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Abstract - IP configurability has continued to be a key 

challenge in IP development and system integration. Increases in 
IP reuse, IP configurability and system complexity within tightly 
bound schedules have compounded the problem of IP 
configurability and system integration for optimal end 
applications.  

We will look at how configurability is modeled in design flows 
and try and understand where our current design flows are 
limited. As well as looking at the standard RTL languages, IP-
XACT will also be included in this.  

This white paper will preset the various types and 
complexities of IP configurability and how these can be managed 
effectively using IP-XACT and other means.  It will also provide 
an overview of what is currently being done in the industry and 
demonstrate different types of configurability solutions.   

This paper will then detail a system integration solution with 
configurable IP. The proposed solution can provide a standard 
mechanism to define conditionality and model configurability 
that can be leveraged across IP providers, IP consumers and 
EDA solution providers.   

 

Keywords—IP configurability; IP Reuse; IP Integration; IP-
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I.  INTRODUCTION 
IP configurability is evolving due to today’s highly 

complex systems and competitive IP market. IP providers have 
to deliver reasonable cost, high quality and highly configurable 
IP to meet various end applications. This poses a unique 
challenge to the IP provider because they need to create and 
deliver IP without knowing how that IP will be integrated and 
configured in the IP consumers system.  The IP needs to be 
highly configurable to suit a wide variety of end applications. 

The SoC revolution that is driving the mobile electronics 
market and enabling the various lifestyle trends, is being 
enabled by the adoption and integration of many complex and 
highly configurable semiconductor IP’s. Where would we be 
without the commercial IP market? Certainly our computing 
devices wouldn’t be so compact, mobile and multifunctional 
and our home devices and appliances certainly wouldn’t be 
controllable from our phones. The adoption and integration of 
commercial IP reduces the cost and time-to-market of SoCs 
while dramatically raising the bar of innovation versus the 
competition.  

The configurability of semiconductor IP continues to be a 
key challenge in IP development and is quickly becoming not 
just a hardware and software design challenge, but also a 
challenge for verification. Verifying all the combinations of IP 
configurations is a very challenging task for not only the IP 
provider, but also the IP consumer. 

Yesterday’s IP configurability challenges comprised of 
offering simple RTL configurability for hardware design using 
ifdef parameters. Although these challenges were not that long 
ago, they seem so distant compared with today’s challenges 
comprising of a high level of intricate configurability on both 
the hardware and software sides.  

As IP adoption and reuse become more mainstream in SoC 
realization, IP configurability is increasingly seen as a key 
challenge in enabling various next generation end applications 
using the same IP. There are many IP configuration challenges.  

• Industry standards do not cover the full scope of IP 
configurability that is needed 

• Parameterization complexity goes well beyond industry 
standards like IP-XACT 

• Configurability is becoming IP specific 

• IP’s are becoming more complex and configurable and can 
have thousands of ports and hundreds of different 
configurations. 

• Detailed documentation is required to describe the IP 
configurability so that the IP consumer can optimally 
configure the IP and integrate into the end application 

• The poor adoption of standards and methodologies for IP 
configurability is making efficient and reusable integration 
more difficult. 

The result is a poor quality IP integration process that has been 
identified as one of the main chip design challenges.  A 
solution is needed that provides a balance between abstraction 
and automation while enabling IP configurability, IP quality, 
and predictable IP integration. 

II. WHAT IS A CONFIGURABLE IP? 
A static or fixed IP is an IP that has static Hardware interface 
and design. There are no configurability options.  The IP 
interface and logic are fixed and not parameterizable. It can be 
used ‘off-the-shelf’ and is not dependent on any other part of 
the system.  An example of static IP would be a simple UART 
interface with no configurability.   A configurable IP is an IP 



that can have different configuration options.  These options 
can be a range of different complexity from simple 
configurable port widths to configurations of different internal 
logic, hardware interface and HW/SW interface.  From an IP 
delivery perspective the configurability options can have a 
dramatic effect on the IP testbench and test environment, 
documentation, software drivers and physical constraints. In 
summary adding configurability to an IP can have a dramatic 
effect on the development complexity of the IP.   
 
