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Key Verification Challenges to Address

Applications

IP 

Sub-System

Bare Metal SW 

System on 
Chip

Middleware

OS & Drivers

Project time

1. IP Verification

2. SoC Verification

3. Software bring-up ?

?

?

4. When are we done?

• Need more robust and efficient IP verification, to find bugs earlier
• Plan & Metrics, Formal first, Verification IP, fast Simulation

• Need test automation, scalable fast engines, power & performance verification
• Plan & Metrics, Parallel Simulation, Emulation, Verification IP, Portable Stimulus

• Need for early Software bring-up on RTL, with high speed platforms
• Virtual & Hybrid, Emulation, Early FPGA, HW/SW debug

• Need objective project signoff criteria, metrics based tracking & trend analysis
• Plan-driven Metrics across engines, Cloud compute, Machine Learning 
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Verification Suite
Technology innovation leadership: Fast, Smart, and Optimized

VIP
VERIFICATION IP

Perspec™

SW-DRIVEN TEST
vManager™

METRICS
Indago™

DEBUGUniform multi-engine verification
Verification Fabric

Palladium® Z1
EMULATION

Xcelium™
SIMULATION

JasperGold®
FORMAL & STATIC

Protium™ S1
FPGA PROTOTYPE

Total throughput

Metric driven signoff

Application optimized

Cloud centric architecture

• Fast Best-in-class engines

• Smart Flow-driven engine 
integrations

• Optimized comprehensive 
solutions
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Session Objectives

• Overview on how formal can speed up verification process
• Introduce Designer Formal Verification flow
• Discuss when to use formal for maximized productivity
• Introduce methodology to address Formal IP Signoff
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How Can Formal Help
• For many DV engineers their preferred verification method (simulation) is 

a hammer and everything looks like a nail

• The reality is 

– Many users are already using formal as a sign-off tool for certain 

blocks and problems

– There are categories of designs which favor simulation and others 

which favor formal

• Formal, applied to the right designs and problems, can achieve significant 

productivity and quality gains in the overall verification flow

– Especially when simulation-like rigorous verification planning and 

coverage closure methodologies are applied

3/5/18 8

“FV wherever we can, simulate where we must” – Erik Seligman, JUG 2016
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Case Study: Teradyne
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Source: Teradyne presentation at CDNLive Boston, Nov 2017

Speed!
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Formal Speeds Verification
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Reduce DV effort 
while improving 

quality
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Cost of Finding Bugs

• Effort to fix a bug increases significantly the further into the 
development cycle
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The Challenge With Designers

• Managers, verification engineers and even designers all 
agree that designers SHOULD get more involved in 
verification

• Reality is that RTL design, implementation tasks, etc. MUST
get done 

• Conclusion: Only successful way to get designers involved in 
functional verification is automation
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Designers

RTL Design 
and Lint

Functional 
Verification
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JasperGold Superlint:
Hand-off Robust Reusable RTL
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+

Basic Lint
& DFT 
Checks

Automatic 
Formal 
Checks

Comprehensive functional checks, violation debug & 
waiver handling based on best-in-class formal analysis

JasperGold® Visualize™ Environment

Low-noise violation 
& waiver handling

Best-in-class debug

Naming

Coding style

Sim-synth 
mismatch

DFT 
observability

DFT controllability

LPDDR NAND
FLASH

Reachability

Livelock/ 
deadlock

Combo loop 
analysis

Range overflow

Arithmetic 
overflow

Bus contention

X assignment

Enabled by true 
formal technology

• Automation for designers
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Superlint App: Success Story

• ARM
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“We’ve been using the JasperGold Superlint App at ARM for more than a year, and we’ve had 
success with improving RTL signoff and shortening time to market. With the ability to find bugs 
weeks earlier in the design process, we’ve reduced late-stage RTL changes, which enables the 

team to save additional time when we get to the functional verification stage.”

Hobson Bullman
Vice President and General Manager

Technology Services Group, ARM

Source: ARM keynote presentation at Jasper User Group, Nov 2016
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Formal Speeds Verification
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Reduce DV effort 
while improving 

quality

© 2018 Cadence Design Systems, Inc. All rights reserved.



Apply The Best Techniques
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Simulation Formal

Does 
Specialized 
App Exist?Apps

Y
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What Is A Formal App?
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Formal Platform

Control & Status 
Register (CSR)

Formal Property 
Verification (FPV)

Sequential
Equivalency 

Checking (SEC)

Code Coverage 
UNReachability

(UNR)  

Connectivity 
(CONN)

Engines/Proof Strategies

Debug

Automated/Optimized Executable Spec Entry
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CSR App: Success Story
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Source: STMicroelectronics presentation at CDNLive 2017

Results & Benefits

IP AAA IP BBB IP CCC IP DDD IP EEE
Mature IP, 50 
registers

New IP (on-
going ), 189 
registers

New IP derivative New IP derivative New IP derivative

Initial setup
(formal tb already in 
place)

1h Early verif start 2h 2 wks On-going 

RTL bugs 2, found
immediately

10 1 found 
immediately

1 found On-going 

Issues in spec / 
IP-XACT

Several found Several found
before RTL 
availability

On-going On-going 

11

Quick technology deployment 
: 5 IPs in 6 months

Improves Quality & Time To Market for our STM32 products

Flow enables fast iterations when new RTL / spec deliveries

More exhaustive verification leading to more confidence

Perspectives
• Formal verification ensures better confidence in security features

implementation

• IP-XACT based flow developed & deployed
• Reduces effort needed to deploy register formal verification
• Less errors, less debug as automation makes sure modeling layer & IP-XACT are 

in line

• Next 
• Automate generation of a template for the modeling layer
• How to take benefit from this flow to reduce effort in UVM_REG based verification ?
• Use of formal coverage & combined coverage
• Deploy !

