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Abstract—This paper introduces SystemVerilog soft constraints, 

describing their syntax and semantics.  We then examine how soft 

constraints can be applied to verification, how they can be used to 

manage constraint complexity and used with VIP.  Lastly we 

discuss tool requirements including debug features. 
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I.  INTRODUCTION  

Constrained random verification is the leading 
methodology for verification of chip designs today.  As this 
methodology has grown in popularity, so has the size and 

complexity of the environments used to verify increasingly 
complex System-on-Chip (SoC) designs. One of the 

challenges facing verification engineers is the number of 
constraints present in the verification environment, and how 
these constraints are reused between projects or can be 

leveraged from existing Verification IP (VIP) components. 

 
The IEEE P1800 (SystemVerilog) [1] standard provides 

two mechanisms to modify constraints – (1) overriding by 
defining a constraint block with the same name, and (2) 

constraint mode control to enable and disable an existing 
constraint block. 

 
The IEEE P1647 (e) standard [2] defines soft constraints as 

a mechanism to allow constraints to be overridden by other 
constraints.  A proposal (Mantis 2987 [3]) was recently 

approved by the P1800 working group to add soft constrains to 
the 2012 revision of the SystemVerilog standard.  Later in this 

paper we will details the similarities and differences between  
e and SystemVerilog soft constraint semantics. 

 
We believe both of these concepts provide complementary 

ways of managing constraints in a large verification 
environment.  This paper will describe the semantics for soft 

constraints, discuss methodology for using soft constraints 
effectively, and investigate some additional SystemVerilog 
specific issues. 

II. SOFT CONSTRAINT 

A. What Are Soft Constraints? 

SystemVerilog and e simulators both use a constraint 
solver to create random stimulus.  The constraint solver 

examines all the active constraints to generate a legal solution 

where all constraints are satisfied.  Sometimes it would be 
desirable to have the constraint solver disregard certain 
constraints if (and only if) no solution is possible when they 

are included.  

 
This requirement is more pronounced when VIP is used, as 

is typical in today's SoC environment.  Here the test writer is 
often not familiar with all the constraint details of the VIP and 

simply wants to override some of the constraints to generate 
an error condition or direct the distribution of specific 
variables. Soft constraints allow the VIP creator to specify 

rules that can be easily overridden by the test writer.  In other 
words, soft constraints provide more scope for relaxing these 

rules. 

 
Soft constraints are the constraints that need to be satisfied 

if possible; otherwise, they are disregarded.  If no solution is 
possible when all the hard and soft constraints are considered, 
individual soft constraints are iteratively disregarded based on 

a priority scheme (described in section III.A). Soft is applied 
to individual constraint expressions, not the entire constraint 

block, providing fine grain control for each constraint 
expression.   

 

B. Soft Constraint Examples 

 

Figure 1 shows a simple example of a soft constraint being 
honored. 

 
 
 
 
 
 

 
 
 
 
 

Figure 1 – Soft Constraint Honored Example 

class A; 

  rand int x; 

  constraint A1 {  

     soft x == 10 ; 

  } 

endclass 

 

A obj = new (); 

obj.randomize() with {x inside {[8:12]}; }; 

 

=> Result:  solver generates x == 10 

 



There is a soft constraint (x == 10) and a hard constraint ( 
x inside { [8:12] } ).  The solver will apply maximum 
satisfiability on constraints and since the soft constraint does 

not cause a constraint conflict in the presence of the hard 
constraint (i.e. 10 is inside the range between 8 and 12), the 
soft constraint is honored.  The solver generates a value of 10 

for the random variable x. 
 
Figure 2 shows a slightly different example with a dropped 

soft constraint. 

 

 

 

 

 

 

 

Figure 2 – Soft Constraint Dropped Example 

If the constraint expression inside the constraint block 
“A::A1” were not declared as soft, the call to randomize 

would have failed as there would be no solution that would 
satisfy both x == 10 and x inside the range of [5:9].  To 
resolve the solver failure, the user would need to introduce 

some additional procedural code to turn off the constraint 
block “A1” or extend class A to override the constraint block 

“A1” with additional constraints.  Either way, it makes the test 
more complicated. 

 
With the constraint expression ( x == 10 ) declared as a 

soft constraint, this soft constraint automatically gets turned 
off by the solver because if it were honored, it would have 

been in conflict with the hard constraint ( x inside { [5:9] } ).  
The outcome is a simpler test. 