 

A. Examples of configurable IP 
One example of configurable IP would be the DMC400 from 
ARM.  As defined in DMC400 r2p1 TRM [2], this system has: 

• A configurable number of ACE-Lite interfaces (1,2 
or 4) 

• A configurable number of memory channels (1 or 2)  

However, each of these interfaces are themselves 
configurable. For instance each ACE-Lite interface has the 
following configuration options: 

• Data bus width (64, 128, 256 bit) 
• Address bus width (32, 40, 64 bit) 
• ID bus width (4-24 bit) 
• Read burst acceptance capability (16, 32, 64) 
• Read hazard acceptance capability (8, 16) 
• Read hazard buffer implementation (RAM or  

synthesized registers) 
• Virtual Network existence (true/false) 

And for each one of the memory interfaces, the following are 
configurable. 

• Read queue depth (16, 32, 64 bursts) 
• Write buffer depth (16, 32, 64 bursts) 
• Write buffer implementation (e.g. RAM, or 

synthesized registers) 
• Number of chip selects (1, 2) 
• DFI data width (32, 64, 128) 
• Maximum DFI burst length (4, 8) 
• Enable or disable memory SECDED (true/false) 

 
Similarly Xilinx provide a PCI express v2.2 as an Integrated 
Block for use with Xilinx Zynq®-7000 All Programmable 
SoC, and 7 series FPGA families.[3] This PCI express IP 
Supports 1-lane, 2-lane, 4-lane, and 8-lane operation.  Other 
configuration options are PCIe Device / Port Type, PCIe block 
location, maximum link speed, AXI interface width and AXI 
interface frequency.   
 
There can be a high-level of interdependency within these 
parameters e.g. A 4-lane configuration with link speed of 2.5 
Gb/s can only support AXI interface width of 64 bits but a 4-
lane configuration of link speed of 5 Gb/S can support 64 or 
128 bits.  Consequently the recommend frequency for the 
former v’s latter is 250 MHz v’s 125 MHz. 

 
From the fixed IP to the highly configurable ones there are 
wide ranges of configurability requirements that need to be 
managed.  
 

III. EVOLUTION OF IP CONFIGURABILITY 
IP configurability has evolved substantially in recent years 
given the growth of the semiconductor IP (SIP) market. The 
evolution of IP configurability spans configurability supported 
by standards and some requiring more advanced techniques. 
IP configurability can affect component ports, interfaces, 
instances, registers etc.  The right approach to IP configuration 
depends on the complexity of the IP that requires 
configuration.  The various types of configurability are:  

• Fixed 
• RTL parameters 
• General parameters 
• Conditionality 
• Generation  

On the low end of complexity lie the fixed and RTL 
parameters types of configurability. On the high end of 
complexity lie the conditionality and generation types of 
configurability. 
 
Fixed type of configurability essentially is a hardened 
configuration fully supported and described in Verilog, 
VHDL, and IP-XACT. IP Configurability utilizing RTL 
parameters offers configuration through IP component 
instantiation and parameter passing (configurable elements). 
These are fully supported in Verilog (parameter), VHDL 
(generic), and IP-XACT (ModelParameter).  IP 
Configurability utilizing general parameters offers a standard 
approach to parameterization using non-RTL parameters. 
These general parameters are described using the Accellera 
IP-XACT standard (IEEE-1685-2009).  IP Configurability 
utilizing conditionality essentially offers conditionality using 
‘define in Verilog, and generate in VHDL.  IP-XACT IEEE-
1685-2009 does not offer support for conditionality although 
native support called ‘Conditionality’ is part of the upcoming 
version of IP-XACT (IEEE-1685-2014).   
 
IP Configurability utilizing generation characteristics offers 
multiple layers of configurability. Multiple layers of 
configurability can be described such as a parameterizable 
number of parameterizable interfaces (e.g. 2 AXI interfaces – 
one has read data size of 32 and the other has read data size of 
64).  The output of this configurability is generated Verilog, 
VHDL or IP-XACT.  This ‘generation’ type truly is the next 
generation of IP configurability.    
 

IV. IP-XACT – THE IP & IP INTERFACE STANDARD 
One of the main standards to emerge to solve the problem of 
IP and IP interface standardization is IP-XACT [7].  IP-XACT 
was developed by the Spirit consortium to enable sharing of 



standard component descriptions from multiple component 
vendors. IP-XACT is a ‘Standard Structure for Packaging, 
Integrating, and Reusing IP within Tool Flows’. Currently 
Accellera manages the definition of this standard (IEEE-1685-
2009). 
 

