything is
complete so that if there is an interruption in the process or a fatal error
occurs, one can restart the flow.

Once the change group description files from the staging area are copied
into the backup area, the Integrate enters into a loop process until all of the
Submit groups have been processed. The first pass through this loop
operates on all of the Submit groups that were initially found. A source
control workspace is created, or updated if one already exists, to the latest
Integrate label. Then all of the new change groups are overlaid on top. If
one is using user branches, this is a merge operation. If one is using a
mainline approach, the appropriate version of the file is retrieved from the
repository and placed into the sandbox.

Create a new
workarea to the latest

validated release.

Retrieve modified
sources from staging

area and overlay them
onto the workspace

Perform
Accept
Testing

Label Submits that have
passed with new "Integrate"

label

Passed

Integrate Process Flow

Failing Submit
canceled,

removed from
backup area and
email notification
sent to relevant

users

Failed

No Submits Found
OR

Other Integrate/
Release Detected

Poll Staging
Area

(15 Min Intrvl
via Cron)

Submit
Detected

Copy Submit(s) to backup area

No Files Found

Submit Detected

Remove Submit(s) From
Backup Area and email users

that new Integrate label is
available

Half of the Submit
groups removed from

consideration

More Than
1 Submit

Remaining

1 Submit
Remaining

Perform Cleanup
Processes For Submits

that passed

Perform Cleanup
Processes For
Failed Submit

Check Backup Area
For Submit(s)

If using a user branch
methodology, commit the

changes to the development
mainline

Figure 2: Integrate Process Flow With Binary Search

Once the workspace has been brought to the correct state the acceptance
testing is performed. If any process or test fails, then the Integrate is

considered to have failed. If this happens, a check to see how many
change groups were included in this Integrate pass should be done. If
more than one change group is currently loaded then the process deletes
half of the remaining Submit groups from memory.

The Integrate command then repeats the workspace creation and
acceptance testing on the remaining Submit groups until the failing
Submit group is found.—If at any time during this flow a Submit group or
groups pass the acceptance testing, they are promoted to the “Integrated”
state. All of the change groups that were integrated since the last formal
release are labeled with a new source control label, email is distributed
detailing that a new “Integrate” label is available, and the passing Submit
group description files are removed from the backup area so that they are
no longer operated on.—The following steps are performed on the failing
gather group: An email is sent to the users who authored any of the
changes to the files; Any appropriate cleanup processes are performed;
and finally, it is deleted from the backup area so that no further processing
is performed on it.

Finally, after all submit groups have been processed, if any submit groups
passed then any appropriate clean-up processes are performed. The
Integrate process then exits. The next Integrate is activated via the cron or
by hand by the release admin.

Note: It is strongly recommended that the acceptance test suite be
something that can run in an hour or less. This is especially true for large
teams because large teams will have large numbers of Submits and it can
take time to perform the binary search on such a large number. For
example, consider the case of only 3 submit groups, one of which is
failing. In a worst case scenario it can take up to four hours to find the
failing submit group.

4.5 Step 5: Publish
The last step of the flow is the Publish. This is the step where a larger
set of regression tests are performed. The Integrate phase is kicked
off as frequently as needed to process user changes. However, the
Publish step is performed less frequently because in the design world
it can take many hours to execute (Nightly regression) or even days
(Weekend Regression).

This step is more of blessing of the code that has already passed the
integration step. If the Integrate label passes the larger set of testing
then a new label is applied that represents this (See section 5, The
Release Label). If it fails, then no new label is defined, and one is
able to continue the Submit and Integrate steps until the next Publish
is executed.

For larger development efforts it is recommended that the ability to
perform a Publish concurrently with Integrates be established. This
will allow for Integrates to be performed 24/7 which should keep the
queue of Submits from getting backed up.

4.5.1 Publish – Step by Step

This section will detail the steps that should be performed during a
Publish. Figure 3 provides a diagram of the Publish flow.

If in serial mode (Integrates and Publishes are performed serially), the first
thing that Publish does is to make sure that no Integrate is currently
running. If one is then the Publish will go to sleep for 5 minutes and will
then check again. Once the Integrate has completed the Publish will lock
out any other Integrates from occurring until the release process has
completed. During the publication phase users are still able to commit
changes to the repository and submit them to the staging area. If one

configured the Publish to run concurrently with the Integrates then the
Publish will just start regardless if an Integrate process is currently running
or not, and Integrates will continue concurrently throughout the Publish.

Next the Publish will create a new workspace using the latest Integrate
label (It is recommended that one always start with a clean workspace so
that there is nothing left over from a previous Publish run). The Publish
will then execute the full regression testing defined by the project. Once
the testing is complete the test logs are parsed to determine the number of
passing and failing tests. A watermark can be set that thresholds the
number of allowable test failures (This can be convenient during
development so that the release is not prevented even though there are
some failures. As the delivery date gets closer the threshold can be
reduced). If this threshold is reached then the Publish will perform any
defined failure cleanup processes and will exit. The release manager will
then need to determine if the publication should be forced, or if changes
need to be made before continuing with the release.

