
Soft Constraints in SystemVerilog

Semantics and Challenges

Mark Strickland, Joseph Hanli Zhang

Cisco Systems

{mastrick, jhzhang}@cisco.com

Jason Chen, Dhiraj Goswami, Alex Wakefield

Synopsys Inc.
{jasonc, dhiraj, alexw}@synopsys.com

Abstract—This paper introduces SystemVerilog soft constraints,

describing their syntax and semantics. We then examine how soft

constraints can be applied to verification, how they can be used to

manage constraint complexity and used with VIP. Lastly we

discuss tool requirements including debug features.

Keywords-SystemVerilo g, constraint solver, so ft constraint

I. INTRODUCTION

Constrained random verification is the leading
methodology for verification of chip designs today. As this
methodology has grown in popularity, so has the size and

complexity of the environments used to verify increasingly
complex System-on-Chip (SoC) designs. One of the

challenges facing verification engineers is the number of
constraints present in the verification environment, and how
these constraints are reused between projects or can be

leveraged from existing Verification IP (VIP) components.

The IEEE P1800 (SystemVerilog) [1] standard provides

two mechanisms to modify constraints – (1) overriding by
defining a constraint block with the same name, and (2)

constraint mode control to enable and disable an existing
constraint block.

The IEEE P1647 (e) standard [2] defines soft constraints as

a mechanism to allow constraints to be overridden by other
constraints. A proposal (Mantis 2987 [3]) was recently

approved by the P1800 working group to add soft constrains to
the 2012 revision of the SystemVerilog standard. Later in this

paper we will details the similarities and differences between
e and SystemVerilog soft constraint semantics.

We believe both of these concepts provide complementary

ways of managing constraints in a large verification
environment. This paper will describe the semantics for soft

constraints, discuss methodology for using soft constraints
effectively, and investigate some additional SystemVerilog
specific issues.

II. SOFT CONSTRAINT

A. What Are Soft Constraints?

SystemVerilog and e simulators both use a constraint
solver to create random stimulus. The constraint solver

examines all the active constraints to generate a legal solution

where all constraints are satisfied. Sometimes it would be
desirable to have the constraint solver disregard certain
constraints if (and only if) no solution is possible when they

are included.

This requirement is more pronounced when VIP is used, as

is typical in today's SoC environment. Here the test writer is
often not familiar with all the constraint details of the VIP and

simply wants to override some of the constraints to generate
an error condition or direct the distribution of specific
variables. Soft constraints allow the VIP creator to specify

rules that can be easily overridden by the test writer. In other
words, soft constraints provide more scope for relaxing these

rules.

Soft constraints are the constraints that need to be satisfied

if possible; otherwise, they are disregarded. If no solution is
possible when all the hard and soft constraints are considered,
individual soft constraints are iteratively disregarded based on

a priority scheme (described in section III.A). Soft is applied
to individual constraint expressions, not the entire constraint

block, providing fine grain control for each constraint
expression.

B. Soft Constraint Examples

Figure 1 shows a simple example of a soft constraint being
honored.

Figure 1 – Soft Constraint Honored Example

class A;

 rand int x;

 constraint A1 {

 soft x == 10 ;

 }

endclass

A obj = new ();

obj.randomize() with {x inside {[8:12]}; };

=> Result: solver generates x == 10

There is a soft constraint (x == 10) and a hard constraint (
x inside { [8:12] }). The solver will apply maximum
satisfiability on constraints and since the soft constraint does

not cause a constraint conflict in the presence of the hard
constraint (i.e. 10 is inside the range between 8 and 12), the
soft constraint is honored. The solver generates a value of 10

for the random variable x.

Figure 2 shows a slightly different example with a dropped

soft constraint.

Figure 2 – Soft Constraint Dropped Example

If the constraint expression inside the constraint block
“A::A1” were not declared as soft, the call to randomize

would have failed as there would be no solution that would
satisfy both x == 10 and x inside the range of [5:9]. To
resolve the solver failure, the user would need to introduce

some additional procedural code to turn off the constraint
block “A1” or extend class A to override the constraint block

“A1” with additional constraints. Either way, it makes the test
more complicated.

