
Solving Next Generation IP Configurability

David Murray
Duolog Technologies

David.Murray@duolog.com

Simon Rance
Duolog Technologies

Simon.Rance@duolog.com

Abstract - IP configurability has continued to be a key

challenge in IP development and system integration. Increases in
IP reuse, IP configurability and system complexity within tightly
bound schedules have compounded the problem of IP
configurability and system integration for optimal end
applications.

We will look at how configurability is modeled in design flows
and try and understand where our current design flows are
limited. As well as looking at the standard RTL languages, IP-
XACT will also be included in this.

This white paper will preset the various types and
complexities of IP configurability and how these can be managed
effectively using IP-XACT and other means. It will also provide
an overview of what is currently being done in the industry and
demonstrate different types of configurability solutions.

This paper will then detail a system integration solution with
configurable IP. The proposed solution can provide a standard
mechanism to define conditionality and model configurability
that can be leveraged across IP providers, IP consumers and
EDA solution providers.

Keywords—IP configurability; IP Reuse; IP Integration; IP-
XACT

I. INTRODUCTION
IP configurability is evolving due to today’s highly

complex systems and competitive IP market. IP providers have
to deliver reasonable cost, high quality and highly configurable
IP to meet various end applications. This poses a unique
challenge to the IP provider because they need to create and
deliver IP without knowing how that IP will be integrated and
configured in the IP consumers system. The IP needs to be
highly configurable to suit a wide variety of end applications.

The SoC revolution that is driving the mobile electronics
market and enabling the various lifestyle trends, is being
enabled by the adoption and integration of many complex and
highly configurable semiconductor IP’s. Where would we be
without the commercial IP market? Certainly our computing
devices wouldn’t be so compact, mobile and multifunctional
and our home devices and appliances certainly wouldn’t be
controllable from our phones. The adoption and integration of
commercial IP reduces the cost and time-to-market of SoCs
while dramatically raising the bar of innovation versus the
competition.

The configurability of semiconductor IP continues to be a
key challenge in IP development and is quickly becoming not
just a hardware and software design challenge, but also a
challenge for verification. Verifying all the combinations of IP
configurations is a very challenging task for not only the IP
provider, but also the IP consumer.

Yesterday’s IP configurability challenges comprised of
offering simple RTL configurability for hardware design using
ifdef parameters. Although these challenges were not that long
ago, they seem so distant compared with today’s challenges
comprising of a high level of intricate configurability on both
the hardware and software sides.

As IP adoption and reuse become more mainstream in SoC
realization, IP configurability is increasingly seen as a key
challenge in enabling various next generation end applications
using the same IP. There are many IP configuration challenges.

• Industry standards do not cover the full scope of IP
configurability that is needed

• Parameterization complexity goes well beyond industry
standards like IP-XACT

• Configurability is becoming IP specific

• IP’s are becoming more complex and configurable and can
have thousands of ports and hundreds of different
configurations.

• Detailed documentation is required to describe the IP
configurability so that the IP consumer can optimally
configure the IP and integrate into the end application

• The poor adoption of standards and methodologies for IP
configurability is making efficient and reusable integration
more difficult.

The result is a poor quality IP integration process that has been
identified as one of the main chip design challenges. A
solution is needed that provides a balance between abstraction
and automation while enabling IP configurability, IP quality,
and predictable IP integration.

II. WHAT IS A CONFIGURABLE IP?
A static or fixed IP is an IP that has static Hardware interface
and design. There are no configurability options. The IP
interface and logic are fixed and not parameterizable. It can be
used ‘off-the-shelf’ and is not dependent on any other part of
the system. An example of static IP would be a simple UART
interface with no configurability. A configurable IP is an IP

that can have different configuration options. These options
can be a range of different complexity from simple
configurable port widths to configurations of different internal
logic, hardware interface and HW/SW interface. From an IP
delivery perspective the configurability options can have a
dramatic effect on the IP testbench and test environment,
documentation, software drivers and physical constraints. In
summary adding configurability to an IP can have a dramatic
effect on the development complexity of the IP.