IP-XACT provides a schema for the definition of IP 
component and design metadata and has a mechanism to 
standardize the view of an IP and its interfaces. Since IP-
XACT defines an XML schema, this is a format that is very 
easy to process and provides significant automation 
enablement. IP-XACT, through interface standardization and 
the ability to make IP more ‘integration-ready’, has the 
potential to achieve 30% improvement in the time and cost of 
SoC integration [6].  

The IP-XACT forms that are standardized include: 
components, systems, bus interfaces and connections, 
abstractions of those buses, and details of the components 
including address maps, register and field descriptions, and file 
set descriptions for use in automating design, verification, 
documentation, and use flows for electronic systems. A set of 
XML schemas of the form described by the World Wide Web 
Consortium (w3c) and a set of semantic consistency rules 
(SCRs) are included. A generator interface that is portable 
across tool environments is provided. The specified 
combination of methodology-independent meta-data and the 
tool-independent mechanism for accessing that data provides 
for portability of design data, design methodologies, and 
environment implementations [7]. 

An IP-XACT design can describe a hierarchical system and 
associated connectivity as described in Fig. 1. 
 

 
Fig. 1. IP-XACT representation of a design 

 
In an IP-XACT design file, component instances reference IP-
XACT component definitions.  Interconnections are 
connections between bus interfaces of systems and 
hierarchical connections are connections between instances 
interfaces and component interfaces.  Ad-hoc connections are 
port-level connections.  
 
The fact that this type of connectivity can be defined in IP-
XACT allows a highly interoperable method of automation. In 
particular, this instance and connectivity information can be 
utilized to: 

 
• Generate a design netlist 
• Provide an address path and associated calculations 
• Provide metadata to streamline verification flows 

 
The next section details how configurability is supported in 
the chip design flow in both RTL and IP-XACT. 
 

V. HOW IS CONFIGURABILITY CURRENTLY MODELED IN 
RTL AND IP-XACT? 

In this next section we will look at how configurability is 
modeled in design flows as well as outlining where our current 
design flows are limited.  

A. Modeling Fixed IP 
Fig. 2 shows an IP with a fixed interface. The data input port 
is a static 32 bits. This It can be used ‘off-the-shelf’ and used 
without additional parameterization. 

 
Fig. 2. Example of an fixed IP interface 

 

B. Modeling Fixed interface but different port widths 
Fig. 3 shows a fixed interface but with a parameterizable port 
width.  This level of configurability can be handled in a 
number of ways natively handled to RTL.  
 

 
Fig. 3. Example IP with fixed interace with parameterizable port width 

 
 
In some cases, this configurability is handled through 
constants values contained in include files or packages.  
Another method is to use parameterization mechanisms such 
as VHDL Generics or Verilog parameters to define this 
configurability. The advantage of parameterization 
mechanisms over the use of constants/packages is that 
parameterization allows the same component to be used 
multiple times in a single design with different sets of 
parameters.  VHDL Generics or Verilog parameters are fully 
supported in IP-XACT (using the modelParameters construct 



found under component/model) and RTL so there is no 
specific design processing required.   IP-XACT doesn’t 
support packages or include files.  

C. Modeling changeable designs  
For designs there are many different levels of complexity but 
their effects can be broken into two main categories: 

 
1) Modeling changes in the HW interface of a component 

Many configuration options for configurable IP will have an 
effect on the hardware interface. In the example of the DMC-
400, we see that there are a configurable number of ACE-Lite 
interfaces and memory channels. This will typically have a 
significant impact on the ports that appear on the IP interface. 
Another example is shown in Fig. 4 where the DMA interface, 
scan interface and an interrupt port are conditional on 
configuration parameters. This characteristic of the existence 
of a port or interface can be defined as conditionality.   

 
Fig. 4. Example IP with fixed interace with parameterizable port width 

 
Port conditionality has different modeling support depending 
on the format.  

• VHDL does not support port conditionality natively 
as ports that are declared in VHDL can’t dynamically 
appear and disappear. 

• While port conditionality is not a native feature of 
Verilog it can be implemented through the use of the 
‘ifdef..’endif  compiler directives. These directives 
can be put around port declarations, port 
input/output/inout declarations and when Verilog is 
compiled the interface can take on the interface 
constraints. 

• Port conditionality is not natively supported in IP-
XACT 

2) Modeling changes within a components design 
In general, if we have to define and constrain the 
configurability of a design we need to be able to have 

conditional instances and connectivity.  The instances 
themselves may be configurable.   
 