With the constraint expression (x == 10) declared as a

soft constraint, this soft constraint automatically gets turned
off by the solver because if it were honored, it would have

been in conflict with the hard constraint (x inside { [5:9] }).
The outcome is a simpler test.

III. SOFT CONSTRAINT SEMANTICS

Similar to the soft constraint definition in the e verification

language, SystemVerilog soft constraints are often used to
specify default values and relations that can be disregarded in
the presence of conflicting hard or other soft constraints.

However there is one area where we must extend the
semantics for SystemVerilog. e always uses the file order to
determine priority when multiple soft constraints conflict. This

is not possible in SystemVerilog. While SystemVerilog
requires a limited file order dependency (base class must be
compiled before a derived class), it does allow packages and

units to be compiled in an arbitrary order to a certain extent.
For this reason, SystemVerilog soft constraints must have a
well-defined priority scheme for determining which

constraints are disabled if there are conflicts between two or
more expressions.

A. Soft Constraint Priorities

Soft constraints are assigned priorities and this is an

important concept to understand when and how a soft
constraint is honored or dropped. Obviously, the hard
constraints must always be satisfied. If there are two soft

constraints, SC1 and SC2, and SC2 is a higher priority
constraint than SC1, and if both constraints SC1 and SC2 can
be satisfied, then they will both be honored. Otherwise, if SC2

can be satisfied, SC1 will be dropped. If the presence of SC2
will cause a constraint conflict, SC2 will be dropped and SC1

be honored, if possible. Otherwise both SC1 and SC2 will be
dropped.

Mantis 2987 proposal [3] to SV-EC IEEE 1800 committee
defines the priorities of soft constraints:

- Constraint expressions that appear later in the same

construct (constraint block, class, or struct) have
higher priority.

- Constraint expressions in out-of-body constraint
blocks whose prototypes appear later in the class have
higher priority.

- Constraints in contained objects (rand class handles)
have lower priority than all constraints in the container
object (class or struct).

- Constraints in objects whose handles appear later in
the container object have higher priority

- Constraints in derived classes have higher priority
than all constraints in their super classes

- Constraints within inline constraint blocks have higher

priority than constraints in the class being randomized.
- Latter iterations within a foreach constraint have

higher priority than former iterations

Consider the following example in Figure 3:

class A;

 rand int x;

 constraint A1 {

 soft x == 10 ;

 }

endclass

A obj = new ();

obj.randomize() with {x inside {[5:9]};};

=> Result: solver generates x==5,6,7,8 or 9

Figure 3 – Soft Constraint Priority Example

All constraints in the above example are soft constraints.

The priorities for the soft constraints are as follows:

Highest

 x >= 7 inline constraint
 x inside { [5:8] } Q::d in the container class
 x == 5 N::c (appear later)

 x == 9 N::b, out of body (appear earlier)
 x < 10; M::a (appear later)

 x > 2; M::a (appear earlier)
Lowest

Not all soft constraints above can be satisfied as it is clear
that to satisfy (x >= 7), the highest priority soft constraint in
this example, (x == 5) and (x == 9) constraints could not have

been satisfied. For this reason, these two soft constraints (x
== 5) and (x == 9) are dropped; the other soft constraints are
honored.

The solution for x, considering all the honored soft
constraints, is { [7:8] }.

B. Discarding Soft Constraints

Sometimes a test writer would like to disable or turn off
soft constraints on a variable. This can be accomplished using
the „disable soft‟ construct as shown in Figure 4. The disable

soft construct removes any existing soft constraints on a
variable so new constraints can be applied. This is important
when a soft constraint restricts variable values to a range and

the test level constraints want to expand on this range.

Figure 4 – Disable Soft Example

IV. METHODOLOGY

A. Stimulus Solution Space

Constraints are declarative in nature and specify a set of
equations or rules that the solver will use to generate test
stimulus. It is useful to draw a diagram of the possible

solution space to describe how the VIP creator and test writer
will modify this space for their needs as shown in Figure 5.