Perform Full
Regression

Failed

Label all the files in the workarea
with new release label

Passed

Admin Forced
Release

An Integrate is in progress.
Wait 5 minutes and check again

(Serial Mode)

Start

Publish

Create a new workarea to the latest
Integrate release.

Too many tests failed.
Hold off formal release.

Back to Submit and Integrate
to Fix Problems

Lock Integrate process in order to
maintain a clean release label

Send E-mail notification
announcing new release

and exit

Unlock Integrate process

Sync any new Integrates performed in
parallel with the publish, i.e. relabel

using the new publish label as the base.

Perform any customer
packaging processes

Perform any
cleanup

processes

Figure 3: Publish Flow Diagram

Upon successfully passing the test suite, the Publish will label the
workspace with the new release label. Before performing the
labeling, the Integrate process will be locked (Regardless if in
parallel or serial mode) so that the labeling happens in a controlled
manner. Once the labeling is complete the Publish will generate a
release note containing all of the Submit groups in the release, a list
of all the tests with their pass/fail results, and a dump of all the
environment variables. This information is then emailed to those
interested announcing the new release. Finally, the publish releases
the lock file so that the Integrate process can continue.

5 The Release Label
In the release steps outlined, it can be seen that the methodology
utilizes a labeling scheme to communicate to the user’s the version
of the repository that are stable. There is a plethora of labeling
approaches that one can utilize. However, it is important to note, that
a good labeling scheme can contain a great deal of important
information of the state of the code, e.g. When was the label applied,
what level of testing was performed (Integration Testing, Nightly
Regression or Full Regression), what project does the label belong
to, etc. A scheme that lends itself to hardware design is detailed here.

This labeling option provides for distinguishing between a nightly
regression which contains a subset of tests, and a full regression that
contains the full suite of testing. It consists of the following format:

<USER_PREFIX>-[DATE_STAMP]-REL_X_Y_Z

Where:

USER_PREFIX Project/task unique string. It should be made up of
alphanumeric characters separated by “_” characters.
This prefix string should be locked so that only the
release manager can apply it. That way, users cannot
inadvertently change it or create a label that is not
representative of the release. Example, MY_PROJ

DATE_STAMP Contains the date that the last Publish label was
generated (Step 5). It will be of the form
MON_DD_YYYY, where:

• MON Three character month abbreviation

• DD The day of the month

• YYYY The year

REL_X_Y_Z Contains the release number info, where:

• REL Short for Release

• X The Major release number. This will be incremented
by the Release stage (Step 5) when the release type
option MAJOR is specified. Incrementing this value
will zero out the Y and Z values. Typically used to
designate that the full set of regression tests were
run, such as a weekend regression.

• Y The Minor release number. This will be incremented
by the Release stage (Step 5). Incrementing this
value will zero out the Z value. Typically used to
represent that the code base has passed a subset of
the full suite of tests, such as a nightly regression.

• Z The number of gather groups that have been
successfully integrated since the last release. This
number will be incremented by the Integrate stage
(Step 4).

Example 1: Below is an example label followed by a list of information
that we can discern from it.

MY_PROJ-JAN_01_2010-REL_15_3_8

• The MY_PROJ tells one that the label is the official label for
the project, not a generic user one.

• The JAN_01_2010 string represents that the last Publish for
this label occurred on JAN_01_2010

• The 15 represents that the code has passed the full suite of tests
and is typically defined as the current “stable” release.

• The 3 represents that the code has passed 3 nightly regressions
since the last full suite of tests were run.

• The 8 represents that eight Submit groups were successfully
integrated since the last Release.

• Just by reading the above, we know that the last nightly
regression label was MY_PROJ-JAN_01_2010-REL_15_3_0

• The date stamp would be different, but we know from the
above that the last stable release label would have the string
REL_15_0_0. The full label with date stamp would be easily
determined by parsing the label history.

6 A Case Study
A simple case study on the impact of how automating the Integration
and Publish steps of the release can have on a development team is
provided. What is described is an actual case where Company X had
developed a release management system (To keep the name of the
tool confidential it will be called the release process tool, RPT), but it
was incomplete. It solved the reproducibility problem, but it still had
issues regarding the user and the release manager problem.

6.1 The User problem
The RPT was constructed as a wrapper around the source control
tool ClearCase [2]. Each time the user wanted to commit their
changes to the repository, they would have to execute the RPT tool
with the appropriate files. At this point the tool would apply a label
to the version of the files that were committed. This labeling
approach kept others from seeing the changes until the files passed a
regression performed by the release manager. There are two
problems with this approach. One, the users were encouraged to run
testing on the changes, but if the user actually performed the testing
was not enforced. If the testing wasn’t done, this could cause issues
for the release manager when he went to perform the release. Two,
even though this approach kept the new files from being
automatically seen by other users it did not do a good job of
managing changes as change groups. The user could commit one file
or many, but there was no mechanism to tie them functionally
together. This again could cause problems for the release manager
when attempting to determine why a particular release was broken.
This was due to the fact that release manager did not necessarily
know what file dependencies were related.

