DESIGN AND VERIFICATION™

NNNNNNNNNNNNNNNNNNNNNNN

SoC Verification Speed —

More is Better

Fernanda Braga - Cadence Design Systems, Inc.
John Rose - Cadence Design Systems, Inc.
William Winkeler - Cadence Design Systems, Inc.
Sharon Rosenberg - Cadence Design Systems, Inc.
Frank Schirrmeister - Cadence Design Systems, Inc.

cadence

3/5/18 © 2018 Cadence Design Systems, Inc. All rights reserved. 1

2018

DESIGN AND VERIFICATION™

D\ <+ Agenda

* The Need for Speed

* Formal methods to avoid sim cycles

« Coding for max sim speed

« Speeding power + mixed-signal SoC

* Break

 Portable Stimulus for faster verification

* Applying hardware to speed system verification

« Summary and call to action

3/5/18 © 2018 Cadence Design Systems, Inc. All rights reserved.

2018

DESIGN AND VERIFICATION™

DV Bug Detection Still not as Early as Possible

CONFERENCE AND EXHIBITION

Bug detection rate

!P o .S.oC | HW/SW , System Validation
Verification Verification Development & Production

|
© 2018 Cadence Design Systems, Inc. All rights reserved.

2018 ifi I
ooz Key Verification Challenges to Address

CONFERENCE AND EXHIBITION
[]

Need objective project signoff criteria, metrics based tracking & trend analysis

Plan-driven Metrics across engines, Cloud compute, Machine Learning

4. When are we done?
- * Need for early Software bring-up on RTL, with high speed platforms
Applications
* Virtual & Hybrid, Emulation, Early FPGA, HW/SW debug

3. Software bring-up

°~J

Need test automation, scalable fast engines, power & performance verification

Plan & Metrics, Parallel Simulation, Emulation, Verification IP, Portable Stimulus
Bare Metal SW

System on 2. SoC Verification ?

Chip * Need more robust and efficient IP verification, to find bugs earlier
* Plan & Metrics, Formal first, Verification IP, fast Simulation
Sub-System _
1. IP Verification ?
IP 4

Project time

© 2018 Cadence Design Systems, Inc. All rights reserved.

2018 pa . .
ey Verification Suite

-~ "= Technology innovation leadership: Fast, Smart, and Optimized

Verification Fabric VIP vManager™ Indago™ Perspec™
Uniform multi-engine verification VERIFICATION IP METRICS DEBUG SW-DRIVEN TEST

JasperGold® Xcelium™ Palladium® Z1 Protium™ $1 « FastBest-in-class engines

FORMAL & STATIC SIMULATION EMULATION FPGA PROTOTYPE

Total throughput

| |

Metric driven signoff

I e Optimized comprehensive

Application optimized solutions

y 00wy

Cloud centric architecture

A 4

NEW NEW

© 2018 Cadence Design Systems, Inc. All rights reserved.

2018

DESIGN AND VERIFICATION™

DV ‘Agenda

* The Need for Speed

* Formal methods to avoid sim cycles -Fernanda Braga

» Coding for max sim speed -John Rose

» Speeding power + mixed-signal SoC -William Winkeler

* Break

 Portable Stimulus for faster verification -Sharon Rosenberg
* Applying hardware to speed system verification -Frank Schirrmeister

« Summary and call to action

3/5/18 © 2018 Cadence Design Systems, Inc. All rights reserved. 6

2018

DESIGN AND VERIFICATION™

DV Session Objectives

* Overview on how formal can speed up verification process
* Introduce Designer Formal Verification flow

* Discuss when to use formal for maximized productivity

* Introduce methodology to address Formal IP Signoff

|
3/5/18 © 2018 Cadence Design Systems, Inc. All rights reserved. 7

R @20 -
Dv_ i~ How Can Formal Help

CONFERENCE AND EXHIBITION

* For many DV engineers their preferred verification method (simulation) is
a hammer and everything looks like a nail

* The reality is
— Many users are already using formal as a sign-off tool for certain
blocks and problems
— There are categories of designs which favor simulation and others

which favor formal

* Formal, applied to the right designs and problems, can achieve significant
productivity and quality gains in the overall verification flow
— Especially when simulation-like rigorous verification planning and
coverage closure methodologies are applied

“FV wherever we can, simulate where we must” — Erik Seligman, JUG 2016

3/5/18 © 2018 Cadence Design Systems, Inc. All rights reserved.

2018

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

Case Study: Teradyne

g
JasperGold FPV Adoption Timeline

= First experience on a large Mixed Signal SOC:

Environment setup: few hours.
Initial assertion development: 2 days.

First real bug found: day 4.
Additional assertions, 2 more bugs found: second week

= Second experience, was done a week ago on a large
Digital SOC:

JG FPV was run on a complex controller block as soon as the RTL
was released.

Found 2 simple bugs, and 2 complex bugs within 48 hours before
any simulation was run.

RALYN

3/5/18

Source: Teradyne presentation at CDNLive Boston, Nov 2017

© 2018 Cadence Design Systems, Inc. All rights reserved.

2018

DESIGN AND VERIFICATION™

DV O Formal Speeds Verification

\/ Get the designer involved

/ Apply the best techniques

y

while improving
quality

Reduce DV effort ||

3/5/18 © 2018 Cadence Design Systems, Inc. All rights reserved. 10

2018

DESIGN AND VERIFICATION™

DV i Cost of Finding Bugs

CONFERENCE AND EXHIBITION

* Effort to fix a bug increases significantly the further into the
development cycle

Catch bugs as early
as possible

RTL Design RTL Refinement
Integration

>

Effort to fix bug

%

7

Testbench Development gilly Verlflcatlon

3/5/18 © 2018 Cadence Design Systems, Inc. All rights reserved.

11

2018

DESIGN AND VERIFICATION™

CONFERENCE AND EXHIBITION

Dyt The Challenge With Designers

* Managers, verification engineers and even designers all
agree that designers SHOULD get more involved in

verification

* Reality is that RTL design, implementation tasks, etc. MUST
get done

* Conclusion: Only successful way to get designers involved in
functional verification is automation

3/5/18 © 2018 Cadence Design Systems, Inc. All rights reserved.

Designers

12

e e a 218, JASPErGold Superlint:
DWWV

T Hand-off Robust Reusable RTL
* Automation for designers l '

— £ Coding style

L 7
Basic Lint DFT controllability | 577
& DFT _‘ ‘
DFT

Sim-synth
Checks mismatch UJ observability

Best-in-class debug

.
o= &
Arithmetic p Reachability
\
. Livelock/
deadlock
Range overflow

Combo loop

Automatic
Formal
Checks

Low-noise violation
& waiver handling

analysis

Comprehensive functional checks, violation debug &

waiver handling based on best-in-class formal analysis

3/5/18 © 2018 Cadence Design Systems, Inc. All rights reserved.

2018

DESIGN AND VERIFICATION™

DV i Superlint App: Success Story

* ARM

success improving RTL signoff shortening time to market find bugs
weeks earlier reduced late-stage RTL changes
save additional time

Formal for designers — bug avoidance

« An early success
. Helped promote Early bug discovery H (0] bSO n B u | | man

bt Vice President and General Manager
Technology Services Group, ARM

Ess ARM
il

- R ARM

Higher quality sooner

Source: ARM keynote presentation at Jasper User Group, Nov 2016

3/5/18 © 2018 Cadence Design Systems, Inc. All rights reserved. 14

2018

DESIGN AND VERIFICATION™

DV ‘Formal Speeds Verification

\/ Get the designer involved

/ Apply the best techniques

y

while improving
quality

Reduce DV effort ||

3/5/18 © 2018 Cadence Design Systems, Inc. All rights reserved. 15

2018

DESIGN AND VERIFICATION™

DYV Apply The Best Techniques

CONFERENCE AND EXHIBITION

Does
Y Specialized

App Exist?
Apps

Simulation Formal

|
3/5/18 © 2018 Cadence Design Systems, Inc. All rights reserved. 16

A
Dvi i What Is A Formal App?

Code Coverage Control & Status Connectivity Sequential Formal Property
UNReachability Register (CSR) (CONN) Equivalency Verification (FPV)
(UNR) Checking (SEC)

UNR CSR G =)

| | |
Automated/Optimized Executable Spec Entry]

Debug

Engines/Proof Strategies

Formal Platform

3/5/18 © 2018 Cadence Design Systems, Inc. All rights reserved. 17

2018

DESIGN AND VERIFICATION™

DYV i1 CSR App: Success Story

Results & Benefits Perspectives

Quick technology deployment
: 5 IPs in 6 months 1

- Formal verification ensures better confidence in security features

AR [IPBBB IPCCC . IPDDD . |IPEEE | implementaton

Mature IP, 50 New IP (on- New IP derivative New IP derivative New IP derivative
registers going), 189
registers
Initial setup 1h Early verif start 2h 2 wks On-going
Oy * IP-XACT based flow developed & deployed
RTL bugs 2, found 10 1 found 1 found On-going « Reduces effort needed to deploy register formal verification
immediately immediately . .
. . . « Less errors, less debug as automation makes sure modeling layer & IP-XACT are
Issues in spec/ Several found Several found On-going On-going in i
IP-XACT before RTL Infiné
availability

Flow enables fast iterations when new RTL / spec deliveries Next
* Nex

More exhaustive verification leading to more confidence » Automate generation of a template for the modeling layer /

» How to take benefit from this flow to reduce effort in UVYM_REG based verification ?
. . * Use of formal coverage & combined coverage

Improves Quality & Time To Market for our STM32 products Deploy !

Ly

o.augmented o.augmented

Source: STMicroelectronics presentation at CDNLive 2017

3/5/18 © 2018 Cadence Design Systems, Inc. All rights reserved.