Figure 5 – Solution Space

class M;

 rand int x;

 constraint a { soft x > 2; soft x < 10;

}

endclass

class N extends M;

 constraint b;

 constraint c { soft x == 5; }

endclass

constraint N::b { soft x == 9; }

class Q ;

 rand N n;

 constraint d { soft n.x inside {[5:8]};

}

endclass

Q obj = new();

obj.randomize() with { soft n.x >= 7; };

=> Result: solver generates x = 7 or 8

class M;

 rand int x;

 constraint a { soft x > 2; soft x < 10; }

endclass

M obj = new();

obj.randomize() with { x inside {[0:20]};};

=> Result: x == 3...9

// disable soft constraints on ‘x’

obj.randomize() with {

 disable soft x;

 x inside {[0:20]};

};

=> Result: x == 0...20

We have split the diagram into several areas to describe the
test space. (These areas are not part of the SystemVerilog
standard, but are useful to describe soft constraint

methodology.)

a) The entire solution space possible for the random

variables with no constraints present. This is the set of
stimulus that would be created if no restrictions were
placed on the stimulus class being randomized. This

range is often not useful at all, as predictable behavior
from the DUT is not defined. Examples are CPU stimulus

with an infinite loop, corrupt configuration registers or
packets of almost infinite length. This is represented by
the outer box in Figure 5.

b) The VIP code typically contains a set of “exercisable

space” constraints, which define the stimulus where a

predictable response from the DUT is defined. This range
will contain many cases where the stimulus violates the

protocol, yet a well-defined error response is produced.
Using these constraints the testbench will create the legal
and error stimulus that is possible for the protocol.

c) A set of “legal space” constraints will generate valid

stimulus, without any error injection. A default test with

only these constraints would eventually generate all legal
input stimuli.

d) The VIP code also constrains a set of “typical space”

constraints. These will cause the stimulus to be more

useful and coverage for the protocol or the design will be
hit more quickly using these constraints.

e) Variables in the constraint space are often related to other

variables via implication. This is shown in the diagram
by a bidirectional arrow linking the two variable range

spaces.

The test writer typically defines two sets of constraints at

the test-level.

f) Test specific constraints that further restrict the range of
values generated. These are biases or directives for a
specific test to increase the chance of hitting a coverage

point or corner case. These are the typical constrained-
random tests that are part of a level-1 or level-2 test suite.

g) Test specific constraints that change or expand the range
of values generated to some range outside the “typical

space” to hit a corner case. These are typically
constrained-random tests created during the coverage
closure process, where corner cases are targeted by adding

constraints.

B. Comparison of Constraint Modification Mechanisms

The SystemVerilog language provides several mechanisms

for modifying, overriding or disabling constraints. We will
review each of these constructs and then discuss issues with

each in relation to the (f) and (g) requirements above.

i. Inheritance with different constraint block name.

If constraints are specified in the derived class in a constraint
block whose name is different than any constraint block in the
base classes, then the new constraints add to the existing

constraint set and all are solved when the class is randomized,
as shown in the long_packet class in Figure 6.

ii. Inheritance with the same constraint block name.

If the constraint block name in the derived class is the same as

a block name in a base class, then the constraints in the base
block are replaced by those in the derived, as shown in the
error_packet class in Figure 6. To use this strategy to

accomplish overriding, one must know the name of the
original constraint block, and that original block must not

contain other constraints that are not intended to be
overridden.

Figure 6 – Parent/Child Class Constraints

iii. Procedural calls to constraint_mode()

As constraint blocks are named in SystemVerilog, each block

can be enabled or disabled using procedural code. The test
writer can simply disable any constraint block explicitly in the

test, as shown in Figure 7. To use this strategy, one must
know the name of the original constraint block and that the
original block must not contain other constraints that are not

intended to be overridden, and because constraint_mode() is
set on an instance, it must be repeated for all instances where
the override is required.

class packet;

 rand bit [15:0] len;

 constraint valid_len {

 len inside {[0:1500]};

 }

endclass

class long_packet extends packet;

 constraint long_len {

 len > 1000; // used with valid_len

 }

endclass;

class error_packet extends packet;

 constraint valid_len { //overrides

 len inside {[1501:1600]};

 }

endclass

Figure 7 – constraint_mode()

iv. Dist to approximate soft constraints.