• VHDL has some limited support for modeling this 
configurability.  The VHDL generate statement can 
be used around concurrent statements to give a type 
of limited programmability.  A typical use case here 
is to use a generate statement to instantiate an array 
of components.  Inside a VHDL architecture 
however, signal declarations cannot be put inside the 
generate statement. It would be possible to 
parameterize the sizes of signals and the connectivity 
could be indexed within a generate statement. Thus, 
this mechanism could be used from some specific use 
cases.  From the last scenario, conditionality is not 
supported on VHDL ports so overall this is poorly 
supported in VHDL  

• While instance and connectivity conditionality is not 
a native feature of Verilog, like port declarations, it 
can also be implemented through the use of the 
‘ifdef..’endif  compiler directives. These directives 
can be put around Verilog assign statements or 
processes and when Verilog is processed the design 
can take on the intended function. 

• Instance and connectivity conditionality is not 
natively supported in IP-XACT 

3) Modeling changes within a component’s HW/SW 
interface 
While modeling changes within a component’s 
hardware/software interface is similar to the previous scenario, 
there is a use-case that may require configurability of an IP 
interface while black-boxing the design.  While port/interface 
conditionality has been considered, there may be a 
requirement for memory-map configurability, especially when 
using IP-XACT as an IP specification. For example, the actual 
DMC-400 configuration register structure may change 
depending on the configuration settings.  While this could be 
analogous to the HW interface configurability, it can be seen 
as independent. IP-XACT contains register/field descriptions 
and it is possible to have a parameterizable size, reset etc. 
However, it is not possible to parameterize register or bitfield 
offsets or to have register or bitfield existence be conditional.  
Parameterization using IP-XACT can be accomplished using 
IP-XACT model parameters, component parameters or 
register parameters. 
 

VI. LIMITATIONS AND ISSUES WITH CURRENT MODELING 
When analyzing the issues with current modeling it is useful 
to identify the key organizations and roles that utilize IP.   Fig. 
5 shows an IP concept shared across between IP providers, IP 
consumers and the EDA community.  In order to truly 
leverage reusable IP, these three communities and their 



internal teams need an interoperable solution for 
configurability. 

 
Fig. 5. Organizations sharing IP metadata 

Interoperability of IP is enabled when an IP provider can 
provide IP to an IP consumer and utilize standard EDA flows.  
From the analysis described in the previous section the 
following capabilities can be summarized in Fig. 6. 

 
VHDL VERILOG IP-­‐XACT

ü ü ü
Port	
  Widths ü ü ü
Port	
  Existence û ü û
Registers	
  Widths N/A N/A ü
Registers	
  Existence N/A N/A û
Configurable	
  Instances û ü û
Configurable	
  Connections û ü û

Configurable	
  IP	
  Interface

Fixed	
  Interface

Configurable	
  	
  IP	
  design

 
Fig. 6. Example IP with fixed interace with parameterizable port width 

 
Verilog, using the ‘ifdef directive, can be used to model most 
of the RTL configurability.  However for VHDL and IP-
XACT, having a standard way of expressing even basic port 
existence is limited.  For VHDL, a component entity 
corresponding to a configuration would need to be somehow 
generated. Similarly any IP-XACT files that describe the IP 
would also need to be transformed to align it to its RTL 
equivalent.  Is there a way to model conditionality and will 
this result in a next generation IP configurability solution? 
 

VII. SOLUTION #1 – MODELING CONDITIONALITY IN IP-
XACT – IP-XACT++ 

One of the first areas to investigate a solution would be if we 
could somehow extend a standard IP-XACT definition to 
model conditionality.   At its core, the concept is very simple.   
In IP-XACT we could implement basic conditionality using 
the following mechanisms: 

• Define a boolean attribute (e.g. isPresent) on an 
element (such as a port) that can specify if the 
element is present or not  

• This attribute can be an expression that utilizes IP-
XACT parameters and these expressions are resolved 
using standard IP-XACT methods 

• Provide the ability to post-process this IP-XACT file 
to remove any elements that have the isPresent 
attribute set to false.  

The isPresent attribute would need to be stored in an IP-
XACT vendorExtension assigned to the element and to 
differentiate these extensions we will tag this solution as IP-
XACT++. 
 