2018

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

3/5/18

CONN App: Success Story

m JasperGold and Reverse connectivity benefits

* No need of simulations - JG is much faster for these kind of tasks

» 1 engineer can cover alone all the connectivity task of a project very fast.
Short time to write the script for the first time
* Short script for a long task = short task

Few days of work instead of weeks

Significantly reduced the effort for connectivity tasks!!!
* Totally re-usable — written once and can be used for any other connectivity task
We used the same script instantly in a completely other project

* Gives also unexpected connections - can find hidden bugs

* 3132 connections proven with a button click in our last project using this method

* We found several bugs thanks to JasperGold

d —

Source: DSP Group presentation at CDNLive 2016

© 2018 Cadence Design Systems, Inc. All rights reserved.

19

DESIGN AND VERIFICATION™

DYV

CONFERENCE AND EXHIBITION

3/5/18

2018

Y

Does

Specialized N
App Exist?
Simulation
Good Block N
for Formal?

© 2018 Cadence Design Systems, Inc. All rights reserved.

Apply The Best Techniques

Formal

20

2018

DESIGN AND VERIFICATION™

DV <+ Formal IP Signoff

Metric-Driven Verification!

* Definition already well established in industry

No checks fail while reaching all coverage % ‘

* Signoff is all about confidence
— IMPORTANT: Finding bugs

— CRITICAL: Finding no bugs while reaching a measurable, planned set of
coverage

* Required:
— Verification plan specifying checks and coverage to measure progress and
define done

— Technology and methodology to achieve signoff

|
3/5/18 © 2018 Cadence Design Systems, Inc. All rights reserved. 21

coverage

2018

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

Technology
Formal Semi-Formal
o . . - +
Sequential
- - Depth
© - 'y .
Design
° - Type
° * © \IF

Specification)
Knowledge

Block
Size

Block
Criticality

1

Formal Signoff Summary

Repeatable Methodology

Formal Signoff

Metric-Based Sign-off Solution

Productvity ganec

3/5/18

Formal
Simulation

e e b w cover

e

' Quaiity gained

For amenable blocks
Quality: formal >> sim coverage
Productivity: Time to signoff << sim

No checks fail while reaching all coverage

© 2018 Cadence Design Systems, Inc. All rights reserved.

22

cesc e e 2018 JUG: Coverage-Driven Formal
' Verification Signoff on CCIX Design

* Partnership with IP Group at Cadence

Repeatable methodology Metric-Driven Verification approach:
applied to create testbench Coverage Closure!
CCIX Formal Testbench Overview : 0 16 Coverage Test Progress

I ‘ e Classic Formal Phase State Swarm Phase Guidepointing code cov:r:s

|
XS Agent oxs Creatt
- A

L =B '“'
E | : ‘ "DUT ;A - ‘—' | |

o 600
30% <
"4 S 400
20%
< B o
o 200
10% I .
©
Credt Agent Credit Agent . 099 |,
(master) (slave) 0 2 4 s 8 10
Other Cover Depth Code Cover Depth © Func. Cover Depth ———Cumulative Code Coverage ———Cumulative Func. Coverage

cadence cadence

Source: Cadence IPG presentation at JUG 2017

3/5/18 © 2018 Cadence Design Systems, Inc. All rights reserved. 23

i s

e 2012 JUG: Coverage-Driven Formal
T Verification Signoff on CCIX Design

* Partnership with IP Group at Cadence

High quality bugs found Formal as viable option for IP signoff in amenable targets
Summary
Assertions 282
Proof convergence 61% * No method is perfect!
Bugs Found 29 Molg,uk:sss - Form.al behind SITn. in sor.ne ar'eas, bu.t ahead in others '
» Formal is competitive with simulation even on a complex block like CCIX
‘:;Eif’“ijewgsgi - 15 - — Main challenge was that CCIX turned out to have more sequential depth than expected

— 4KB packet length (100+ cycles), max credit update (1000+ cycles), timeout scenarios (1000+ cycles)
» Formal can do meaningful coverage closure
— Extend to end-of-test and incidental checking bring formal closer to sim wrt coverage
* Enhance semi-formal even further
— Critical piece of signoff since it is where sim does a better job
e IC . _ * Recommend to sign off with formal if:
. uncbor.\a“wovongo.. i e ’ — Design is "formal friendly"

— Sequential depth is the most important factor
— Running simulation one level above target block

Formal Code Coverage:

cadence cadence’

Source: Cadence IPG presentation at JUG 2017

|
3/5/18 © 2018 Cadence Design Systems, Inc. All rights reserved. 24

2018 Simulation

DESIGN AND VERIFICATION™

DV Maximum Speed Formal

* |Pvplan

* Block #1
« I/IF#1
T FPV/ABVIP/COV/CSR/
» Feature #1 Bug Hunting
* Registers

- Block #2
« I/IF#1

» Feature #1

- . Block #3 - Simulation Bug Hunting
- Block #N
- - UF# ABVIP + VIP
« |IIF#2
- o ii;égisters CSR
- O é;)de Coverage UNR

3/5/18 © 2018 Cadence Design Systems, Inc. All rights reserved. 25

2018

DESIGN AND VERIFICATION"

DV Case Study: Infineon

Choosing Formal Friendly Blocks EEML | VE Confirm SIMU < FV split

Concurrent blocks

Type of _ Sequential blocks with m
Sequential o with Desgn block high sequental depth - - m . g |
low sequertial depth) o © eiingmit - - — » e gy h)
- = = = == -
m R —— —- ‘
Control blocks Type of Data Transform blocks e —~—— ' 24 — ; - - - - [——
Operation . with intensive arithmatic —_ o
Data Transfer blocks oporations = : . : ~ -
= = e
Data Transform blocks —p— = N —
with less intensve —_— -
- - -
anthmatc operations Se of = == s
- -~ — e ot

Completeness —

S .
= Completeness Review vPlan R bridges the gap between FV and SIMU
=) O Review Properties Proof oS 3 I -
D ﬁ — Core enables a structural analysis
2S 1% - .
enables a confirmation of FV <> SIMU split
= we apply an Optimal Mixture of FV & SIMU
' . Reachadity coverage
puT A Seascode e & wravre COM® Vision over time, we get Quality Increase (formal proof)
.
o COVADD ¢ n rded proot o over time, we get Efficiency Increase (simu reductions)

infineon nfineon
(infinec (tfine

Source: Infineon presentation at CDNLive 2017

3/5/18 © 2018 Cadence Design Systems, Inc. All rights reserved.

26

2018

DESIGN AND VERIFICATION™

D\ <+ Agenda

* The Need for Speed

* Formal methods to avoid sim cycles

« Coding for max sim speed

« Speeding power + mixed-signal SoC

* Break

 Portable Stimulus for faster verification

* Applying hardware to speed system verification

« Summary and call to action

3/5/18 © 2018 Cadence Design Systems, Inc. All rights reserved.

27

DESIGN AND VERIFICATION -

DV Coding for Max Simulation Speed

* General SystemVerilog Coding
* Coding for Multi-Core Simulation

* UVM Save / Restart Methodology

3/5/18 © 2018 Cadence Design Systems, Inc. All rights reserved.

28

2018

DESIGN AND VERIFICATION™

DVl General SystemVerilog Coding

* SystemVerilog is BIG (800+ pages)
— Lots of opportunity to improve performance
* Focus today on a few of high-level concepts for making environments faster
— Caching data (results, objects, etc.)
— Focus on efficient algorithms
— Choosing correct data-structures
* What is not being discussed today
— Basic code optimization
— Assertion / Functional coverage coding
— Efficient randomization / constraint creation

— Comprehensive coding guidelines (including these topics and more) available at
http://support.cadence.com/ -- “Simulation Performance Coding Guidelines for SystemVerilog”

|
© 2018 Cadence Desian Systems, Inc. All rights reserved.

2018

DESIGN AND VERIFICATION™

DY < Caching Data

* Examples of when caching is effective

— The same inputs always produce the output
* When the calculation is done often (e.g. every cycle)
* The same inputs will often be repeated over the short term
* The calculation is expensive with respect to other things at the same time

— A class object can be reused

* When consumers of an object will take only what they want (won’t keep a
reference)

* When the object is heavy to create
* When the object has complex constraints (reuse of constraint construction)

|
© 2018 Cadence Design Systems, Inc. All rights reserved.

o : :
e @xample Algorithm Caching

CONFERENCE AND EXHIBITION

function int unsigned hash(string key) ;

hash = 0;
for (int i=0; i<key.len(); ++i) begin
hash += keyl1]; What's the problem?

hash += (hash<<10);
hash = (hash>>6) ;
end
hash += (hash<<3);
hash += (hash>>11);
hash += (hash<<15);
endtask

|
© 2018 Cadence Design Systems, Inc. All rights reserved.

2018

DESIGN AND VERIFICATION™

DYV Example Algorithm Caching

CONFERENCE AND EXHIBITION

function int unsigned hash(string key) ;

hash = 0;
for (int i=0; i<key.len(); ++i) begin
e . Nothing (it is simple and
hash += (hash<<10); oY .
hash A= (hash>>6) ; fast),.but, itis alinear
end algorithm so there is a
hash += (hash<<3); possibility for improvement

hash += (hash>>11);
hash += (hash<<1}5);
endtask

© 2018 Cadence Design Systems, Inc. All rights reserved.

2018

DESIGN AND VERIFICATION™

DYV Example Algorithm Caching

CONFERENCE AND EXHIBITION

function int unsigned hash(string key) ;
static int unsigned cache[string];
//if you need to manage the cache size. Use a static
//array as will be the fastest.
static string aged list[MAXSIZE];
static int oldest = 0;
// This is the savings if the same key gets used alot _
if (cache.exists (key)) return cachelkey]; A Slmple cache may
make things faster

//normal cache algorithm

// This is the cache overhead.
cache[key] = hash;
cache.delete (aged lsit[oldest3%MAXSIZE])
aged list[oldest%MAXSIZE] = key;
++oldest;

endfunction

|
© 2018 Cadence Design Systems, Inc. All rights reserved.