 

III. SOFT CONSTRAINT SEMANTICS 

Similar to the soft constraint definition in the e verification 

language, SystemVerilog soft constraints are often used to 
specify default values and relations that can be disregarded in 
the presence of conflicting hard or other soft constraints.

However there is one area where we must extend the 
semantics for SystemVerilog.  e always uses the file order to 
determine priority when multiple soft constraints conflict. This 

is not possible in SystemVerilog.  While SystemVerilog 
requires a limited file order dependency (base class must be 
compiled before a derived class), it does allow packages and 

units to be compiled in an arbitrary order to a certain extent.  
For this reason, SystemVerilog soft constraints must have a 
well-defined priority scheme for determining which 

constraints are disabled if there are conflicts between two or 
more expressions.  

A. Soft Constraint Priorities 

Soft constraints are assigned priorities and this is an 

important concept to understand when and how a soft 
constraint is honored or dropped.  Obviously, the hard 
constraints must always be satisfied.  If there are two soft 

constraints, SC1 and SC2, and SC2 is a higher priority 
constraint than SC1, and if both constraints SC1 and SC2 can 
be satisfied, then they will both be honored. Otherwise, if SC2 

can be satisfied, SC1 will be dropped. If the presence of SC2 
will cause a constraint conflict, SC2 will be dropped and SC1 

be honored, if possible.  Otherwise both SC1 and SC2 will be 
dropped. 

 

Mantis 2987 proposal [3] to SV-EC IEEE 1800 committee 
defines the priorities of soft constraints: 

- Constraint expressions that appear later in the same 

construct (constraint block, class, or struct) have 
higher priority. 

- Constraint expressions in out-of-body constraint 
blocks whose prototypes appear later in the class have 
higher priority. 

- Constraints in contained objects (rand class handles) 
have lower priority than all constraints in the container 
object (class or struct). 

- Constraints in objects whose handles appear later in 
the container object have higher priority 

- Constraints in derived classes have higher priority 
than all constraints in their super classes 

- Constraints within inline constraint blocks have higher 

priority than constraints in the class being randomized. 
- Latter iterations within a foreach constraint have 

higher priority than former iterations 

 
Consider the following example in Figure 3: 

 

class A; 

  rand int x; 

  constraint A1 {  

     soft x == 10 ; 

  } 

endclass 

 

A obj = new (); 

obj.randomize() with {x inside {[5:9]};}; 

 

=> Result: solver generates x==5,6,7,8 or 9 

 



 

Figure 3 – Soft Constraint Priority Example 

 
All constraints in the above example are soft constraints.  

The priorities for the soft constraints are as follows: 
 

Highest 

 x >= 7  inline constraint 
 x inside { [5:8] } Q::d in the container class 
 x == 5  N::c (appear later) 

 x == 9  N::b, out of body (appear earlier) 
 x < 10;   M::a (appear later) 

 x > 2;  M::a (appear earlier) 
Lowest 
 

Not all soft constraints above can be satisfied as it is clear 
that to satisfy (x >= 7), the highest priority soft constraint in 
this example, (x == 5) and (x == 9) constraints could not have 

been satisfied.  For this reason, these two soft constraints (x 
== 5) and (x == 9) are dropped; the other soft constraints are 
honored.   

The solution for x, considering all the honored soft 
constraints, is { [7:8] }. 

 

B. Discarding Soft Constraints 

Sometimes a test writer would like to disable or turn off 
soft constraints on a variable.  This can be accomplished using 
the „disable soft‟ construct as shown in Figure 4.  The disable 

soft construct removes any existing soft constraints on a 
variable so new constraints can be applied.  This is important 
when a soft constraint restricts variable values to a range and 

the test level constraints want to expand on this range.

 
 
 

 
 
 

 
 
 

 
 

 
 
 

 
 
 

 

Figure 4 – Disable Soft Example 

 

IV. METHODOLOGY 

A. Stimulus Solution  Space 

 

Constraints are declarative in nature and specify a set of 
equations or rules that the solver will use to generate test 
stimulus.  It is useful to draw a diagram of the possible 

solution space to describe how the VIP creator and test writer 
will modify this space for their needs as shown in Figure 5. 