A distribution constraint with extreme bias will be honored
if possible yet will not cause a conflict even if as few as one of
the distribution alternatives overlaps with other constraints. If

the desired typical space is given a very large weight and the
exercisable space is given a very small weight, then the test

writer can in effect override the constraint specified as dist
without disabling or re-defining the constraint block, as shown
in Figure 8. There is, of course, a small chance that the typical

space would not be chosen.

Figure 8 – dist Approximating Soft Constraint Example

To satisfy the requirements for the test to further res trict

range (f), the inheritance with a differently named constraint
block can be used. This simply adds additional constraints
and further restricts the solution space.

The requirements for (g) are quite different – here we want

to disable one or more VIP constraints to allow the test

constraints to define the space. We are effectively enlarging
the space in some area above and beyond what was specified
as typical by the VIP developer.

There are several problems with the existing solutions:

a) The user must determine which constraints need to be
overridden or disabled, which is often not easy to

calculate or intuitive to code. In many cases the
constraints dropped will depend on state variables so
cannot be calculated statically and coded into the test.

b) The user must know the name of the constraint block

in order to override it or disable it. That puts a

burden on documentation, especially if the block is in
encrypted code.

c) If a constraint block is overridden or disabled to

remove a particular constraint, any other constraints

in that block need to be re-specified. This suggests a
methodology of always putting constraints in their
own block if they are known to be subject to being

disabled. Such a methodology can be hard to enforce
and maintain (a later decision that a constraint should

be possible to disable means blocks would be
subsequently partitioned).

d) For the override or disable solutions, even though the

original intent may have been to allow the test to not
use the constraint, the test still has to write extra code

to make that happen.

e) If a conflicting constraint is presented in the “with”

clause of a randomize call, there is no derived class
within which to apply the override.

f) The solution of using a skewed dist constraint can fail

with a finite probability. Distribution issues can arise

if a second dist is specified (e.g. in the test) for the
same variable. The constraint solver will determine
some dist variables to relax, however there is no

control over the priority and no way to specify which
dist variables should be relaxed in the test.

C. Soft Constraint Methodology/Solution

Soft constraints solve all of the issues listed above when a

test writer needs to expand the solution space.

Soft constraints that do not conflict are simply additive,

and follow the same rules are regular constraints, satisfying

requirement (f).

class packet;

 rand bit [15:0] len;

 constraint valid_len {

 len dist {[0:1500] := 10000,

 [0:1600] := 1};

 };

endclass

packet pkt = new();

pkt.randomize();

=> Results: len very likely in 0:1500

// overlapping range

pkt.randomize() with {

 len inside {[1400:1600]};

};

=> Results: len very likely in 1400:1500

// conflict range

pkt.randomize() with {

 len inside {[1501:1600]};

};

=> Results: len in 1501:1600

class packet;

 rand bit [15:0] len;

 constraint valid_len {

 len inside {[0:1500]};

 }

endclass

// Test invalid length 1500-1600.

// Disable valid_len cst (0-1500)

// Gen packets with len 1501-1600

pkt.valid_len.constraint_mode(0);

pkt.randomize() with {

 len inside {[1501:1600]};

};

When a soft constraint is present but a conflict occurs, then
the soft constraint may be disabled by a regular (hard)
constraint or another soft constraint with higher importance.

This allows the VIP creator to specify some constraints as

soft, knowing that these may then be disabled by the test

writer using either a hard constraint or another soft constraint
with higher priority.

The VIP creator also knows that the soft constraint will be
disabled only if a conflict occurs, which is determined at

runtime based on the state variables.

No false failures due to a small but finite probability of a

dist choosing a heavily biased value can occur. The
constraints either conflict and are disabled or do not conflict
and remain. Results are predictable and failures do not occur

due to specific seeds being used.

Finally, if a soft-constraint in the VIP must be disabled,
this can be accomplished using the “disable soft” construct.
This causes the soft constraints on a specified variable to be

disabled across all constraint blocks (as was shown in Figure
4).

D. Soft Constraint Examples

The concepts discussed above will now be explained with a set
of simple examples, to illustrate the points in the context of a

verification environment.

Each of the requirements from the VIP and test-writer

needs to be mapped to these language features in a well-
defined manner so the test-writer can understand how the test
will affect the underlying VIP code.

i. Exercisable Space

The exercisable space is the stimulus the DUT will return a
predictable result. This space should be defined using regular

(hard) constraints. These constraints will not be disabled by
the tool unless an explicit call to constraint_mode() is made to
turn them off for some design specific reason.