2018

DESIGN AND VERIFICATION™

DV Example Caching an Object

task mycomp: :run(uvm_phase object phase) ;
forever begin
@ (posedge vif.clk)
if (txstart) begin
local data = mydata: :create(“data”, this);
data.;andomize() ; What's the problem?
send recv _data(data); //some time consuming work
$cast (shared data, local data.clone()); //copy it
txport.write (shared data); //send it on
end
end
endtask

|
© 2018 Cadence Design Systems, Inc. All rights reserved.

o : :
e ovic@xample Caching an Object

CONFERENCE AND EXHIBITION

task mycomp: :run(uvm_phase object phase) ;
forever begin
@ (posedge vif.clk);
if (txstart) begin
local data = mydata::create(“data”, this); Data is created every

data.randomize () ; .
send recv _data(data); //some time consuming work time through the Ioop,

$cast (shared data, local data.clone()); //copy it but Only used IocaIIy.
txport.write (shared data); //send it on
end
end
endtask

|
© 2018 Cadence Design Systems, Inc. All rights reserved.

o : :
e ovic@xample Caching an Object

CONFERENCE AND EXHIBITION

task mycomp: :run(uvm_phase object phase) ;
local data = mydata::create(“data”, this);
forever begin
@ (posedge vif.clk);

if (txstart) begin Move data creation to

data.randomize () ;
send recv data(data); //some time consuming work Only happen once.

$cast(shared data, local data.clone()); //copy it
txport.write (shared data); //send it on
end
end
endtask

|
© 2018 Cadence Design Systems, Inc. All rights reserved.

2018

DESIGN AND VERIFICATION™

DV Cn < Efficient Algorithms

* Know the complexity of your algorithm
— Constant (O(1)), logarithmic (O(logn)), linear (O(n)), quadratic (O(n2)) ...
— Watch out for loops in loops
* Aloopis O(n)
* Aloop inside a loop is O(n2)
* Aloop inside a loop inside a loop is O(n3) ...
* Watch out how often you are doing work
— Alinear algorithm executed every cycle will likely be problematic
* Watch what you do when operating on larger data sets (higher values of n)
— Can algorithm be changed to be constant or logarithmic?

— Can executions of the algorithm be minimized?

|
© 2018 Cadence Design Systems, Inc. All rights reserved.

2018

DESIGN AND VERIFICATION™

DYV Example of a Problematic Algorithm

CONFERENCE AND EXHIBITION

input real vin;
output real vout;
real vdata[512];
logic[8:0] ptr;
always(@ (posedge clk)
ptr<=ptr+l; What's the problem?
real sum;
always(@ (posedge clk) begin
vdata[ptr] <= vin;
sum=0.0; foreach(vdata[i]) sum+=vdatal[i];
vout <= sum/512;
end

|
© 2018 Cadence Design Systems, Inc. All rights reserved.

2018

DESIGN AND VERIFICATION™

DYV Example of a Problematic Algorithm

CONFERENCE AND EXHIBITION

input real vin;
output real vout;
real vdata[512];

LEEREliIsll] s Every edge we sum the

always(@ (posedge clk) h h |
ptr<=ptr+l; array even though only

real sum; one element changes

always(@ (posedge clk) begin
vdata[ptr] <= vin;
sum=0.0; foreach(vdata[i]) sum+=vdatal[i];
vout <= sum/512;

end

|
© 2018 Cadence Design Systems, Inc. All rights reserved.

2018

DESIGN AND VERIFICATION™

DYV Example of a Problematic Algorithm

CONFERENCE AND EXHIBITION

input real vin;
output real vout;
real vdata[512];
logic[8:0] ptr;
real curr=0.0;
always@ (posedge clk) Better to only do what

ptr<=ptr+l; IS required each cycle
always(@ (posedge clk) begin

vdata[ptr] <= vin;

vout <= curr/512;

curr <= curr-vdata[ptr]+vin;
end

|
© 2018 Cadence Design Systems, Inc. All rights reserved.

2018

DESIGN AND VERIFICATION™

DV i~ Choosing the Best Data Structure

* This is related to memory management and algorithms
* Memory management
— Dynamic data structures (dynamic arrays, queues, associative arrays, classes) have heap management overhead.
— Static arrays and structs are pass by value (no heap management)
— This overhead can be significant depending on how an object is used
* Basic QDA Algorithms
— Search
* Associative arrays are O(logn)
* Everything else is O(n)
— Front/back insertion
* Associative arrays are O(logn)
* Queues are O(1)
» Static and dynamic arrays are O(n) (must be done manually)
* Queues auto-size when needed
— Random insertion
* Associative arrays are O(logn)
* Everything else is O(n)

|
© 2018 Cadence Design Systems, Inc. All rights reserved.

2018

DESIGN AND VERIFICATION™

DV <+ Choosing the Best Data Structure

* General recommendations
— Use associative arrays when searches dominate
— Use queues for most dynamically sizeable random access objects
— Use static arrays anytime it is reasonable
— Use structs instead of classes for tuples (or simple metadata)

|
© 2018 Cadence Design Systems, Inc. All rights reserved.

2018

DESIGN AND VERIFICATION™

DV Data Structure Example

mydata datain[$];
task mycomp: :write (mydata data) ;
data = data.clone() ;
datain.push back(data) ;
endtask
task mycomp: :check (mydata data) ;
foreach(datain[i]) begin
if (datain[i] .unique id == data.unique_id) begin What is the problem with this?
do work(datain[i]) ;
datain.delete (i) ;
return;
end
end
do_error(data) ;
endtask

|
© 2018 Cadence Design Systems, Inc. All rights reserved.

2018

DESIGN AND VERIFICATION™

DV Data Structure Example

We are using the wrong data structure.

T e & Queues are not good with random deletion and lookup!

task mycomp: :write (mydata data) ;
data = data.clone();
datain.push back(data) ;

Access is constant, deletion is
endtask

linear

end

do error(data);
endtask

© 2018 Cadence Design Systems, Inc. All rights reserved.

2018

DESIGN AND VERIFICATION™

DV Data Structure Example

Use an associative array instead
Lookup and deletion are
O(log(n)) instead of O(n)!

mydata datain[int];
task mycomp: :write (mydata data);

data = data.clone(); Lookup and deletion are logN
datain[data.unique id] = data; With# of elements
endtask

task mycomp: : i

i gatain existe data uniqe 33

do work{dastainfdataTonia

datain.delete(data.uni
return;

end

do error(data);
endtask

que id);

© 2018 Cadence Design Systems, Inc. All rights reserved.

2018

DESIGN AND VERIFICATION™

DV i Another Data Structure Example

class data;
int aval;
int bval; . . .
int extra: What is the problem with this?
endclass
data sparse memory[int];

function add elem(int addr, data d);
sparse memory[addr] = d;
endfunction
function data get elem(int addr);
data rval;
if (sparse memory.exists (addr))
rval sparse memory[addr];
else
rval = new;
return rval;
endfunction

|
© 2018 Cadence Design Systems, Inc. All rights reserved.

2018

DESIGN AND VERIFICATION™

Dvc:cird Another data Structure Example

class data;
int aval;
int bval;
int extra;

endclass

data sparse_memory[int]; There is no need for a class

function add_elem(int addr, data d); (no polymorphism or any
sparse memory[addr] = d; CIaSS behaViorS)
endfunction
function data get elem(int addr);
data rval;
if (sparse_memory.exists (addr))
rval sparse_memory[addr];
else begin
rval = new;
sparse_memory[addr] = rval;
end
return rval;
endfunction

© 2018 Cadence Design Systems, Inc. All rights reserved.

2018

DESIGN AND VERIFICATION™

DYV Another Data Structure Example

CONFERENCE AND EXHIBITION

typedef struct packed{
int aval;
int bval;
int extra;

} data;

_ Change to a struct
data sparse memory[int];

function add elem(int addr, data d);
sparse memory[addr] = d;

endfunction

function data get elem(int addr);
return sparse memory[addr];

endfunction

© 2018 Cadence Design Systems, Inc. All rights reserved.

DESIGN AND VERIFICATION -

DV Coding for Max Simulation Speed

* General SystemVerilog Coding
* Coding for Multi-Core Simulation

* UVM Save / Restart Methodology

3/5/18 © 2018 Cadence Design Systems, Inc. All rights reserved.

49

2018

DESIGN AND VERIFICATION™

DVC:Or <1 Coding for Multi-core Simulation

* Multi-core simulation is similar to hardware acceleration except
— Uses standard servers
— Achieves acceleration by sending concurrent work to separate cores

— Some applications (such as wave dumping) also lend themselves to running in
separate cores

* The same coding that works for acceleration works for multi-core
— Synthesizable code

* General guidelines
— Signal level activity should be in synthesizable bfms

— Reduce activity between accelerated and non-accelerated sections maximizes
speed up
— Synchronized designs speed up the best but are not required

|
© 2018 Cadence Design Systems, Inc. All rights reserved.

2018

DESIGN AND VERIFICATION™

DV~ Coding for Multi-core Simulation

module somemodl (input clk, ...) ° What multi_Core
always(@ (posedge clk) .
...//complex expressions and assignments wants Is
always@ (posedge clk)
...//more complex expressions and assignments o !_OtS of
always_comb independent
...//best is to not have any timing processes active
assign ... //best is to not have any timing .
endmodule at the same time

module connector (input clk, ...)

clkgater gldgclk, clk, cena@\

- Will attempt to associated
somemodl (gclk, ...); ith clock ted
othermod (clk, ...): processes with clock or gate
version of clock

endmodule

© 2018 Cadence Design Systems, Inc. All rights reserved.

2018

oviciira Coding for Multi-core Simulation
module behav (myinterface mif, ...)
] kg::*; . ,
i?“ii;i \fl) ztuff . What.multl-core doesn’t
//some ve stuff want Is
endmodule

— Behavioral code (things

| it can’t synthesize)
module timedblock(...)

asSTgn #1.1 w — : — Lots of independent

ceatiem 0.9 w2 All happen in different time slots so Himi f t

Seicn 40 6 13 may not be able to be in parallel if 'mmg_ (VerY ew events

o there are interdependency at a given time slot)
endmodule

|
© 2018 Cadence Design Systems, Inc. All rights reserved.