 

 

Figure 5 – Solution Space 

class M; 

  rand int x; 

  constraint a { soft x > 2; soft x < 10; 

} 

endclass 

 

class N extends M; 

  constraint b; 

  constraint c { soft x == 5; } 

endclass 

 

constraint N::b { soft x == 9; } 

 

class Q ; 

  rand N n; 

  constraint d { soft n.x inside {[5:8]}; 

} 

endclass 

 

Q obj = new(); 

obj.randomize() with { soft n.x >= 7; }; 

=> Result: solver generates x = 7 or 8 

 

 

class M; 

  rand int x; 

  constraint a { soft x > 2; soft x < 10; } 

endclass 

 

M obj = new(); 

 

obj.randomize() with { x inside {[0:20]};}; 

=> Result: x == 3...9 

 

// disable soft constraints on ‘x’ 

obj.randomize() with {  

  disable soft x; 

  x inside {[0:20]}; 

}; 

=> Result: x == 0...20 



We have split the diagram into several areas to describe the 
test space.   (These areas are not part of the SystemVerilog 
standard, but are useful to describe soft constraint 

methodology.) 
 
a) The entire solution space possible for the random 

variables with no constraints present.  This is the set of 
stimulus that would be created if no restrictions were 
placed on the stimulus class being randomized.  This 

range is often not useful at all, as predictable behavior 
from the DUT is not defined.  Examples are CPU stimulus 

with an infinite loop, corrupt configuration registers or 
packets of almost infinite length.  This is represented by 
the outer box in Figure 5. 

 
b) The VIP code typically contains a set of “exercisable 

space” constraints, which define the stimulus where a 

predictable response from the DUT is defined.  This range 
will contain many cases where the stimulus violates the 

protocol, yet a well-defined error response is produced.  
Using these constraints the testbench will create the legal 
and error stimulus that is possible for the protocol.   

 
c) A set of “legal space” constraints will generate valid 

stimulus, without any error injection.  A default test with 

only these constraints would eventually generate all legal 
input stimuli. 

 
d) The VIP code also constrains a set of “typical space” 

constraints.  These will cause the stimulus to be more 

useful and coverage for the protocol or the design will be 
hit more quickly using these constraints. 

 
e) Variables in the constraint space are often related to other 

variables via implication.  This is shown in the diagram 
by a bidirectional arrow linking the two variable range 

spaces.  

 
The test writer typically defines two sets of constraints at 

the test-level. 
 

f) Test specific constraints that further restrict the range of 
values generated.  These are biases or directives for a 
specific test to increase the chance of hitting a coverage 

point or corner case.  These are the typical constrained-
random tests that are part of a level-1 or level-2 test suite. 

 

g) Test specific constraints that change or expand the range 
of values generated to some range outside the “typical 

space” to hit a corner case.  These are typically 
constrained-random tests created during the coverage 
closure process, where corner cases are targeted by adding 

constraints. 
 

B. Comparison of Constraint Modification Mechanisms 

 
The SystemVerilog language provides several mechanisms 

for modifying, overriding or disabling constraints.  We will 
review each of these constructs and then discuss issues with 

each in relation to the (f) and (g) requirements above. 
 

i. Inheritance with different constraint block name. 

If constraints are specified in the derived class in a constraint 
block whose name is different than any constraint block in the 
base classes, then the new constraints add to the existing 

constraint set and all are solved when the class is randomized, 
as shown in the long_packet class in Figure 6.   

 

ii. Inheritance with the same constraint block name.  

If the constraint block name in the derived class is the same as 

a block name in a base class, then the constraints in the base 
block are replaced by those in the derived, as shown in the 
error_packet class in Figure 6.  To use this strategy to 

accomplish overriding, one must know the name of the 
original constraint block, and that original block must not 

contain other constraints that are not intended to be 
overridden. 

 
Figure 6 – Parent/Child Class Constraints 

 

iii. Procedural calls to constraint_mode()  

As constraint blocks are named in SystemVerilog, each block 

can be enabled or disabled using procedural code.  The test 
writer can simply disable any constraint block explicitly in the 

test, as shown in Figure 7.  To use this strategy, one must 
know the name of the original constraint block and that the 
original block must not contain other constraints that are not 

intended to be overridden, and because constraint_mode() is 
set on an instance, it must be repeated for all instances  where 
the override is required. 

 

class packet; 

  rand bit [15:0] len; 

  constraint valid_len { 

     len inside {[0:1500]};  

  } 

endclass 

 

class long_packet extends packet; 

  constraint long_len { 

    len > 1000; // used with valid_len 

  } 

endclass; 

 

class error_packet extends packet; 

  constraint valid_len { //overrides 

    len inside {[1501:1600]};  

  } 

endclass 



 
Figure 7 – constraint_mode() 

 
 

iv. Dist to approximate soft constraints.  