A. Examples of configurable IP
One example of configurable IP would be the DMC400 from
ARM. As defined in DMC400 r2p1 TRM [2], this system has:

• A configurable number of ACE-Lite interfaces (1,2
or 4)

• A configurable number of memory channels (1 or 2)

However, each of these interfaces are themselves
configurable. For instance each ACE-Lite interface has the
following configuration options:

• Data bus width (64, 128, 256 bit)
• Address bus width (32, 40, 64 bit)
• ID bus width (4-24 bit)
• Read burst acceptance capability (16, 32, 64)
• Read hazard acceptance capability (8, 16)
• Read hazard buffer implementation (RAM or

synthesized registers)
• Virtual Network existence (true/false)

And for each one of the memory interfaces, the following are
configurable.

• Read queue depth (16, 32, 64 bursts)
• Write buffer depth (16, 32, 64 bursts)
• Write buffer implementation (e.g. RAM, or

synthesized registers)
• Number of chip selects (1, 2)
• DFI data width (32, 64, 128)
• Maximum DFI burst length (4, 8)
• Enable or disable memory SECDED (true/false)

Similarly Xilinx provide a PCI express v2.2 as an Integrated
Block for use with Xilinx Zynq®-7000 All Programmable
SoC, and 7 series FPGA families.[3] This PCI express IP
Supports 1-lane, 2-lane, 4-lane, and 8-lane operation. Other
configuration options are PCIe Device / Port Type, PCIe block
location, maximum link speed, AXI interface width and AXI
interface frequency.

There can be a high-level of interdependency within these
parameters e.g. A 4-lane configuration with link speed of 2.5
Gb/s can only support AXI interface width of 64 bits but a 4-
lane configuration of link speed of 5 Gb/S can support 64 or
128 bits. Consequently the recommend frequency for the
former v’s latter is 250 MHz v’s 125 MHz.

From the fixed IP to the highly configurable ones there are
wide ranges of configurability requirements that need to be
managed.

III. EVOLUTION OF IP CONFIGURABILITY
IP configurability has evolved substantially in recent years
given the growth of the semiconductor IP (SIP) market. The
evolution of IP configurability spans configurability supported
by standards and some requiring more advanced techniques.
IP configurability can affect component ports, interfaces,
instances, registers etc. The right approach to IP configuration
depends on the complexity of the IP that requires
configuration. The various types of configurability are:

• Fixed
• RTL parameters
• General parameters
• Conditionality
• Generation

On the low end of complexity lie the fixed and RTL
parameters types of configurability. On the high end of
complexity lie the conditionality and generation types of
configurability.

Fixed type of configurability essentially is a hardened
configuration fully supported and described in Verilog,
VHDL, and IP-XACT. IP Configurability utilizing RTL
parameters offers configuration through IP component
instantiation and parameter passing (configurable elements).
These are fully supported in Verilog (parameter), VHDL
(generic), and IP-XACT (ModelParameter). IP
Configurability utilizing general parameters offers a standard
approach to parameterization using non-RTL parameters.
These general parameters are described using the Accellera
IP-XACT standard (IEEE-1685-2009). IP Configurability
utilizing conditionality essentially offers conditionality using
‘define in Verilog, and generate in VHDL. IP-XACT IEEE-
1685-2009 does not offer support for conditionality although
native support called ‘Conditionality’ is part of the upcoming
version of IP-XACT (IEEE-1685-2014).

IP Configurability utilizing generation characteristics offers
multiple layers of configurability. Multiple layers of
configurability can be described such as a parameterizable
number of parameterizable interfaces (e.g. 2 AXI interfaces –
one has read data size of 32 and the other has read data size of
64). The output of this configurability is generated Verilog,
VHDL or IP-XACT. This ‘generation’ type truly is the next
generation of IP configurability.

IV. IP-XACT – THE IP & IP INTERFACE STANDARD
One of the main standards to emerge to solve the problem of
IP and IP interface standardization is IP-XACT [7]. IP-XACT
was developed by the Spirit consortium to enable sharing of

standard component descriptions from multiple component
vendors. IP-XACT is a ‘Standard Structure for Packaging,
Integrating, and Reusing IP within Tool Flows’. Currently
Accellera manages the definition of this standard (IEEE-1685-
2009).

IP-XACT provides a schema for the definition of IP
component and design metadata and has a mechanism to
standardize the view of an IP and its interfaces. Since IP-
XACT defines an XML schema, this is a format that is very
easy to process and provides significant automation
enablement. IP-XACT, through interface standardization and
the ability to make IP more ‘integration-ready’, has the
potential to achieve 30% improvement in the time and cost of
SoC integration [6].