DESIGN AND VERIFICATION -

DV Coding for Max Simulation Speed

* General SystemVerilog Coding
* Coding for Multi-Core Simulation

* UVM Save / Restart Methodology

3/5/18 © 2018 Cadence Design Systems, Inc. All rights reserved.

53

2018

DVl UVM Save/Restart Concept

* Test sets tend to do the same initialization work prior to doing test
specific work

* Device setup may take as much as 80% of the simulation time

* Treat the device setup as an extension of the build
— Build a base simulation snapshot
— Run the simulation to time N (when device setup is complete)
— Save the simulation snapshot at time N
— Run the test set using the saved simulation snapshot
— Make use of reseeding to run the same tests with different seeds

|
© 2018 Cadence Design Systems, Inc. All rights reserved.

2018

DESIGN AND VERIFICATION™

Dy UVM Save/Restart Concept

Base Snapshot Config 1 Snapshot

nitalze X 3 testd

Initialize Y > test N+1

© 2018 Cadence Design Systems, Inc. All rights reserved.

2018

DESIGN AND VERIFICATION™

DV~ Mechanics

class base restart_ test extends uvm test;

task run(uvm _phase object phase) ;
init _seq init_seq = init seq::type_ id::create(“init_seq”,null);

» Each configuration is a UVM test

test_seq seq; — +UVM_TESTNAME=config_1
init seq.start(null, null); - -
$save (init_seq.get_type name()); * Tests are virtual sequences

$valueS$plusags (“SEQUENCE=%s” ,restart_seq_str);
seq = test seq::type id::create(restart_seq str,null);

loaded from command line arg

void’ (seq.randomize()) ; — +SEQUENCE-=testseq
seq.start(seqr, null, -1, 0);
endtask

-
© 2018 Cadence Design Systems, Inc. All rights reserved.

2018

DESIGN AND VERIFICATION™

DYV

CONFERENCE AND EXHIBITION

Questions?

|
3/5/18 © 2018 Cadence Design Systems, Inc. All rights reserved. 57

2018

DESIGN AND VERIFICATION™

D\ <+ Agenda

* The Need for Speed

* Formal methods to avoid sim cycles

« Coding for max sim speed

« Speeding power + mixed-signal SoC

* Break

 Portable Stimulus for faster verification

* Applying hardware to speed system verification

« Summary and call to action

3/5/18 © 2018 Cadence Design Systems, Inc. All rights reserved.

58

oo e B Low Power Mixed Signal Simulation
[ireD State = Tutorial

* Discuss verification of mixed signal SoC that is powered by an off-chip regulator
driving on-chip supplies
— Processor based design powered by on-chip power supplies
— Verify SPICE, RNM, AMS, Verilog models in the same environment
— All IP developed by Cadence
— Power intent specified in UPF 2.0

* Low Power Mixed Signal simulation run in UVM
— LDO (SPICE) driving UPF Power Supply Network
— |Isolation, state retention, power shutoff

. Target Technologx — Cadence 45 nm — GSCLIB045

© 2018 Cadence Desian Systems, Inc. All rights reserved.

oo 21S.. LOW POwer Basics
D\

CONFERENCE AND EXHIBITION

Power Domains Group the elements of logic hierarchy that share the same primary power supply

Supply Ports Provide the supply interface to power domains and switches

Supply Nets Connect supply ports

Power Switch Based on the value of the power control signal, the Power Switch connects /
disconnects the input supply port to the output supply port of the switch

HDL Supply Net Control UPF provides functions which enable the user to drive Supply Ports in low power

Functions simulation:

supply_on, supply_off, supply_partial_on

Power Supply Network Consists of supply ports, supply nets and power switches and their interconnections

LDO Low-dropout regulator. DC/DC converter used for on-chip power supplies

|
© 2018 Cadence Design Systems, Inc. All rights reserved.

oo 21S.. LOW POwer Basics
D\

CONFERENCE AND EXHIBITION

State Retention Allows the contents of registers to be saved prior to power shutoff and recovered
when is power is restored
Usually performed on key control registers

Isolation Prevents corrupted values from propagating from shutoff power domains to power
domains which are powered up

Power Shutoff (PSO) Power reduction method where power domains are shutoff. Shutoff can be
performed by Power Switch or by turning off the power to the supply ports.

Isolation and State Retention are often used in Power Shutoff Domains

|
© 2018 Cadence Design Systems, Inc. All rights reserved.

e seveiriie- POWEr Digital Logic
DV

CONFERENCE AND EXHIBITION

* Most Common
— HDL Supply Net Control Functions (supply _on)
— UPF Power Switches

* hdl_supply_net_type S P Lo e
. VDD_SW2 — UPF Supply Net
— Drive UPF su pply nets from HDL models VDD3 — UPF Supply Net with Resolution Function

— UPF Package
. g _______ ¢ \ _: - hdl_supply_net_type
* electrical / wreal —— —T----r @

(electrical/wreal)
analog_2 digital_2b

VDD2 — UPF Supply Net with VCT

|
VDD_SW1; VDD SW2 [. = UPF Supply Net Power Supply
VDD3 | (digital)

analog_1 digital_1
dlgltal :

© 2018 Cadence Design Systems, Inc. All rights reserved.

UPF Supply Net

o212 Driving PSN with electrical / wreal Ports

CONFERENCE AND EXHIBITION

* UPF Supply Nets require a |
STATE and VOLTAGE oot S L CEN Py s pr—

Power Supply B R create_hdl2upf_vct VCTwr2upf VDD2 \
al_2b
I

- STAT E —_ (electrical/wreal) ThaL type (ov Sds. ram) A
UNDETE RM'NED, analog 2 [l digit

-table {{>=4.8 FULL_ON} \
{>=4.5 PARTIAL ON} \
PARTIAL_ON (ca.2 or))
— ’ -=—=q---
FULL ON, OFF : _
- . I FULL_ON Does not cause corruption
* Wreal / eIeCtrlcaI portS __VSsS _ _ __ jl_ . PARTIAL ON Enable / Disable corruption
provide the VOLTAGE, bUt UPF Supply Net through UPF command
no STATE OFF Corrupt

° Add STATE through VCT UNDETERMINED Corrupt
(Value Conversion Table)

PD2

|
© 2018 Cadence Design Systems, Inc. All rights reserved.

e 201%.. Driving PSN with Electrical / wreal Ports

CONFERENCE AND EXHIBITION

* The VOLTAGE from the UPF supply net is connected to the electrical signal by an
internal R2E connect module

* The impedance of the R2E connect module is critical for analog block simulation

VDD2 — UPF Supply Net with VCT

amsd {
ie vsup=5.0 net=TB_CORE.CORE.ANALOG_TOP.VDD_ 5V
rout=0

ie vsup=5.0
net="TB_CORE.CORE.ANALOG_TOP.VSS
1 1 TB_CORE.CORE.ANALOG_TOP.xOSCILLATOR.PLL.VSS
: TB_CORE.CORE.ANALOG_TOP.xOSCILLATOR.VSS" rout=0

}

----- L- Vice versa, if electrical supply drives UPF supply net,

UPF Supply Net
o the E2R may need to be configured as higher impedance
than default (200 Ohms) especially for non-ideal supply
source

© 2018 Cadence Design Systems, Inc. All rights reserved.

2018

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

Block Diagram & Power Architecture

CORE (PD _CORE)

= VDD_PROC (0.93 V)

TB_CORE

e VDD SV D 254V Lo

(RNM) VSS LS PROC
g (SPICE) (sPicE) RETEIS
12V ->5V, ANALOG_TOP .
Programmable Load PD_AON LDO :
Al FE G] REFSYS Bi (39?('2\‘E) .
H 1as .
Off-Chip (RNM) I :
SPICE P -
RNM I
UPF B sanDcar I POR PCM_ANA OSCILLATOR I =
Verilog / SV (RNM) B RNM) (RNM) (Verilog) : :
UPF Supply Net Clock, POR Reset 1

v

LPM_

SW_PROC < - 0 AR PCM_DIG
. . RETN_PROC =
. o (POWER CONTROL
VDD_PROC_SW| —— H : TSO_PROC, ISO HBUSM [INelNele &= 3 Helo] G le]h)
I (Partial . = «] CLOCK RESET | HBUS'[3]
ALU State Retention) . M v
REGISTER . ISOLATION H HBUS[4] [l
. DIGITAL_TOP B
FILE PRIMARY /0 PD_AON o Interface

(Partial
State Retention)

1

I ,
PD_PROC HBUS“]
PROC 1 .

UPF

BUSARB

|w

—

HBUS*[5]
SRAM

HBUS*[0]

© 2018 Cadence Design Systems, Inc. All rights reserved.

--nnoven e Hierarchical UPF & Power / Ground

TS Connections

TB_CORE.upf
regulator
$supply_on (“TB_CORE.regulator.vin”,12.0) ; vin :Z'E":;;
L e CORE.upf
Vout EEnet vcap(real) VD5 5V
J_
Proglrin;?able (EEnet) R ~ = == — -B VDD_5V
load LRC ANALOG_TOP.upf

VSS

$supply on(“TB_CORE.CORE.VSS”, 0.0); [|——>flll==—=H VSS
VDD_AON VDD_PROC

|
I —_ —
: O O
= RNM / EE Net Package I VDD_AON VDD_PROC
| UPF |
m= === UPF Supply Net L —n vss DIGITAL_TOP.upf
EEnet

© 2018 Cadence Design Systems, Inc. All rights reserved.