A distribution constraint with extreme bias will be honored 
if possible yet will not cause a conflict even if as few as one of 
the distribution alternatives overlaps with other constraints.  If 

the desired typical space is given a very large weight and the 
exercisable space is given a very small weight, then the test 

writer can in effect override the constraint specified as dist 
without disabling or re-defining the constraint block, as shown 
in Figure 8.  There is, of course, a small chance that the typical 

space would not be chosen. 
 

 

Figure 8 – dist Approximating Soft Constraint Example 

 
To satisfy the requirements for the test to further res trict 

range (f), the inheritance with a differently named constraint 
block can be used.  This simply adds additional constraints 
and further restricts the solution space.   

 
The requirements for (g) are quite different – here we want 

to disable one or more VIP constraints to allow the test 

constraints to define the space.  We are effectively enlarging 
the space in some area above and beyond what was specified 
as typical by the VIP developer. 

 
There are several problems with the existing solutions: 
 

a) The user must determine which constraints need to be 
overridden or disabled, which is often not easy to 

calculate or intuitive to code.  In many cases the 
constraints dropped will depend on state variables so 
cannot be calculated statically and coded into the test. 

 
b) The user must know the name of the constraint block 

in order to override it or disable it.  That puts a 

burden on documentation, especially if the block is in 
encrypted code. 

 
c)  If a constraint block is overridden or disabled to 

remove a particular constraint, any other constraints 

in that block need to be re-specified. This suggests a 
methodology of always putting constraints in their 
own block if they are known to be subject to being 

disabled.  Such a methodology can be hard to enforce 
and maintain (a later decision that a constraint should 

be possible to disable means blocks would be 
subsequently partitioned). 

 
d) For the override or disable solutions, even though the 

original intent may have been to allow the test to not 
use the constraint, the test still has to write extra code 

to make that happen. 
 

e) If a conflicting constraint is presented in the “with” 

clause of a randomize call, there is no derived class 
within which to apply the override. 

 
f) The solution of using a skewed dist constraint can fail 

with a finite probability.  Distribution issues can arise 

if a second dist is specified (e.g. in the test) for the 
same variable.  The constraint solver will determine 
some dist variables to relax, however there is no 

control over the priority and no way to specify which 
dist variables should be relaxed in the test. 

 

C. Soft Constraint Methodology/Solution 

 
Soft constraints solve all of the issues listed above when a 

test writer needs to expand the solution space. 

 
Soft constraints that do not conflict are simply additive, 

and follow the same rules are regular constraints, satisfying 

requirement (f). 
 

class packet; 

  rand bit [15:0] len; 

  constraint valid_len {  

    len dist {[0:1500] := 10000,    

              [0:1600] := 1}; 

  }; 

endclass 

 

packet pkt = new(); 

pkt.randomize(); 

=> Results: len very likely in 0:1500 

 

// overlapping range 

pkt.randomize() with {  

  len inside {[1400:1600]}; 

}; 

=> Results: len very likely in 1400:1500 

 

// conflict range 

pkt.randomize() with {  

  len inside {[1501:1600]}; 

}; 

=> Results: len in 1501:1600 

 

class packet; 

  rand bit [15:0] len; 

  constraint valid_len { 

     len inside {[0:1500]};  

  } 

endclass 

 

// Test invalid length 1500-1600. 

// Disable valid_len cst (0-1500) 

// Gen packets with len 1501-1600 

 

pkt.valid_len.constraint_mode(0); 

pkt.randomize() with {  

   len inside {[1501:1600]};  

}; 



When a soft constraint is present but a conflict occurs, then 
the soft constraint may be disabled by a regular (hard) 
constraint or another soft constraint with higher importance. 

 
This allows the VIP creator to specify some constraints as 

soft, knowing that these may then be disabled by the test 

writer using either a hard constraint or another soft constraint 
with higher priority.  

 

The VIP creator also knows that the soft constraint will be 
disabled only if a conflict occurs, which is determined at 

runtime based on the state variables. 
 
No false failures due to a small but finite probability of a 

dist choosing a heavily biased value can occur.  The 
constraints either conflict and are disabled or do not conflict 
and remain.  Results are predictable and failures do not occur 

due to specific seeds being used. 
 

Finally, if a soft-constraint in the VIP must be disabled, 
this can be accomplished using the “disable soft” construct.  
This causes the soft constraints on a specified variable to be 

disabled across all constraint blocks (as was shown in Figure 
4). 