Soft constraints should not be used for this purpose, as it is too

easy to accidentally override them and cause illegal stimulus
to be injected into the design, wasting considerable time
debugging false failures.

An example is shown in Figure 9 where the packet length is a
16-bit field. We want to inject packets larger than 1500

allowed by the protocol but do not want to inject packets of
very large length that would be slow to simulate or hang the

test.

Figure 9 –Exercisable (Hard) Space Constraints

ii. Legal and Typical Space

The legal and typical space should be defined using a mix
of hard and soft constraints. The soft constraints should be
used for areas where you want the test writer to easily override

the settings to expand the solution space.

Figure 10 – Legal and Typical Space

Figure 11 – Legal Space Constraints

class packet;

 rand bit [15:0] len;

 // Protocol len 0..1500

 // Use 0..1600 for testing

 // of valid + error traffic

 constraint legal_len {

 len inside {[0:1600]};

}

endclass

packet pkt = new();

pkt.randomize();

=> Results: len in 0:1600

class packet;

rand bit [15:0] len;

// Eth protocol has len 0-1500

// DUT timeout at 5000 bytes

// Exercisable 0..6000 bytes

constraint exercisable_len {

 len inside {[0:6000]};

}

endclass

packet pkt = new();

// Test valid/invalid lengths

// Packets with length 1400-1600

pkt.randomize() with {

 len inside {[1400:1600]};

};

=> Results: len in 1400:1600

Figure 12 – Typical Space Constraints

iii. Corner Case Space

To close coverage, additional stimulus values need to be
injected into the DUT to hit specific corner cases. This

usually requires some slight expanding of the typical space as
shown in Figure 13.

Figure 13 – Corner Case Space

Simply adding a constraint with the new extended range

will not work as the solver can find a valid solution in the
intersection of typical and corner space. This is shown in
Figure 14 where the interesting packet length range of 1490-

1510 does not conflict with the typical space constraints in
Figure 12.

Figure 14 – Corner Case Constraints

As the hard constraint to generate packets of length 1490-
1510 does not conflict with the earlier soft constraints nothing
is dropped. The solver can find a solution using all

constraints, and returns length 1490-1500. This may not be
the desired test behavior. Functional coverage provides an
important check that the full range of desired stimulus was

applied.

To generate the error lengths, where the error space

partially overlaps with the previous ranges, we need to remove
the soft constraint. The disable soft function can be used to

perform this action. Calling disable soft on a variable causes
all soft constraints on that variable to be dropped. This allows
the new constraint to now define the required space as shown

in Figure 15.
.

Figure 15 – Overlapping Error Solution Constraints

iv. Implication Constraints

One cannot apply all of the necessary solution space
shaping using the relational and distribution constraints shown

so far. A very important category of constraints is the
implication constraint, which can be implemented with either
the “->” operator or an “if-else” constraint. Let‟s look at how

the concept of soft constraints works in conjunction with
implication constraints.

One permutation is that there is a hard implication
constraint and a soft constraint referencing the same variable.

In this situation, it does not matter whether the variable in
question is in the left or right side of the implication; if the
possible range of the variable after consideration of the

implication constraint allows the soft constraint to be satisfied,
the soft constraint will be considered, and otherwise it will be
ignored. This is illustrated in Figure 16. So any critical

implication constraint applied by the test or by the
environment is certain to be honored, and the typical space

specified by soft constraints will be honored if possible. Be
aware that a reduction in the range of the other variable (not
the soft constrained one) in the implication may be necessary

to find a solution (see the value of y in Figure 16).

class err_packet extends typ_packet;

 // Generate error lengths

 constraint error_len {

 disable soft len;

 len inside {[1490:1510]};

}

endclass

err_packet err_pkt = new();

err_pkt.randomize();

=> Results: len = 1490:1510

class err_packet extends typ_packet;

 // Generate error lengths

 constraint error_len {

 len inside {[1490:1510]};

}

endclass

err_packet err_pkt = new();

err_pkt.randomize();