2018

e et ANALOG_TOP (PARTIAL UPF)

DV

N

CONFERENCE AND EXHIBITION

connect_supply net VDD_5V
-ports {VDD_5V}

connect_supply net VSS
-ports {VSS}

Adds STATE to UPF Supply Net

create_hdl2upf_ vct

VCTwr2upf VDD_5V \

-hdl_type {sv cds_rnm} \

-table {{>=4.8 FULL ON} \
{>=4.5 PARTIAL ON} \
{<4.5 OFF}}

SPICE
RNM

UPF
Verilog / SV

UPF Supply Net

™l 254V

LDO

MASTER

PROC

(SPICE)

ANALOG_TOP
PD_AON

(SPICE)

LDO
AON

(SPICE) .
| =
| =
| =

PCM_ANA OSCILLATOR | .
(RNM) (Verilog) : .
| =

L] m

Adds STATE to UPF Supply Net

connect_supply net VDD_AON
-ports {VDD_AON}

connect_supply net VDD_PROC
-ports {VDD_PROC}

create_hdl2upf vct

VCTwr2upf VDD_AON \

-hdl_type {sv cds_rnm} \

-table {{>=1.2 FULL_ON} \
{>=1.1 PARTIAL ON} \
{<1.1 OFF}}

create_hdl2upf vct

VCTwr2upf VDD_PROC \

-hdl_type {sv cds_rnm} \

-table {{>=0.9 FULL_ON} \
{>=0.7 PARTIAL ON} \
{<0.7 OFF}}

© 2018 Cadence Design Systems, Inc. All rights reserved.

oo einiien- DIGITAL_TOP UPF (PARTIAL UPF)
DV

NN

CONFERENCE AND EXHIBITION

| SPICE
= RNM
| UPF
create_power_switch SW_PROC \] Verilog / SV
-input_supply port {VIN VDD_PROC}\ “=**== UPE Supply Net
-output_supply port {VOUT VDD_PROC_SW} \ -
-control port {EN PSO_PROC} \ -
-on_state {state on VIN {EN}} \ set_rt_etent:l.on retn_PD_PROC \
-off state {state off {!EN}} -doma:.n. PD_PROC \
- - -save_signal {RETN_PROC low}\
— I_ - o - - - . __. —restore_signal {RETN_PROC high} \ —
MPLLACL((lY) mhEssEEsEEEEEEEEEEEEEEEEgEEEEEEE -elements {PROC/REGISTERFILE ..
VDD_PROC (0.93 V) . =

PSO_PROC

RETN_PROC FEly_blie
(POWER CONTROL

CLOCK & RESET CONTROL)

SW_PROC

N

VDD_PROC_SW SEQUENCER

(Partial
ALU State Retention _ - .
REGISTER ISOLATION set_isolation iso_low \

FILE PRIMARY 1/0 -domain PD_PROC \
(Partial UPF -isolation_signal ISO_PROC \
State Retention) -isolation_sense low \

|
| . _

-applies_to both

|
HBUS'2] —rme et
ICACHE / set_isolation iso_hbusm low \

7 -domain PD_PROC \
-isolation_signal ISO_HBUSM \

-isolation_sense low \

-clamp_value 0 \

-elements {PROC/HBUSM_REQ

CLOCK, RESET | HBUS™[3]

PD_PROC
PROC

create_power_domain PD_PROC \
-supply {primary SS_PSO} \
-supply {default_ isolation SS_PROC} \
-supply {default_retention SS_PROC}

© 2018 Cadence Design Systems, Inc. All rights reserved.

e 2S. POwer States

DYV

CONFERENCE AND EXHIBITION
Power State
Power Up

Load SRAM

Power Down PROC

Power Up
PROC

LDO Shutdown

LDO AON powers up, Power On Reset,
Clock Enabled, JTAG, BUSARB, PCM_DIG on

JTAG loads PROC object code
LDO_PROC powers up
PROC executes instruction thread

LPM __ asserted. Cache flush started, clock gated, state saved, isolation enabled.
Power Shutoff by Power Switch SW_PROC

LPM_ released. PROC power on — SW_PROC turned on. Restore state, release state.

Output of VREG is heavily loaded, causing LDO_AON and LDO_PROC to be shutoff.
Load is removed, enter Power Up State.

After POR, enter into LOAD SRAM state

After LOAD SRAM — PROC executes instruction thread

© 2018 Cadence Design Systems, Inc. All rights reserved.

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

3/5/18

2018

File Edit View Tools Options Help

CLIPS (Command-Line IP Selector)* (on amspenenBc-1)

cadence

Use Existing xrun Files

B ;
= e
T
T rnf
Virtuoso Directories
g
(=) e

—

d)& I8 s & hES,

S X

ierarchy
= G o o » ™
B PCCG PCC PCCG in file dig/PCM_DIG/TH/PCCG Y
CAKPROCGATE TLATNGINIS TLATNGAIS n e dig/PCM DGzt ved1v2_basicCelsy
- TB_CORE TB_CORE TB_CORE in file test/CORE/tb/TE_CORE.sv
B CoRE CORE CORE in file dig/CORE/sW/CORE sv
TNALOGTOP AMALOGTOP ANALOG.TOP 1l ana/ANALOG, TOPANFEAl/ANALOG TOP varms
Cranaw oA FCHANA I 1 PP A ANAATEPCH A varns
LoAoGH eANDGAP BANDGEP e
WDOSON 004N (00, 1P-amsLOOLDO_AON/conts 00 PamsLORD0_AONcontig T T ——
(LDOMASTER LOOMASTER L00_IPramslDOLDO_MASTERIconfs L00_P-amsLOOADO_MASTERconfi 1 #0E-100_p-amst 00T 00sams state
ADO.PROC 100,602 L00_IP-omsLDO/LDO_PD2lconts LDO.P-omsl00/100.PD2cont 1B #0-100_p-amsL0OTEST (00soms stote”
[«OSCILLATOR OSCILLATOR OSCILLATOR in file LPMS_SoC/src/ams/OSCILLATOR.vams
P PLLIGONHZ PLLPremsPLUPLLIGONNZConTS PR —— B soe-ru e amspu ooz s st
—
Lse s STMULL i e LPMS SoCsrcfamsrstmulvarms
~weor on PO n il tPORMTcalverlogAMS vams
v eerers

REFSYS in file rt/REFSYS/wrealiverilogAlS vams

LDO

MASTER

(POWER

CONTROL
CLOCK & RESET

DIGITAL_TOP

—ELa
[cusits_gy M]
— R

\

4

LDO

™A oo
e

© 2018 Cadence Design Systems, Inc. All rights reserved.

Switch in AMS Design Configuration

e

TER

LDO_PRO

C

LDO_MAS

LDO in Virtuoso
Database

[config1

config2
config3

E

PLL in Virtuoso Database

PLL

PFD

[config1

1 config2

[config3

70

o212 VDD _SV TRANSITIONS TO FULL_ON

CONFERENCE AND EXHIBITION

VDD_5V not stable

Transitions from PARTIAL_ON to FULL_ON _ B
Leave LDO_AON disabled

0] Bastlinev=0
IF Cursor-Baseline v« 1 965,717.155777431 1ns

Name @~ Cursor

LT IE T T T I-[," ! J!I-IL. < OO ..Illl[i l

Beginning VDD _5V ramps for OV (OFF) to < 4.8 V (PARTIAL_ON)
(PARTIAL_ON -> OFF). Waveform not shown

Middle VDD_5V has multiple transitions between FULL_ON and
PARTIAL_ON

Disable LDO_AON until VDD_5V is FULL_ON and BANDGAP
output>=1.2V

© 2018 Cadence Design Systems, Inc. All rights reserved.

—...20_VDD 5V TRANSITIONS TO FULL ON

DYV

CONFERENCE AND EXHIBITION

@ Bassinew=0
¥ Cursor-Baseline v = 2,767,977ns

Name &~ Cursor 2,200,000ns 2,400,000ns

(PULL_ON, 5. 006)

FULL_ON

Middle of Power Up Power State <1 >

(previous slide)

Enable
LDO_AON

{OFF, 0.021}

End VDD_5V FULL_ON and bg_out>=1.2V
LDO_AON is powered up, enter LOAD SRAM Power State

© 2018 Cadence Design Systems, Inc. All rights reserved.

o212 LDO SHUTDOWN POWER STATE

CONFERENCE AND EXHIBITION

o~ Cursor "Ll 9,400,000 9,600,000n¢ 9,800,000n 10,000,000n4

Enable
LDO_AON |

FU» | PARTIAL_ON

Entire Range VDD_5V transitions between FULL_ON and PARTIAL_ON. LDO_AON gets
disabled
LDO_AON is enabled after VDD_5V is FULL_ON and bg out>1.2V

|
© 2018 Cadence Design Systems, Inc. All rights reserved.

s et SUMMary 1 of 2
DYvV

CONFERENCE AND EXHIBITION

* Low Power MS simulation allows user to verify the operation of on-chip
power supplies, clock generation, reset, and digital logic concurrently

lvesfound [Desption

PSN Errors Debugged using SimVision Power Supply Network. Usually found at
start of LP verification cycle

Incorrect parameter setting VREF_LDO parameter was initially set to 2.4 v instead of 4.8 v. Result
on POR cell — LDO_AON turned on too soon produced wrong output voltage.
Digital logic did not function.

Incorrect registers for state PROC / UPF developers worked together to determine correct
retention registers for state retention strategy

Staggering isolation enable PROC / UPF developers decided to disable HBUS access (through
signals isolation) until PROC was running.
Prevent accidental HBUS traffic

|
© 2018 Cadence Design Systems, Inc. All rights reserved.

cesen et SUMMary 2 of 2
DYvV

CONFERENCE AND EXHIBITI ON

* Cache Flush
— Contents of Data Cache had to be transferred to SRAM before power shutoff
— Required changes to Instruction / Data Cache and PCM_DIG

* Based on accuracy / simulation performance requirements — swap models
— Oscillator — replaced Verilog AMS model of PLL with Verilog model
— LDO - replaced RNM model with SPICE model

* Recommendation - isolate handshaking signals (bus request, bus grant ...) to their
inactive state to prevent locking HBUS when PROC is shutoff

|
© 2018 Cadence Design Systems, Inc. All rights reserved.