 

D. Soft Constraint Examples 

 

The concepts discussed above will now be explained with a set 
of simple examples, to illustrate the points in the context of a 

verification environment. 
 
Each of the requirements from the VIP and test-writer 

needs to be mapped to these language features in a well- 
defined manner so the test-writer can understand how the test 
will affect the underlying VIP code. 

 

i. Exercisable  Space 

 
The exercisable space is the stimulus the DUT will return a 
predictable result.  This space should be defined using regular 

(hard) constraints.    These constraints will not be disabled by 
the tool unless an explicit call to constraint_mode() is made to 
turn them off for some design specific reason.  

 
Soft constraints should not be used for this purpose, as it is too 

easy to accidentally override them and cause illegal stimulus 
to be injected into the design, wasting considerable time 
debugging false failures.  

 
An example is shown in Figure 9 where the packet length is a 
16-bit field.  We want to inject packets larger than 1500 

allowed by the protocol but do not want to inject packets of 
very large length that would be slow to simulate or hang the 

test. 

 

Figure 9 –Exercisable (Hard) Space Constraints 

ii. Legal and Typical  Space 

 

The legal and typical space should be defined using a mix 
of hard and soft constraints.  The soft constraints should be 
used for areas where you want the test writer to easily override 

the settings to expand the solution space.    
 

 
Figure 10 – Legal and Typical Space 

 

 
Figure 11 – Legal Space Constraints 

 
 

class packet; 

  rand bit [15:0] len; 

  // Protocol len 0..1500 

  // Use 0..1600 for testing 

  // of valid + error traffic 

  constraint legal_len { 

    len inside {[0:1600]}; 

} 

endclass 

 

packet pkt = new(); 

 

pkt.randomize(); 

=>  Results: len in 0:1600 

 

 

class packet; 

rand bit [15:0] len; 

// Eth protocol has len 0-1500 

// DUT timeout at 5000 bytes 

// Exercisable 0..6000 bytes 

constraint exercisable_len { 

  len inside {[0:6000]};  

} 

endclass 

 

packet pkt = new(); 

 

// Test valid/invalid lengths 

// Packets with length 1400-1600 

pkt.randomize() with { 

   len inside {[1400:1600]};  

}; 

=>  Results: len in 1400:1600 

 



 
Figure 12 – Typical Space Constraints 

 

iii. Corner Case Space 

 

To close coverage, additional stimulus values need to be 
injected into the DUT to hit specific corner cases.  This 

usually requires some slight expanding of the typical space as 
shown in Figure 13. 
 

 
Figure 13 – Corner Case Space 

 
Simply adding a constraint with the new extended range 

will not work as the solver can find a valid solution in the 
intersection of typical and corner space.  This is shown in 
Figure 14 where the interesting packet length range of 1490-

1510 does not conflict with the typical space constraints in 
Figure 12. 

 

 

Figure 14 – Corner Case Constraints 

As the hard constraint to generate packets of length 1490-
1510 does not conflict with the earlier soft constraints nothing 
is dropped.  The solver can find a solution using all 

constraints, and returns length 1490-1500.  This may not be 
the desired test behavior.  Functional coverage provides an 
important check that the full range of desired stimulus was 

applied. 
 
To generate the error lengths, where the error space 

partially overlaps with the previous ranges, we need to remove 
the soft constraint.   The disable soft function can be used to 

perform this action.  Calling disable soft on a variable causes 
all soft constraints on that variable to be dropped.  This allows 
the new constraint to now define the required space as shown 

in Figure 15. 
. 

 

Figure 15 – Overlapping Error Solution Constraints 

iv. Implication Constraints 

One cannot apply all of the necessary solution space 
shaping using the relational and distribution constraints shown 

so far.  A very important category of constraints is the 
implication constraint, which can be implemented with either 
the “->” operator or an “if-else” constraint.  Let‟s look at how 

the concept of soft constraints works in conjunction with 
implication constraints. 

 

One permutation is that there is a hard implication 
constraint and a soft constraint referencing the same variable.  