The IP-XACT forms that are standardized include:
components, systems, bus interfaces and connections,
abstractions of those buses, and details of the components
including address maps, register and field descriptions, and file
set descriptions for use in automating design, verification,
documentation, and use flows for electronic systems. A set of
XML schemas of the form described by the World Wide Web
Consortium (w3c) and a set of semantic consistency rules
(SCRs) are included. A generator interface that is portable
across tool environments is provided. The specified
combination of methodology-independent meta-data and the
tool-independent mechanism for accessing that data provides
for portability of design data, design methodologies, and
environment implementations [7].

An IP-XACT design can describe a hierarchical system and
associated connectivity as described in Fig. 1.

Fig. 1. IP-XACT representation of a design

In an IP-XACT design file, component instances reference IP-
XACT component definitions. Interconnections are
connections between bus interfaces of systems and
hierarchical connections are connections between instances
interfaces and component interfaces. Ad-hoc connections are
port-level connections.

The fact that this type of connectivity can be defined in IP-
XACT allows a highly interoperable method of automation. In
particular, this instance and connectivity information can be
utilized to:

• Generate a design netlist
• Provide an address path and associated calculations
• Provide metadata to streamline verification flows

The next section details how configurability is supported in
the chip design flow in both RTL and IP-XACT.

V. HOW IS CONFIGURABILITY CURRENTLY MODELED IN
RTL AND IP-XACT?

In this next section we will look at how configurability is
modeled in design flows as well as outlining where our current
design flows are limited.

A. Modeling Fixed IP
Fig. 2 shows an IP with a fixed interface. The data input port
is a static 32 bits. This It can be used ‘off-the-shelf’ and used
without additional parameterization.

Fig. 2. Example of an fixed IP interface

B. Modeling Fixed interface but different port widths
Fig. 3 shows a fixed interface but with a parameterizable port
width. This level of configurability can be handled in a
number of ways natively handled to RTL.

Fig. 3. Example IP with fixed interace with parameterizable port width

In some cases, this configurability is handled through
constants values contained in include files or packages.
Another method is to use parameterization mechanisms such
as VHDL Generics or Verilog parameters to define this
configurability. The advantage of parameterization
mechanisms over the use of constants/packages is that
parameterization allows the same component to be used
multiple times in a single design with different sets of
parameters. VHDL Generics or Verilog parameters are fully
supported in IP-XACT (using the modelParameters construct

found under component/model) and RTL so there is no
specific design processing required. IP-XACT doesn’t
support packages or include files.

C. Modeling changeable designs
For designs there are many different levels of complexity but
their effects can be broken into two main categories:

1) Modeling changes in the HW interface of a component

Many configuration options for configurable IP will have an
effect on the hardware interface. In the example of the DMC-
400, we see that there are a configurable number of ACE-Lite
interfaces and memory channels. This will typically have a
significant impact on the ports that appear on the IP interface.
Another example is shown in Fig. 4 where the DMA interface,
scan interface and an interrupt port are conditional on
configuration parameters. This characteristic of the existence
of a port or interface can be defined as conditionality.

Fig. 4. Example IP with fixed interace with parameterizable port width

Port conditionality has different modeling support depending
on the format.

• VHDL does not support port conditionality natively
as ports that are declared in VHDL can’t dynamically
appear and disappear.

• While port conditionality is not a native feature of
Verilog it can be implemented through the use of the
‘ifdef..’endif compiler directives. These directives
can be put around port declarations, port
input/output/inout declarations and when Verilog is
compiled the interface can take on the interface
constraints.

• Port conditionality is not natively supported in IP-
XACT

2) Modeling changes within a components design
In general, if we have to define and constrain the
configurability of a design we need to be able to have

conditional instances and connectivity. The instances
themselves may be configurable.