2018

DESIGN AND VERIFICATION™

D\ <+ Agenda

* The Need for Speed

* Formal methods to avoid sim cycles

« Coding for max sim speed

« Speeding power + mixed-signal SoC

* Break

 Portable Stimulus for faster verification

* Applying hardware to speed system verification

« Summary and call to action

3/5/18 © 2018 Cadence Design Systems, Inc. All rights reserved.

76

2018

DESIGN AND VERIFICATION™

DYV

CONFERENCE AND EXHIBITION

BREAK!

|
3/5/18 © 2018 Cadence Design Systems, Inc. All rights reserved. 77

2018

DESIGN AND VERIFICATION™

D\ <+ Agenda

* The Need for Speed

* Formal methods to avoid sim cycles

« Coding for max sim speed

« Speeding power + mixed-signal SoC

* Break

 Portable Stimulus for faster verification

* Applying hardware to speed system verification

« Summary and call to action

3/5/18 © 2018 Cadence Design Systems, Inc. All rights reserved.

78

é‘lﬁlSoC HW Verification Next Level of

D\
ST Challenges For PSS

e Simulation speed
— A UVM TB, and in specific randomization, cannot be expedite
— Low ROI on multi-core simulation and emulation -
— SV re-elaboration is a concern

Coverage closer requires lots of work Perf‘::;ance
— Virtual sequence creation is manual Stress
— Example: cannot ask a tool “try all possible traffic in all legal configurations modes”
— Coverage holes requires reachability analysis

UVM test creation requires expertise Short

: . : Multi-IP

— UVM sequences introduce a learning curve and protocol VIPs comes with manuals
— Debug contradictions or illegal tests analysis are time consuming

Self-checking becomes a challenge

Portability and reuse Low-power
— Vertical reuse is a challenge Use-Cases
— Cannot leverage the efforts in terms of registers sequences, tests and coverage

Scenarios

© 2018 Cadence Design Systems, Inc. All rights reserved.

oot 1S 16 IMportant Speeding-up the TB?

DV

CONFERENCE AND EXHIBITION Amdhal’s Law - Amdahl’s law is a formula used to find the maximum improvement
improvement possible by improving a particular part of a system.

10x acceleration of TB and

11 DUT gives 10x overall
X speedup!!!
o DUTand///////

)s(ax TB Accel
~10X!!
8x

Simulation PIE portions

10x accel of DUT gives 2x

10x acceleration of TB gives
overall speedup

2x overall speedup

4x B DUT
3x Accel Accel

O

?i ~2X a\ ‘. “ ~2X mDUT mTB mother

How Can PSS Solution help?

© 2018 Cadence Design Systems, Inc. All rights reserved.

oot 1NE PSS INput Format and Modeling
DV I o
Intuition

CONFERENCE AND EXHIBITION
* Create an abstract behavioral model to capture the legal scenario space
— Automated self-checking test creation, coverage and debug
* Parsing the model allows leveraging it multiple ways:
— Example #1: portability and reuse
— Example #2: time and resource aware solving (virtual sequence) fffefri:p'jef:t?jnc::;‘;‘;;‘i‘f)"r‘fstvyvftisa”d
— Example #3: coverage reachability composition rules
— Example #4: speed...

* Consider the challenge of randomizing
1M packets

— Randomization consumes time
— Do you really need 1M variations?? ey r et

activities to specify scenarios

© 2018 Cadence Design Systems, Inc. All rights reserved.

o GN AMMD VERIEIC 1

CONFERENCE AND EXHIBITION

SOC
Suite

410 cdn_core_power_c
© power_down
© power_up
> power_down single
© power_up_single

48 cdn_coherency_ops_c
< false_sharing_rw

4% cdn_power_ops ¢
@' power_down_up_counter

l No re-elaboration

Fast scenarios on the host combining
sophisticated constraints solving and run-

time reactive repetitions

distributed RT
framework

Optimized C

Optimized C

@ multi_power_down
@ mukti_power_up
® multi_power_down_power_up
@' run_serial_pd_then_pu
@' pd_then_pu
@ coherency_low_power
48 cdn_coherency fine_ops_c
@ shr_read_shr_read

@ false_sharing_traffic_and.
@' false_sharing

& relseXeharing/randomlol
& mutt false_sharing_rands
@ false_sharing_on_buffers
@ false_sharing_on_io_oper]
@ true_sharing_operator
& true_sharing_mutt]_copy |
© select_cache_region

© allocate to_cache shr_read_shr write

> multi_rw_cache ® shr_read invalidate_read
> check_cache_region @ pack shr

Host

We have created a new VIP
Ay | interface to communicate

® invalidate_cache R stat] g wte. -

© invalidate_tlb @ do_i -
> evict line @' do.d —
A] —_— Cadence VIP/AVIP BUS Agent Cadence VIP/AVIP Agent fastto C

@ and barrier —

@' traffic_and_barrier
& copy. chain_snd,_barrier
@' cache_actions_and_barrier
@ choose legal cache_op
© select region_to_mem_buff
@ do_while_powaring_operator,
@' coherency_ts_power
@ coherency_fs_power
@' false_sharing_random_power
> yield
> set_pages
© tib_invalidate_al
© change_page
@' dvm
@ cdvm_swipe

AN

We have implemented a rich
SOC library that works on
top of transactors as well as
embedded cores.

y

User-defined tests can be Vision
created via a UML GUI Can accelerate the AVIP BFMs for multi-
core

DUT

Overall easy multicore partition for
Xcelium

Talk directly to the BFM for
optimized execution (can
drive sequences for non
portable tests)

© 2018 Cadence Design Systems, Inc. All rights reserved.

mem

2018 What about test automation? Functional

DWWV process? speed up

CONFERENCE AND EXHIBITION

Automated

Hi-Speed C --------H----------o - e

T tB h * Emulator + AVIPs
e S e n c AVIP BUS Agent AVIP Agent
Palladium + AVIP

________ A e e e e e e e A ____
DUT
v \ 4
mem

© 2018 Cadence Design Systems, Inc. All rights reserved.

2018 Kufomafea Hl-gpeea E |eszencH Pa"aalum + KWP

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

Scenarios on the host combining
sophisticated constraints solving and run-
time reactive repetitions

High-speed and does not require re-
elaboration

S 0 C 210 cdn_core_power

© power_down
S u |te © power_up
© power_down_single
> power_up_single
4T cdn_power_ops_c

4T cdn_coherency_ops_¢

distributed RT Opt| mized C

@ false._sharing.rw @ power_down_up_counter framework
@ false_sharing_traffic and| % multi_power_down

@' false_sharing @ multi_power_up

@' false_sharing_random_of ® multi_power_down_power_up

@ false_sharing_on buffers| @ pd then_pu

@ false_sharing_on_lo_oper] @ conarency_low_power

gwe_s:a””‘l-““iﬂ“” 4 cdn_coherency fine_ops ¢
frue-shanfg MUItCOPYA @ <hr read shr.read

— o mE— O e O o D e e e e e e
S R — o - E—— S T S R B EEE R e e Ea B e e o

© allocate_to_cache shr_read shr_write

e @ shr_read_invalidate_read

© check cache_region % pac

A Erfulator + AVIPs
© invalidate_tib @ do_i

© evict_line @'do g

© barrier @ fil s}

@' exclusive_cache_access
@ and_barrier

@ traffic_and_barrier

@ copy_chain_and_barrier
@' cache_actions_and_barrier
&' choose_legal_cache_op

AVIP BUS Agent AVIP Agent

@ do_while_powering_operator|
@ coherency_ts_power

@ coherency_fs_power

@ false_sharing_random_powe
© yield

Yl We have created an interface
for Cadence AVIPs

> set_pages
© tb_invalidate_all
© change_page

Yes! Use-case functional
coverage on emulation

-____T.________________ e e e =

DUT
v

VLR aflel e s (s _

The same SOC tests runs optimized execution (can

efficiently with emulation drive sequences for non mem
portable tests)

© 2018 Cadence Design Systems, Inc. All rights reserved. |

oo AUtomated Hi-Speed C TestBench

Palladium/Protium + AVIP

S ocC 20 cdn_core_power ¢
© power_down

S t © power_up

uite © power_down _single

© power_up_single
4% cdn_power_ops_c

@' power_down_up_counter
false_sharing_traffic_and] @ mutti_power_down
@ muti_power_up
@ muti_power_down_power_up
@' run_serial_pd_then_pu
@' pd_then_pu
false_sharing_on_0_oper| @ coherency low_power

Optlmlzed C' distributed RT Optlmlzed CI

framework

4T cdn_coherency_ops_c
false_sharing_rw

Sync and data

Host

e RN { communication preserved R e

© select_cache.region
© allocate_to_cache ST S
o &

© multi_rw_cache ® shr_read_invalidate_read between SW a nd TB $o

5 Ay Emulator + AVIPs

© invalidate_cache R stat{hg wites - T - cnn

© invalidate_tlb < do_i —— —— t t >

ST - activities o’

© barrier e =
g =_ AVIP BUS S Agent
nd_barrier] [R
trafic_and_barrier — —_— 20
copy.hai_snd barer s [&
cache_actions_and_barrier S b\%
choose_legal_cache_op P |

© select_region.to_mem_buff L e

@ do_while_powering_operator|

@ coherency_ts_power

@' coherency_fs_power

®'false_sharing_random_power

© yield
set_pages

© tib_invalidate_all C I U

change_page
@ dm
v swipe

Use-cases
DUT

Generate the C code Optimized C’ mem

that can be cross

executior: Desian Systems. Inc. All rithts reserved |

2018

DESIGN AND VERIFICATION™

D\ OIr 1 TB Speed-up Summary

* The potential of Testbench speed-up is large

— Perspec works with post-silicon environments that are million times faster than
simulation

* Speed-up is achieve using:
— Legally parallel mixing of gen-time and with runtime reactiveness and repetition

— Parallelizing the BFM logic
e Cadence AVIP can be parallelized in MC

— Running procedural C on the host
— Eliminating re-elaboration step for new tests
* Cadence provides significant speedup on
— On Xcelium™ Palladium®, Protium™ and Post-silicon

|
© 2018 Cadence Design Systems, Inc. All rights reserved.