Fig. 7 shows an example of this process: 

 

 
Fig. 7. Example IP with fixed interace with parameterizable port width 

 
Methods similar to this seem to be becoming more 
commonplace and requirements for such a mechanism have 
been defined for the next version of the IP-XACT standard.  
This will provide the ability to define the following table: 
 

VHDL VERILOG IP-­‐XACT	
  (++)

ü ü ü
Port	
  Widths ü ü ü
Port	
  Existence û ü ü
Registers	
  Widths N/A N/A ü
Registers	
  Existence N/A N/A ü
Configurable	
  Instances û ü ü
Configurable	
  Connections û ü ü

Fixed	
  Interface

Configurable	
  IP	
  Interface

Configurable	
  	
  IP	
  design

 
Fig. 8. Example IP with fixed interace with parameterizable port width 

 
This solution can provide a standard mechanism to define 
basic conditionality that can be leveraged across IP providers, 
IP consumers and EDA solution providers.  This solution 
however has some limitations and nuances and as 
configurability becomes more complex it isn’t very scalable.  

A. isPresent limitations 
For IP-XACT conditionality to work properly, the resulting 
IP-XACT after generation is required to be semantically 
correct.  It is relatively straightforward to add an isPresent 
attribute to a port via a vendorExtension but what happens 
when that port is mapped to a busDefinition/ 
AbstractionDefinition port using a businterface portMap. It 
would mean that the portMap mapping should also be 



removed.  An IP-XACT portMap however does not contain a 
VendorExtension element, so more processing would be 
required. The same constraints could apply to 
adHocConnections and other port dependencies, so as design 
complexity grows, managing this conditionality also grows. 

B. Parameter Dependencies 
While these are some issues with the isPresent, there are other 
concept issues that start to emerge when configurability 
becomes very complex.  In the case of the DMC-400 
discussed earlier, we note that there are two levels of 
parameterizations. There is a parameter to define the number 
of ACE-Lite interfaces and depending on the value of the 
parameter then other parameters need to be configured so 
some parameters themselves may need an isPresent attribute.  
Another nuance is that depending on one parameter there may 
be different configuration parameters required. For example, if 
on a certain IP there were options to have an AHB, AXI or 
ACE-Lite interface then depending on this selection there 
could be different options to configure the required interface.  
An example of the PCI Express IP configuration dependency 
is shown in Fig. 9: 
 

 
Fig. 9. Example IP with fixed interace with parameterizable port width 

 
In this example we see that the choices for setting interface 
frequency is dependent on linkspeed and interface width.  As 
parameter dependency increases this conditionality 
mechanism becomes very unwieldy and isPresent attributes 
are used to manipulate IP-XACT metadata at a low-level. 



VIII. SOLUTION #2 – MODELING CONFIGURABILITY 
From the analysis so far we see that an extended IP-XACT 
solution can solve basic configurability and give a 
standardized IP configuration flow across IP providers, 
consumers etc. For complex configurations we need a 
different solution.  The following are the key requirements 
that need to be addressed. 

• Configuration options need to be defined in easy to 
use format and configuration dependencies need to be 
managed. The use should be able to enter these in a 
GUI or text format. 

• A configuration definition need to be checked to 
make sure that it’s coherent and any errors need to be 
reported to the user.  

• A configuration specification needs to be able to be 
easily rendered into corresponding IP-XACT and 
RTL definitions. 

• As the configuration parameters, validation and 
processing are dependent on the IP itself, there 
should be a very easy user interface available in a 
range of scripting languages. 

• This method should be standardized. 

 

A. Internal IP Providers Solutions 
As IP configurability is now a necessity for rapid integration, 
there are many internal IP teams that adopt their own adhoc 
methods for IP integration.  Configuration parameters can be 
stored in files and processes with different scripting languages 
e.g. Perl, TCL, Ruby or Python. IP-XACT, and RTL. These 
scripts can be very difficult to maintain.  
 
When IP providers deliver third party IP that is highly 
configurable, it usually comes with configuration utilities. An 
example of this is ARM, who provide CoreLink™ AMBA 
Designer that contains a configuration engine that allows rapid 
configuration of ARM AMBA components and automatic 
checks to ensure valid configurations.  
 

B. EDA solutions 
Synopsys provides CoreBuilder that provides graphical or 
command based configuration menus for Synopsys provided 
IP as well as allowing IP providers’ IP. Duolog provides 
Socrates that also provides a graphical and command based 
environment based on IP-XACT as well as the mechanism to 
configure IP using the IP-XACT++ approach defined 
previously.  
 