• VHDL has some limited support for modeling this
configurability. The VHDL generate statement can
be used around concurrent statements to give a type
of limited programmability. A typical use case here
is to use a generate statement to instantiate an array
of components. Inside a VHDL architecture
however, signal declarations cannot be put inside the
generate statement. It would be possible to
parameterize the sizes of signals and the connectivity
could be indexed within a generate statement. Thus,
this mechanism could be used from some specific use
cases. From the last scenario, conditionality is not
supported on VHDL ports so overall this is poorly
supported in VHDL

• While instance and connectivity conditionality is not
a native feature of Verilog, like port declarations, it
can also be implemented through the use of the
‘ifdef..’endif compiler directives. These directives
can be put around Verilog assign statements or
processes and when Verilog is processed the design
can take on the intended function.

• Instance and connectivity conditionality is not
natively supported in IP-XACT

3) Modeling changes within a component’s HW/SW
interface
While modeling changes within a component’s
hardware/software interface is similar to the previous scenario,
there is a use-case that may require configurability of an IP
interface while black-boxing the design. While port/interface
conditionality has been considered, there may be a
requirement for memory-map configurability, especially when
using IP-XACT as an IP specification. For example, the actual
DMC-400 configuration register structure may change
depending on the configuration settings. While this could be
analogous to the HW interface configurability, it can be seen
as independent. IP-XACT contains register/field descriptions
and it is possible to have a parameterizable size, reset etc.
However, it is not possible to parameterize register or bitfield
offsets or to have register or bitfield existence be conditional.
Parameterization using IP-XACT can be accomplished using
IP-XACT model parameters, component parameters or
register parameters.

VI. LIMITATIONS AND ISSUES WITH CURRENT MODELING
When analyzing the issues with current modeling it is useful
to identify the key organizations and roles that utilize IP. Fig.
5 shows an IP concept shared across between IP providers, IP
consumers and the EDA community. In order to truly
leverage reusable IP, these three communities and their

internal teams need an interoperable solution for
configurability.

Fig. 5. Organizations sharing IP metadata

Interoperability of IP is enabled when an IP provider can
provide IP to an IP consumer and utilize standard EDA flows.
From the analysis described in the previous section the
following capabilities can be summarized in Fig. 6.

VHDL VERILOG IP-­‐XACT

ü ü ü
Port	
 Widths ü ü ü
Port	
 Existence û ü û
Registers	
 Widths N/A N/A ü
Registers	
 Existence N/A N/A û
Configurable	
 Instances û ü û
Configurable	
 Connections û ü û

Configurable	
 IP	
 Interface

Fixed	
 Interface

Configurable	
 	
 IP	
 design

Fig. 6. Example IP with fixed interace with parameterizable port width

Verilog, using the ‘ifdef directive, can be used to model most
of the RTL configurability. However for VHDL and IP-
XACT, having a standard way of expressing even basic port
existence is limited. For VHDL, a component entity
corresponding to a configuration would need to be somehow
generated. Similarly any IP-XACT files that describe the IP
would also need to be transformed to align it to its RTL
equivalent. Is there a way to model conditionality and will
this result in a next generation IP configurability solution?

VII. SOLUTION #1 – MODELING CONDITIONALITY IN IP-
XACT – IP-XACT++

One of the first areas to investigate a solution would be if we
could somehow extend a standard IP-XACT definition to
model conditionality. At its core, the concept is very simple.
In IP-XACT we could implement basic conditionality using
the following mechanisms:

• Define a boolean attribute (e.g. isPresent) on an
element (such as a port) that can specify if the
element is present or not

• This attribute can be an expression that utilizes IP-
XACT parameters and these expressions are resolved
using standard IP-XACT methods

• Provide the ability to post-process this IP-XACT file
to remove any elements that have the isPresent
attribute set to false.

The isPresent attribute would need to be stored in an IP-
XACT vendorExtension assigned to the element and to
differentiate these extensions we will tag this solution as IP-
XACT++.

Fig. 7 shows an example of this process:

Fig. 7. Example IP with fixed interace with parameterizable port width

Methods similar to this seem to be becoming more
commonplace and requirements for such a mechanism have
been defined for the next version of the IP-XACT standard.
This will provide the ability to define the following table:

VHDL VERILOG IP-­‐XACT	
 (++)

ü ü ü
Port	
 Widths ü ü ü
Port	
 Existence û ü ü
Registers	
 Widths N/A N/A ü
Registers	
 Existence N/A N/A ü
Configurable	
 Instances û ü ü
Configurable	
 Connections û ü ü

Fixed	
 Interface

Configurable	
 IP	
 Interface

Configurable	
 	
 IP	
 design

Fig. 8. Example IP with fixed interace with parameterizable port width

This solution can provide a standard mechanism to define
basic conditionality that can be leveraged across IP providers,
IP consumers and EDA solution providers. This solution
however has some limitations and nuances and as
configurability becomes more complex it isn’t very scalable.