2018

DESIGN AND VERIFICATION™

D\ <+ Agenda

* The Need for Speed

* Formal methods to avoid sim cycles

« Coding for max sim speed

« Speeding power + mixed-signal SoC

* Break

 Portable Stimulus for faster verification

* Applying hardware to speed system verification

« Summary and call to action

3/5/18 © 2018 Cadence Design Systems, Inc. All rights reserved.

87

2018

e movea e Simulation and Emulation

DV

CONFERENCE AND EXHIBITION H a n d i n H a n d

Testbench +

Design + UPF
mon

Common Compile

Compile full emulation
® { model first in simulation for
(initial bring-up and debug
Simulation

* Fine-grained debug
* Behavioral testbench & models
* Supports 4-state logic

Start simulation with 4-state
logic until after reset X/Z
propagation. Then hotswap to
emulation .

/]

© 2018 Cadence Design Systems, Inc. All rights reserved.

Need to Go

E After initial model bring-up
in simulation, recompile
model and co-simulate on

emulation

& coverage
Supports 2-state logic

Fast forward to point of interest in
emulation without timing and
then swap back to simulation and
annotate timing (gate-level and
RTL subset)

2018 H
e Emulation Market Trends

CONFERENCE AND EXHIBITION

* Data center density and connectivity
— Rack-based footprint
— High-speed 56Gbs optical interfaces
— Host expansion via Infiniband Switch
* Maximize availability and utilization
— Power module redundancy =
— Hot-swappable power module
— Fine-grained user granularity of 4MG increments
* Cloud Readiness
— Enable shorter term access without the need to setup and host
— Ease adoption via advanced virtualization features

© 2018 Cadence Design Systems, Inc. All rights reserved.

2018

yevimsre- Emulation Market Trends

CONFERENCE AND EXHIBITION

Migration to centralized emulation farm to maximize investment

Use model versatility and scalability

22+ use models for RTL and netlist

;,:/,1'/
Scaling from 4MG to 9.2BG —
Q1CE wih Speeciudget 3 Vit Voroationschine
De b u g p I atfo rm g t"“:‘::S.'qu ™ - ™ j :)v‘:b:(ldull.lruba'udw\
. . . o . S e & Emulation Davelopment Kits
— FullVision, InfiniTrace, Virtual Verification Machine, btk . AocarsndVethcon P
Dynamic Probes, SDL, 0 Sttt O et) | Qpwparesores
W In-Circut Acceleraton E :: :‘:&w:l:o:::‘ software coverage
. Appllcatlons T e -
¢ Accelorated Verficaton |F: U Scenano verfication
In-circuit emulation SpeedBridge® interface ——
J Dynamuc Power Analyss with Joules® J Vector debug / DFT validaton

Accelerated Verification IP (transactors for most popular O UPF/CPF Vesicaton O Post afioonvesdeton
interface for the purpose of acceleration) '

Emulation Development Kit S

Virtual Emulation and Debug

J Performance validation/optimization

oL
)

© 2018 Cadence Design Systems, Inc. All rights reserved.

oo e 2018 HW-assisted Verification Productivity
Loop

CONFERENCE AND EXHIBIT(ON

Compile databases for different workloads
(Compile: speed, automation, # of workstations)

Allocate as many workloads as possible
Allocate (Utilization efficiency: # of parallel jobs, relocation)

Run workloads based on priorities
(Speed: use models, interface solutions)

Debug for both pre & post silicon bugs
(Visibility: trace depth, dynamic trigger)

© 2018 Cadence Design Systems, Inc. All rights reserved.

caian anip D
DV -Workload Throughput Matters

L2/L3 Design
| % Cache @ .@ Maturity
¢ S,]

’ Driver ‘;";;‘
» [3
©Q @
® N ® Power '
e e Analysis PR
° o] e o e ® @ @ D¢ ® e
lloc OS * Alluc .
ate .@ Boot b ‘@ .@ .). ate ‘@ .@
® S@ne © e O
» ate
B @ @ @ o mark ,@.
]]
b 0 &
o e ©
® BUg
-@' Rates
Initial Feature Feature Feature
bring-up Set 1 Set 2 SetN

* How often will this loop be repeated over the course of a project?
* What type/size of workloads and users will be using emulation?
 How many workloads will be required to verify and validate your design?

Workloads

|
© 2018 Cadence Design Systems, Inc. All rights reserved.

2018

DESIGN AND VERIFICATION™

DV~ Scalability from Small to Large Payload Sizes

CONFERENCE AND EXHIBITION

P | Subsystem SoC / System

| Bare Metal Software and Application SW Stack |

| Application SW Stack |

| Bare-Metal Software |

Compute Compute | Customer’s
Subsystem H_Slﬂﬁ&lem_) | Specific Comp

! FE— A
I Customer’s .
i‘ Application-Specific IP CPU
| I
| — —— _— =
) High Speed, General- Low-Speed
|G
2-16M Gates 32-128M Gates 128-4096M Gates or more

Debug fixes trigger
Re-run
of test suites

Debug fixes trigger
Re-run
of test suites

Emulation needs to scale
beyond 4 billion gates while
allowing resource to be

System-level bugs may trigger shared with best user

‘ module-level changes (ECOs) granularity of 4 million gates

© 2018 Cadence Design Systems, Inc. All rights reserved.

2018 muiation oices

DESIGN AND VERIFICATION™

DV LI In-Circuit Emulation mature and vibrant, Virtual
| Emulation emerging

* Virtual enablement of SW * Highest performance
driven HW verification y
* High fidelity live traffic
* Flexible debug Virtual , ;
. * Traffic generation and analysis
* Earlier access with Hybrid Emulation / with 3™ party testers
verification
* Remote and re-locatable
* Ease of replication ' access
* Adoption path for simulation * Post-silicon debug & reuse
and simulation acceleration

users * Migration path to FPGA
prototyping

© 2018 Cadence Design Systems, Inc. All rights reserved.

2018

DESIGN AND VERIFICATION™

DV Verification Flow Example

Multi-engine automated portable
stimulus generation across Xcelium,

Unified coverage analysis &
unreachability between JasperGold,

Xcelium. Palladi

Perspec vManager™
Microkernel Metrics

Tracking
SoC, Sub-System or IP ‘

Pl Unified performance
! S analysis across
A,,,,..";:f.*::‘;;:c.n vaadl . Paed
L‘su—bﬁ&' ‘ Componentsl
—— IwWB
[\ h i
il
High Speed, General- Unified debug
- Low-Speed
» Wired Interface | Purpose ; e = .
Peripherals eripherals| ~Peripherals 5 o across Xcelium,
JasperGold® Xcelium™ Palladium® Protium™ Unicov RUNS Debu
FORMAL SIMULATION EMULATION FPGA PROTO COVerage DB DBg

DB
Hz Range MHz 10’s of MHz

I Faster than Bring-up: days Bring-up: week ' ' .
traditional sim I TAT: hours | TAT: days

© 2018 Cadence Design Systems, Inc. All rights reserved.

2018~ Emulation and rototyping iNee

DESIGN AND VERIFICATION™

2N = t0 Go Hand in Hand ...

RTL

Compile

FPGA

* Highest performance
* Software development

Emulation

* Best debug
* SoC acceleration,

hardware/software e Hardware/software
* Power and performance S oedBridas® regressions
: peeabriage
analysis Adapters

Users need Congruency and a common environment

© 2018 Cadence Design Systems, Inc. All rights reserved.

cesonanoveindrien- FPGA-Based Prototyping Is Fragmented

DNV Disjointed, lacking integrated flow and automation

* FPGA-based prototyping
Challenges:

* Fragmented
* Requires RTL modifications

Lack auto compilation
 Memory and clocks
« Partitioning

Lack of flow integration
« Emulation and prototyping

» Configuration reuse
« FPGAP&R

© 2018 Cadence Design Systems, Inc. All rights reserved.

2018

e FPGA-Based Prototyping Is Hard To Do...

CONFERENCE AND EXHIBITION

Interfaces
Clocking o Memories
| _ |
:::::::::3n |-L—ﬂ=|_'ti_|— — ;
After Parstion m‘.?"g..? — E ; g
T i — =t

Debug

Hardware and Software
i Lock Step

Memory View

(LR x“llllil]

© 2018 Cadence Design Systems, Inc. All rights reserved.

2018

e Really, Really Hard To Do

CONFERENCE AND EXHIBITION

FPGA-based prototyping has become the methodology of choice for early software
development

BUT...

Prototyping implementation and bring-up takes too long and there has, so far, not been any
easy transition from simulation and emulation into FPGA-based prototyping

4-6 weeks 4-6 weeks 4 weeks 2 weeks
RTL Memory Compile Automatic / Manual . In-Circuit
Preparation Remodeling Synthesis Multi-FPGA Partitioning FRGATImIng|Closure (R&R) Bring-Up

3 months...and more!

|
© 2018 Cadence Design Systems, Inc. All rights reserved.

o205 OF s It?

CONFERENCE AND EXHIBITION

How to address the prototyping challenges

RTL Memory Compile
Preparation Remodeling Synthesis

Automatic / Manual

Multi-FPGA Partitioning FEC Mg e

In-Circuit
Bring-Up

Traditional

<« Protium $1

No RTL modifications needed
— Clocking / number of clocks

— Automated memory compilation and modeling

FPGA timing closure

— Multiple design integrations per day

Fully automatic, multi-FPGA partitioning Fully integrated FPGA P&R

— Optional manual optimization

— Automatic constraint generation

— Guaranteed P&R success

© 2018 Cadence Design Systems, Inc. All rights reserved.