In this situation, it does not matter whether the variable in 
question is in the left or right side of the implication; if the 
possible range of the variable after consideration of the 

implication constraint allows the soft constraint to be satisfied, 
the soft constraint will be considered, and otherwise it will be 
ignored.  This is illustrated in Figure 16.  So any critical 

implication constraint applied by the test or by the 
environment is certain to be honored, and the typical space 

specified by soft constraints will be honored if possible.  Be 
aware that a reduction in the range of the other variable (not 
the soft constrained one) in the implication may be necessary 

to find a solution (see the value of y in Figure 16). 
  

class err_packet extends typ_packet; 

 

  // Generate error lengths 

  constraint error_len { 

    disable soft len; 

    len inside {[1490:1510]}; 

} 

endclass 

 

err_packet err_pkt = new(); 

err_pkt.randomize(); 

 

=> Results: len = 1490:1510 

 

class err_packet extends typ_packet; 

  // Generate error lengths 

  constraint error_len { 

    len inside {[1490:1510]}; 

} 

endclass 

 

err_packet err_pkt = new(); 

err_pkt.randomize(); 

 

=> Results: len = 1490:1500 

 

class typ_packet extends packet; 

  // Bias towards interesting len 

  constraint typical_len { 

    soft len dist { 

      [   1:   5] :/ 30,  // short 

      [   2:1498] :/ 40,  // med 

      [1495:1500] :/ 30}; // long 

} 

endclass 

 

typ_packet typ_pkt = new(); 

 

typ_pkt.randomize(); 

=> Results: distribution shown 



 

Figure 16 – Hard Implication Constraints 

 

A variation which is likely less common is that there is an 
implication constraint that itself should be considered a soft 

constraint.  Perhaps a variable x has a typical space only when 
another variable y has certain values.  In that case, you can 
create a constraint of the form “y inside {[…]} -> soft x inside 

{[…]}”.  Now if the left-hand side expression is true, the 
constraint on the right-hand side will be honored if possible.  
Unlike the hard implication constraint, if there are other 

constraints that make the right-hand side impossible to satisfy, 
values can still be chosen that cause the left-hand side to be 

true.  A soft implication constraint is illustrated in Figure 17. 
 

 

Figure 17 – Soft Implication Constraints 

 

V. DEBUG 

Debugging soft constraints introduces some additional 

complexity.  Previously all constraints were solved correctly 
or a conflict was reported.  The conflict could then be 
debugged and changes made to the source code. 

 
With soft constraints, some of the constraints may be 

dropped due to a conflict, and this can then affect the resulting 

distribution or solution set.  A tool supporting soft constraints 
will need to have a capability to debug this functionality. 

 

The debug functionality must show which constraints are 
dropped and which are honored.  This can be done in a similar 
manner to showing when a constraint block is overridden due 

to inheritance.  One key difference is that an overridden block 
due to inheritance disabled the entire block, while soft 

constraints are disabled at the individual equation level. 
 
The tool must report which soft constraints are dropped, 

and which other conflicting constraints caused this behavior.  
Some graphical way of displaying this information is 
preferred. 

 
Finally, it is useful to interactively debug soft constraints 

by stopping in the simulator GUI, and then be able to re-
randomize the result with some soft constraints converted into 
hard constraints.  This allows conflicts to be reported and 

show why a soft constraint could not be satisfied. 
 
All of these features should be available with links to 

source code, waveforms, class browser, object browser and 
local watch panes. 

VI. CONCLUSION 

The addition of soft constraint to the SystemVerilog 
language provides an effective and efficient way to specify 

constraints in the VIP layer that can easily be overridden by 
the a test writer.  The priority of which constraints are dropped 
is controlled in a well defined manner and allows the VIP 

creator and test writer to determine which items will be 
dropped in a predictable way.  The software tools can assist 
with debug of soft constraints by providing various GUI and 

interactive features. 
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class typ2_packet extends packet; 

  constraint typical_len { 

    x < 2 -> soft len inside {[0:100]}; 

} 

endclass 

 

typ2_packet typ_pkt = new(); 

 

typ_pkt.randomize() ; 

=> Results: len in 0:100 if x < 2, 

otherwise unconstrained 

 

typ_pkt.randomize() with  

   {len > 100; x < 2}; 

=> Results: len > 100 and x < 2, soft 

constraint ignored 

 

class tst_packet extends typ_packet; 

  

  constraint x_y_len { 

    x < 2 -> len inside {[1490:1510]}; 

    y < 2 -> len > 1500 ; 

} 

endclass 

 

tst_packet tst_pkt = new(); 

tst_pkt.randomize(); 

 

=> Results: len in 1490:1500 if x < 2  

or len uses distribution from typ_packet 

otherwise; y >= 2 (assuming no other 

hard constraint on y) 
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