A. isPresent limitations
For IP-XACT conditionality to work properly, the resulting
IP-XACT after generation is required to be semantically
correct. It is relatively straightforward to add an isPresent
attribute to a port via a vendorExtension but what happens
when that port is mapped to a busDefinition/
AbstractionDefinition port using a businterface portMap. It
would mean that the portMap mapping should also be

removed. An IP-XACT portMap however does not contain a
VendorExtension element, so more processing would be
required. The same constraints could apply to
adHocConnections and other port dependencies, so as design
complexity grows, managing this conditionality also grows.

B. Parameter Dependencies
While these are some issues with the isPresent, there are other
concept issues that start to emerge when configurability
becomes very complex. In the case of the DMC-400
discussed earlier, we note that there are two levels of
parameterizations. There is a parameter to define the number
of ACE-Lite interfaces and depending on the value of the
parameter then other parameters need to be configured so
some parameters themselves may need an isPresent attribute.
Another nuance is that depending on one parameter there may
be different configuration parameters required. For example, if
on a certain IP there were options to have an AHB, AXI or
ACE-Lite interface then depending on this selection there
could be different options to configure the required interface.
An example of the PCI Express IP configuration dependency
is shown in Fig. 9:

Fig. 9. Example IP with fixed interace with parameterizable port width

In this example we see that the choices for setting interface
frequency is dependent on linkspeed and interface width. As
parameter dependency increases this conditionality
mechanism becomes very unwieldy and isPresent attributes
are used to manipulate IP-XACT metadata at a low-level.

VIII. SOLUTION #2 – MODELING CONFIGURABILITY
From the analysis so far we see that an extended IP-XACT
solution can solve basic configurability and give a
standardized IP configuration flow across IP providers,
consumers etc. For complex configurations we need a
different solution. The following are the key requirements
that need to be addressed.

• Configuration options need to be defined in easy to
use format and configuration dependencies need to be
managed. The use should be able to enter these in a
GUI or text format.

• A configuration definition need to be checked to
make sure that it’s coherent and any errors need to be
reported to the user.

• A configuration specification needs to be able to be
easily rendered into corresponding IP-XACT and
RTL definitions.

• As the configuration parameters, validation and
processing are dependent on the IP itself, there
should be a very easy user interface available in a
range of scripting languages.

• This method should be standardized.

A. Internal IP Providers Solutions
As IP configurability is now a necessity for rapid integration,
there are many internal IP teams that adopt their own adhoc
methods for IP integration. Configuration parameters can be
stored in files and processes with different scripting languages
e.g. Perl, TCL, Ruby or Python. IP-XACT, and RTL. These
scripts can be very difficult to maintain.

When IP providers deliver third party IP that is highly
configurable, it usually comes with configuration utilities. An
example of this is ARM, who provide CoreLink™ AMBA
Designer that contains a configuration engine that allows rapid
configuration of ARM AMBA components and automatic
checks to ensure valid configurations.

B. EDA solutions
Synopsys provides CoreBuilder that provides graphical or
command based configuration menus for Synopsys provided
IP as well as allowing IP providers’ IP. Duolog provides
Socrates that also provides a graphical and command based
environment based on IP-XACT as well as the mechanism to
configure IP using the IP-XACT++ approach defined
previously.

There are also several IP-XACT design environments
available although some of them are rigid to the current IP-
XACT version and are limited for describing and managing
complex configurability. These platforms however can model

less complex configurable designs and future IP-XACT
releases (IP-XACT++) will address modeling the more
complex configurable designs.

C. Other Solutions
Xilinx provides its Vivado platform to assist with its IP
customization for FPGA designs. Although not specific to IP-
XACT, it provides an ideal solution for FPGA designers to
handle configurability for complex FPGA designs.