6.2 The Release Manager Problem
 The RPT tool had functionality to allow the release manager to
control what user commits were to be tested. However, due to the
complexity of the project, the release manager had to have detailed
knowledge of how all of the design pieces fit together. The result
was that the release manager was typically 1 person who was
assigned to the task. If that person was unavailable then the release
was not performed. Also, another issue was the unit level verses
system level. For the unit level, the task of performing the release
was faster because the time to execute the regressions was faster.
However, at the system level, the size of the project made the time to
execute a few tests several hours. This combined with having to
integrate changes from several teams caused the time for
implementing the release to increase.

For example, in the beginning of the paper it was stated that the time
between releases could be up to 2 weeks. This was not caused by the
fact that it actually took 2 weeks to perform, but due to the fact that
the only a qualified individual could perform the release. In the case
of the two weeks, it was a system level task and the release manager
had been away for a week on vacation. Because it was a system level
release, the regressions could take up to 24 hrs to complete. Also, if
an issue was found that needed to be addressed by a unit level, this
could take some time because that unit level team had to go through
its release flow before handing off any changes. By the time the
release manager had debugged the problems, had the appropriate
people make the needed changes, another week had gone by. Granted
this is a worst case scenario, but it should highlight the problem of
being dependent on an individual performing the release by hand.

6.3The Reproducibility Problem
Due to the fact that labels were applied at the time of the commit,
one could pass this label or combination of labels to others in order
to aid in the reproducibility of bugs. This actually worked fairly well.
It worked best, when the user committed all of the files together
representing a single change group.

6.4 The Five Step Solution
After a couple of years of using RPT, it was decided that it was not
an efficient enough solution. Also, more work was being done in a
distributed manner using ClearCase multisite and the RPT would
need to be revamped to handle this. A free open source software tool
called ReleaseWorks® [3] was installed that utilizes the 5 steps
outlined in this paper. Table 1 outlines the improvements.

Table 1: Company X’s RPT tool vs. 5 Step Flow
 RPT 5 Step Flow
Acceptance Testing Burden placed on

user, but not
enforced. Result was
the release manager
would need to
perform debug if
something broke

Burden taken away
from the user.
Changes only
integrated into
release if acceptance
testing passed. The
release manager no
longer needed to
debug inter-
dependencies
between multiple
user changes

Feedback to user if
changes successfully
integrated into
release

Dependent on
release manager:
Typical 1 day, worst
case 1 week

Dependent on time
to perform
acceptance testing
and binary search for
failing Submit. For

Company X this was
a minimum of 2 hrs,
worst case 1 day.

Release manager
time to perform
release

Typical: 0.5 day
Worst Case: 3 days

Automated
Release manager is
free to perform other
tasks

Nightly Regressions Often these would
crash because a user
didn’t properly
submit the needed
changes or due to
incompatibility
between user
changes. A loss of
feedback as to the
state of the project
of 1 day

Automated
acceptance testing
executed throughout
the day guaranteed
that the nightly
regressions would
execute cleanly. This
gave the develop-
ment team consistent
feedback as to the
state of the project

Time between
Publishes

Dependent on
release manager.
Best case, 1 a day.

Automated:
Consistent
incremental Submit
releases based on
acceptance testing,
with daily release
based on nightly
regression and
weekly release based
on full weekend
regression.

7. Conclusion

There are several issues that can make a release flow inefficient, the
user problem, the release manager problem, and the reproducibility
problem. Each have been detailed and discussed. A robust 5 step
methodology has been outlined that can be used by any production
team to solve each of these problems. The case study provided shows
how one company made significant performance improvements by
moving to the automated 5 step flow.

A detailed cost analysis is not provided, but it should be readily seen
from Table 1 that there are vast performance improvements that free
up resources to perform other tasks rather than implementing the
release, both for the user and the release manager. The larger the
team, the greater the cost reward. These improvements to the release
methodology could very well be priceless if they allow a company to
reduce their time to market giving them an edge with competitors.

8. ACKNOWLEDGMENTS
Thank you to the DVCON committee for allowing this topic to be
addressed.
Thanks to Jim Crocker, and Ambar Sarkar, for their valuable input
while writing this paper.

9. REFERENCES
[1] Bays, M.E. Software Release Methodology. Prentice Hall PTR,
Upper Saddle River, 1999.
[2] ClearCase, IBM Rational, http://www.rational.com
[3] ReleaseWorks®, ParadigmWorksTM,
http://releaseworks.sourceforge.net