=> Results: len = 1490:1500

class typ_packet extends packet;

 // Bias towards interesting len

 constraint typical_len {

 soft len dist {

 [1: 5] :/ 30, // short

 [2:1498] :/ 40, // med

 [1495:1500] :/ 30}; // long

}

endclass

typ_packet typ_pkt = new();

typ_pkt.randomize();

=> Results: distribution shown

Figure 16 – Hard Implication Constraints

A variation which is likely less common is that there is an
implication constraint that itself should be considered a soft

constraint. Perhaps a variable x has a typical space only when
another variable y has certain values. In that case, you can
create a constraint of the form “y inside {[…]} -> soft x inside

{[…]}”. Now if the left-hand side expression is true, the
constraint on the right-hand side will be honored if possible.
Unlike the hard implication constraint, if there are other

constraints that make the right-hand side impossible to satisfy,
values can still be chosen that cause the left-hand side to be

true. A soft implication constraint is illustrated in Figure 17.

Figure 17 – Soft Implication Constraints

V. DEBUG

Debugging soft constraints introduces some additional

complexity. Previously all constraints were solved correctly
or a conflict was reported. The conflict could then be
debugged and changes made to the source code.

With soft constraints, some of the constraints may be

dropped due to a conflict, and this can then affect the resulting

distribution or solution set. A tool supporting soft constraints
will need to have a capability to debug this functionality.

The debug functionality must show which constraints are
dropped and which are honored. This can be done in a similar
manner to showing when a constraint block is overridden due

to inheritance. One key difference is that an overridden block
due to inheritance disabled the entire block, while soft

constraints are disabled at the individual equation level.

The tool must report which soft constraints are dropped,

and which other conflicting constraints caused this behavior.
Some graphical way of displaying this information is
preferred.

Finally, it is useful to interactively debug soft constraints

by stopping in the simulator GUI, and then be able to re-
randomize the result with some soft constraints converted into
hard constraints. This allows conflicts to be reported and

show why a soft constraint could not be satisfied.

All of these features should be available with links to

source code, waveforms, class browser, object browser and
local watch panes.

VI. CONCLUSION

The addition of soft constraint to the SystemVerilog
language provides an effective and efficient way to specify

constraints in the VIP layer that can easily be overridden by
the a test writer. The priority of which constraints are dropped
is controlled in a well defined manner and allows the VIP

creator and test writer to determine which items will be
dropped in a predictable way. The software tools can assist
with debug of soft constraints by providing various GUI and

interactive features.

VII. REFERENCES

[1] “ IEEE Standard for SystemVerilog – Unified Hardware Design,
Speci fication and Veri fi cation Language” IEEE Computer Society,
IEEE, New York, NY, IEEE Std 1800-2009

http://standards.ieee.org/findstds/standard/1800-2009.html

[2] “ IEEE Standard for the Functional Veri fi cation Language e” IEEE
Computer Society, IEEE New York, NY. IEEE Std 1647-2008

http://standards.ieee.org/findstds/standard/1647-2008.html

[3] “ Mantis 2987 [proposal to SV-EC IEEE 1800 committee] P1800-2012”,

http://www.eda.org/mantis/file_download.php?file_id=5478&type=bug

class typ2_packet extends packet;

 constraint typical_len {

 x < 2 -> soft len inside {[0:100]};

}

endclass

typ2_packet typ_pkt = new();

typ_pkt.randomize() ;

=> Results: len in 0:100 if x < 2,

otherwise unconstrained

typ_pkt.randomize() with

 {len > 100; x < 2};

=> Results: len > 100 and x < 2, soft

constraint ignored

class tst_packet extends typ_packet;

 constraint x_y_len {

 x < 2 -> len inside {[1490:1510]};

 y < 2 -> len > 1500 ;

}

endclass

tst_packet tst_pkt = new();

tst_pkt.randomize();

=> Results: len in 1490:1500 if x < 2

or len uses distribution from typ_packet

otherwise; y >= 2 (assuming no other

hard constraint on y)

http://standards.ieee.org/findstds/standard/1800-2009.html
http://standards.ieee.org/findstds/standard/1647-2008.html
http://www.eda.org/mantis/file_download.php?file_id=5478&type=bug