IX. SOLUTION #3 – IDEAL SOLUTION

A. Modeling Configurability
A generic ideal solution is needed that provides a full IP-
XACT design environment, as well as the mechanism to
configure IP using the IP-XACT++ approach defined
previously. An ideal solution should have the ability to:

• Define any structured data model
• Render command APIs to the model
• Render it easily into a GUI for visualization
• Run checks using a scriptable API
• Generate IP-XACT
• Generate other formats for HW, SW, DV &

documentation

For example, a GIC Generic Interrupt Controller specified in
an XML format could provide a tree-like structure of a
configuration model as follows:

• GiC
o CPU_AXI_ID_Width
o Description
o Distributor_AXI_ID_Width
o Legacy Interrupts Support
o Library
o LockableSPIs
o Name
o NumberOfCPUs
o PriorityLevels
o PrivateInterrupts

! PrivateInterrupt
• Registering
• Sensitivity

o Private_Peripheral_Interrupts
o Protocol
o SecurityDomains
o SharedInterrupts
o SharedPeripheralInterrupts
o SoftwareGenerateInterrupts
o Vendor
o Version

An ideal solution would be able to take this defined XML
configuration model and render it automatically into a GUI as
shown in Fig. 10.

Fig. 10. Example GUI rendoring of a GiC configurable model rendered using

Eclipse

A graphical representation of the configuration model of the
GiC would provide the user with visualization of what can be
configured and the types of inputs that are potentially
available and acceptable to the model. Although an ideal
solution should also allow the user to configure the IP model
via commands, a GUI rendering enables the user to visualize
the model and configurations options quickly while potentially
minimizing human error for configurable data entry.

An ideal solution would also have the capability to develop
and manage scripted flows to manage data dependencies and
configuration validation. Complex design configurations
typically will require several data model configurations and
may have dependencies between the data model
configurations themselves. For example, defining a particular
configuration for the example GiC described above may have
a dependency impact on other IP in the design. The ability to
script flows to manage the inter-model dependencies are
needed to ensure configuration coherency across the overall
design. These scripted flows could also be leveraged to
provide configuration warnings and errors that can be directly
fed back to the GUI or command line for instant feedback.
This will allow design configuration errors to be flagged and

managed accordingly earlier in the design flow potentially
reducing the burden and effort on verification downstream.

The ideal solution should leverage and build upon the current
IP-XACT standard (IEEE1685-2009) to handle multiple
configuration models and inter-dependencies. By leveraging
the IP-XACT standard as the underpin base model for the
design, a full IP-XACT API can be utilized to allow fast
creation of IP-XACT metadata. The API is generic as well as
model agnostic and comes with helper methods to find
elements and attributes within the configuration model. A full
IP-XACT SCR checker is also needed to ensure that it adheres
to the standard (IEEE1685-2009), as well as other utilities for
register management, connectivity and RTL creation.

X. SUMMARY
In summary, the growth of third party IP usage and the lack of
hardware and hardware/software interface standardization. In
order to truly leverage reusable IP, the three communities (IP
providers, IP consumers and EDA industry) and their internal
teams need an interoperable solution for configurability.
There is a way to model conditionality that will result in a next
generation IP configurability solution.

The key is to model conditionality in a standard like that
proposed for IP-XACT++ in this paper as well as modeling
configurability. The ideal solution combines both the
conditionality proposed for IP-XACT++ and the ability to
model configurability. The result is next generation IP
configurability that covers hardware and software design, their
interfaces, inter-dependencies and associated documentation
detailing the configurability of the IP. Such a solution should
satisfy both IP providers and IP consumers.

REFERENCES

[1] UART Design: http://www.asic-world.com/code/hdl_models/uart.v
[2] DMC-400 TRM, ARM:

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0466a/
CACDGAJE.html

[3] PCIE Design, Xilinx:
http://www.xilinx.com/support/documentation/ip_documentation/pcie_7
x/v2_2/pg054-7series-pcie.pdf

[4] AMBA Designer : http://www.arm.com/products/system-ip/amba-
design-tools/amba-designer.php

[5] Synopsys Core builder:
http://www.synopsys.com/dw/ipdir.php?ds=core_builder

[6] R. Goering, Cost of IP integration is rising dramatically, 2010:
http://www.cadence.com/Community/blogs/ii/archive/2010/03/29/isqed-keynote-putting-some-numbers-to-cost-aware-design.aspx?postID=43255

[7] IP-XACT Technical Committee :
http://www.accellera.org/activities/committees/ip-xact