— Avoids time-consuming FPGA P&R

DESIGN AND VER%-‘Q;!TS'ON" FaSt Ti m e -to

s, -Prototype (TTP)

Networking — <481%
Networking P <« 85%

Consumer Traditional

- < 88% Protium S1
CPU - < 91%

Consumer - < 89%

Networking . < 91%
Mobile -— 479%
0 5 10 15 20 25 30 35

Bring-up time (weeks)
Note: Sample customer bring-up gains over traditional FPGA-based prototyping solutions

|
© 2018 Cadence Design Systems, Inc. All rights reserved.

oot NO RTL Modifications — Clocking

DV

CONFERENCE AND EXHIBITION

. Tradltlonal Imitations:

Gated clock, multiplexed clocks
— # of clocks
— Difficult to achieve FPGA timing closure
— Long iteration times / long FPGA P&R times
— Unpredictable results and prototype behavior

Clock distribution on the board Clock generation in the FPGA

c1 (100 Mha)
Q (33 Mhz)

A3 (250 Mha)
4 (300 Mhz)

c1 (100 Mhz)
2 (33 Mha)

3 (250 Mhz)
¢4 (300 Mhz)

After Partition After Partition

Each FPGA has at
least 1 PLL to
generate the user
clocks in that
partition

1 (100 Mha)

2 (33 Mhz) rpp_clk (programmable)
A3 (250 Mha) .] pp_div_rst
(300 Mhz) " One low:skew dock line I

v/ p

‘ synchronous
Need many low-skew clock lines

. Automated Clocking

No hold-time violations in user clock domains

— Removes any FPGA-specific clock limitations
— Supports unlimited # of design clocks

— Improves FPGA timing closure

— Accelerates FPGA P&R times

Protium is “cycle-based”
+ Protium updates each net in the design once per cycle of a conceptual

clock called FCLK.

¢ FCLK is generated automatically by the compiler. Its frequency is

determined by the compiler

¢ Depending on the clocking mode, CAKE 1x or CAKE2x, the fastest

design clock changes once or twice per FCLK cycle.

FOlKeycde ¢ 0 1 2 3 4 S & 7T 8 % W N e
FCLK (oemceptmal) — | | L 1T 1 1 1 1 S| |
Fastest design chock — |
o o | - —_— | - | [1

FCLK and Step Clock

+ In Protium hardware, FCLK is a conceptual clock, but step clock really
exists

Step clock is ideally 150Mhz, but may be slower

In each compile, the compiler determines both the step clock
frequency and the step count
J Step count is the number of step clock cycles per FCLK cycle
J Typical step count is between 10 and 50

Seep * o 1 2 L] “ s . L . . " .
Step Clock 1
POLK (romenpiuaty [1 | 1 I

© 2018 Cadence Design Systems, Inc. All rights reserved.

e noeaie. UUSers Need a Fully Integrated

DV

CONFERENCE AND EXHIBITION

« Automated prototyping flow
reduces time-to-prototype (TTP)
from months to weeks

» Design changes have much
lesser time impact on iterations

» Simpler single pass flow iterations
are run in hours not days

» Software development gets a
head start measured in months
not days

()

Months

Traditional FPGA-based
Prototyping Flow

——

2222

12222

Wl

Implementation Flow

()

© 2018 Cadence Design Systems, Inc. All rights reserved.

Weeks

Protium S1 FPGA-based
Prototyping Flow

Functional Fe———————————— .
Assurance 1 - 1
; Before P&R | !
» | Verification model | §
v | | tovalidate FPGA | I
1 functionality :
1 1
1 1
¥ ! '
1 . 1
1 e 1
| i
1 1
1 1
1 1
1 1
1 1
1 1
Independent re-run of | H
selected tests for debug : :
> H
1 1
1 1
1 1
1 I 1
1 1
1 1
1

Probes
Waveforms

Optional

2018 . gn . .
oo No RTL Modifications - Memories

CONFERENCE AND EXHIBITION

* No ASIC RTL changes
» Automatic conversion of latches and tri-states
« Automatic memory compilation and modeling
» Fully automated clock tree transformation
» Automatic conversion of gated and multiplexed clocks

Memory in the Design FPGA Prototyping Implementation
Clock/s
l Write Addresses { g
Writeenable/s{ — P _ ‘
Read enable/s { Read Enable
I g
Write Datals { g T |
RW Address/es { } DataOut = 8
; > FastFlop I
I % - b
Dataln { . WRITE_ENABLE g — &
Write Enable/s { Circuitry =~ = I
& User Clk
>
S <
Read Addresses { §
g
R-Counter '

© 2018 Cadence Design Systems, Tnc. All rights reserved.

o2l COmprehensive, Automated Memory

DYV

CONFERENCE AND EXHIBITION

Support

Conversion and implementation of memories is one of the most challenging and time-consuming
steps in bring-up of an FPGA-based prototype (often taking many weeks to complete).

Palladium Upload/
Type Size Perform. Comments
s MMP Download
FPGA-internal ~50Mbits / FPGA Yes Yes Full speed > Gl e e Eepe
* Fully automatic compile
* Extends ‘FPGA-internal’
memory to external SRAM
SR T (A3 e Some Yes <12MHz « Useful for Serial Parallel Interface (SPI)-flash
small external memory) memory card
and other
small memories (e.g. boot ROM)
XDRAM (automated 16 GBytes per XDRAM DDR family 0 SEl BB B G
Yes <16MHz * Leverages XDRAM hardware
bulk memory) card models

Support for DDR3/4, LPDDR3/4

Design change may be required, depending
No No Full design speed on memory type
App notes available

DCMC (Direct Connected x GBytes (depending
Memory Card) on memories used)

FCMC (Full-custom
Memory Card)

Custom No No Full design speed Fully custom development

© 2018 Cadence Design Systems, Inc. All rights reserved.

Protium S1
Memory compile capabilities :

Smaller memories are
automatically compiled into
FPGA-internal resources

For larger, off-FPGA memories,
the Protium platform offers
several automated solutions,
see table

2018 -
T Innov_atlve XDRAM & XSRAM
Solution

CONFERENCE AND EXHIBITION

« XSRAM

— Benefits:
* Increases FPGA internal memory from 80Mbits to 128MBytes (>10x)
* Automatic mapping of any memory type
e Support for multi-port memories
* Support for backdoor upload/download

« XDRAM
— Benefits:
* Adds DDRx bulk memories
e Supports LPDDR2/3/4; DDR3/4; HBM
* No change to design memory controller and firmware
* Support for backdoor upload/download
* Acts as memory SpeedBridge (timing, refresh, etc.)

© 2018 Cadence Design Systems, Inc. All rights reserved.

e 2012 Hardware and Software Debug

SoNrRmCE Ano D2 uamon Software |

« Waveforms across partitions S

* Design-centric view vs. FPGA-centric Operating Systems (OS)
* Force/release Drivers

J Predefine_d signa_ls (at compile time) to “0” Firmware [HAL » Backdoor memory access

or “1” during runtime * Quickly change boot code, software, etc.

. Momtor.3|gnal - _ | s * Clock control

* Real-time monitoring of predefined (at sﬁgsmyl:‘t';; " Application-Specific « Start/stop the clock on demand

Components

compile time) signals
» External data capture card

: - * Remote access
» Thousands of signals for millions of cycles oy e = - Network resource anytime from anywhere
« State read-back S aaeeit £ | Sepenl | \Lomsisen

Purpose | oot Po * Assertion checkers

* Fully scriptable runtime environment

S e = « High-performance link to software model

Software Debug: C Code

Probes ,
JTAG =

Daughtercards and peripherals

© 2018 Cadence Design Systems, Inc. All rights reserved.

povari v S
cesc Advanced Debug

CONFERENCE AND EXHIBITION

Unique to Protium™
* External data capture card
— Thousands of signals for millions of (DUT) clock cycles

* Force/release signal

— Forces predefined signals (at compile time) into “0” or “1” during runtime
* Memory upload and download

* Monitor signal
— Real-time monitoring of predefined (at compile time) signals

* State read-back without recompile

* Assertion checkers

* Runtime

— Start/stop clock capability (run “N” cycles)

* Probes

— Runtime data capture of predefined signals for offline waveform viewing

|
© 2018 Cadence Design Systems, Inc. All rights reserved.

2018
DVC":,',&'QA Scalable Performance
~ . (single board, multi-FPGA)

Automatic mode Further Optimization

T A

100MHz
Phase 3
Design-based
Ehaso user manual
refinement
10MHz
Black-box
Higher effort
performance
5MHzZ optimization
Automatic
for quick
3MHz functionality

|
© 2018 Cadence Design Systems, Inc. All rights reserved.

et Protium S1 Prototyping Solution

CONFERENCE AND EXHIBITION |ndUStry,S first comprehensive, fuuy integrated SOIUtion

Software

Multi-fabric o

. . Compiler Pop
| :

SpeedBridges

Transaction
Interface

Memory Cards

Memory Models

© 2018 Cadence Design Systems, Inc. All rights reserved.

2018

DESIGN AND VERIFICATION™

D\ <+ Agenda

* The Need for Speed

* Formal methods to avoid sim cycles

« Coding for max sim speed

« Speeding power + mixed-signal SoC

* Break

 Portable Stimulus for faster verification

* Applying hardware to speed system verification

« Summary and call to action

3/5/18 © 2018 Cadence Design Systems, Inc. All rights reserved.

111

DESIGN AND VERIFICATION -

D\ Summary and Call to Action
* Every facet of SoC verification benefits from speed

* Faster engines, faster coding, more efficient cycles (MDV) and avoiding
simulation cycles are all approaches to gain verification speed

* So tap into the verification speed-force today
— Add JasperGold® Apps
— Run more efficient code faster in Xcelium™
— Create more efficient stimulus faster in Perspec™
— Verify systems faster in Palladium ® and Protium®

|
3/5/18 © 2018 Cadence Design Systems, Inc. All rights reserved. 112

2018

DESIGN AND VERIFICATION™

DYV

CONFERENCE AND EXHIBITION

Questions?

|
3/5/18 © 2018 Cadence Design Systems, Inc. All rights reserved. 113

2018

DESIGN AND VERIFICATION™

DYV

CONFERENCE AND EXHIBITION

Thank you!

|
3/5/18 © 2018 Cadence Design Systems, Inc. All rights reserved. 114