There are also several IP-XACT design environments 
available although some of them are rigid to the current IP-
XACT version and are limited for describing and managing 
complex configurability. These platforms however can model 

less complex configurable designs and future IP-XACT 
releases (IP-XACT++) will address modeling the more 
complex configurable designs. 
 

C. Other Solutions 
Xilinx provides its Vivado platform to assist with its IP 
customization for FPGA designs. Although not specific to IP-
XACT, it provides an ideal solution for FPGA designers to 
handle configurability for complex FPGA designs.  
 

IX. SOLUTION #3 – IDEAL SOLUTION  

A. Modeling Configurability 
A generic ideal solution is needed that provides a full IP-
XACT design environment, as well as the mechanism to 
configure IP using the IP-XACT++ approach defined 
previously. An ideal solution should have the ability to: 

• Define any structured data model 
• Render command APIs to the model  
• Render it easily into a GUI for visualization 
• Run checks using a scriptable API 
• Generate IP-XACT 
• Generate other formats for HW, SW, DV & 

documentation 
 
For example, a GIC Generic Interrupt Controller specified in 
an XML format could provide a tree-like structure of a 
configuration model as follows: 

• GiC 
o CPU_AXI_ID_Width 
o Description 
o Distributor_AXI_ID_Width 
o Legacy Interrupts Support 
o Library 
o LockableSPIs 
o Name 
o NumberOfCPUs 
o PriorityLevels 
o PrivateInterrupts 

! PrivateInterrupt 
• Registering 
• Sensitivity 

o Private_Peripheral_Interrupts 
o Protocol 
o SecurityDomains 
o SharedInterrupts 
o SharedPeripheralInterrupts 
o SoftwareGenerateInterrupts 
o Vendor 
o Version 

 



 
 
An ideal solution would be able to take this defined XML 
configuration model and render it automatically into a GUI as 
shown in Fig. 10. 
 

 
 
Fig. 10. Example GUI rendoring of a GiC configurable model rendered using 

Eclipse 

A graphical representation of the configuration model of the 
GiC would provide the user with visualization of what can be 
configured and the types of inputs that are potentially 
available and acceptable to the model. Although an ideal 
solution should also allow the user to configure the IP model 
via commands, a GUI rendering enables the user to visualize 
the model and configurations options quickly while potentially 
minimizing human error for configurable data entry. 
 
An ideal solution would also have the capability to develop 
and manage scripted flows to manage data dependencies and 
configuration validation. Complex design configurations 
typically will require several data model configurations and 
may have dependencies between the data model 
configurations themselves. For example, defining a particular 
configuration for the example GiC described above may have 
a dependency impact on other IP in the design. The ability to 
script flows to manage the inter-model dependencies are 
needed to ensure configuration coherency across the overall 
design. These scripted flows could also be leveraged to 
provide configuration warnings and errors that can be directly 
fed back to the GUI or command line for instant feedback. 
This will allow design configuration errors to be flagged and 

managed accordingly earlier in the design flow potentially 
reducing the burden and effort on verification downstream. 
 
The ideal solution should leverage and build upon the current 
IP-XACT standard (IEEE1685-2009) to handle multiple 
configuration models and inter-dependencies. By leveraging 
the IP-XACT standard as the underpin base model for the 
design, a full IP-XACT API can be utilized to allow fast 
creation of IP-XACT metadata. The API is generic as well as 
model agnostic and comes with helper methods to find 
elements and attributes within the configuration model. A full 
IP-XACT SCR checker is also needed to ensure that it adheres 
to the standard (IEEE1685-2009), as well as other utilities for 
register management, connectivity and RTL creation.  
  
 

 

X. SUMMARY 
In summary, the growth of third party IP usage and the lack of 
hardware and hardware/software interface standardization.  In 
order to truly leverage reusable IP, the three communities (IP 
providers, IP consumers and EDA industry) and their internal 
teams need an interoperable solution for configurability.  
There is a way to model conditionality that will result in a next 
generation IP configurability solution.  
 
The key is to model conditionality in a standard like that 
proposed for IP-XACT++ in this paper as well as modeling 
configurability. The ideal solution combines both the 
conditionality proposed for IP-XACT++ and the ability to 
model configurability. The result is next generation IP 
configurability that covers hardware and software design, their 
interfaces, inter-dependencies and associated documentation 
detailing the configurability of the IP. Such a solution should 
satisfy both IP providers and IP consumers. 
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