12
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CONN App: Success Story
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Source: DSP Group presentation at CDNLive 2016
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Apply The Best Techniques
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Simulation Formal

Does 
Specialized 
App Exist?Apps

Y N

Simulation

Y Good Block 
for Formal?

FPV App

N
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Formal IP Signoff

• Definition already well established in industry

• Signoff is all about confidence
– IMPORTANT: Finding bugs
– CRITICAL: Finding no bugs while reaching a measurable, planned set of 

coverage
• Required:

– Verification plan specifying checks and coverage to measure progress and 
define done

– Technology and methodology to achieve signoff
3/5/18 21

No checks fail while reaching all coverage
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Metric-Driven Verification!
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Formal Signoff Summary
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Metric-Based Sign-off Solution

Repeatable Methodology

Design
Type

Formal0Signoff

Data
Transformation ControlConcurrencyData

Transport

Sequential
Depth

1000s 10s/
Manageable100s

Block
Size Large SmallMedium

Block
Criticality Low HighMedium

I/F Serial HandshakeParallelPipelined
Parallel

Block
Specification/
Knowledge

MinimalADefinition/
Understanding

WellADefined/
Understood

PartiallyADefined/
Understood

tb_top

DUT
I/F,
Agent

I/F,
Agent

Sequencer

Scoreboard/Checker

Coverage

Transaction>level,
communication

Abstractions/Reductions

+

=
No checks fail while reaching all coverage

For amenable blocks
Quality: formal >> sim coverage

Productivity: Time to signoff << sim

vPlan

Technology
Formal              Semi-Formal

Coverage Analysis
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JUG: Coverage-Driven Formal 
Verification Signoff on CCIX Design

• Partnership with IP Group at Cadence

3/5/18 23

Repeatable methodology
applied to create testbench

Metric-Driven Verification approach:
Coverage Closure!

13 © 2017 Cadence Design Systems, Inc. All rights reserved.
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Source: Cadence IPG presentation at JUG 2017
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JUG: Coverage-Driven Formal 
Verification Signoff on CCIX Design

• Partnership with IP Group at Cadence
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High quality bugs found

18 © 2017 Cadence Design Systems, Inc. All rights reserved.

Summary

• No method is perfect!
– Formal behind sim in some areas, but ahead in others

• Formal is competitive with simulation even on a complex block like CCIX
– Main challenge was that CCIX turned out to have more sequential depth than expected

– 4KB packet length (100+ cycles), max credit update (1000+ cycles), timeout scenarios (1000+ cycles)

• Formal can do meaningful coverage closure
– Extend to end-of-test and incidental checking bring formal closer to sim wrt coverage

• Enhance semi-formal even further
– Critical piece of signoff since it is where sim does a better job

• Recommend to sign off with formal if:
– Design is "formal friendly"

– Sequential depth is the most important factor

– Running simulation one level above target block

Formal as viable option for IP signoff in amenable targets

Source: Cadence IPG presentation at JUG 2017
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Maximum Speed
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Bug HuntingSimulation

Formal 
Signoff

UNR

CSR

ABVIP         +          VIP

FPV/ABVIP/COV/CSR/

Bug Hunting

Simulation

Formal

Revised 
Block SEC

• IP vplan

• Block #1

• I/F #1

• …

• Feature #1

• Registers

• …

• Block #2

• I/F #1

• …

• Feature #1

• …

• Block #3

• …

• …

• Block #N

• I/F #1

• I/F #2

• …

• Registers

• …

• …

• Code Coverage

Register Map 
Validation

Code 
Coverage 
Closure

Interface 
Checking
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Case Study: Infineon
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Source: Infineon presentation at CDNLive 2017
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Coding for Max Simulation Speed

• General SystemVerilog Coding

• Coding for Multi-Core Simulation

• UVM Save / Restart Methodology
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General SystemVerilog Coding
• SystemVerilog is BIG (800+ pages)

– Lots of opportunity to improve performance
• Focus today on a few of high-level concepts for making environments faster

– Caching data (results, objects, etc.)
– Focus on efficient algorithms
– Choosing correct data-structures

• What is not being discussed today
– Basic code optimization
– Assertion / Functional coverage coding
– Efficient randomization / constraint creation
– Comprehensive coding guidelines (including these topics and more) available at 

http://support.cadence.com/ -- “Simulation Performance Coding Guidelines for SystemVerilog”

© 2018 Cadence Design Systems, Inc. All rights reserved.



Caching Data

• Examples of when caching is effective
– The same inputs always produce the output

• When the calculation is done often (e.g. every cycle)
• The same inputs will often be repeated over the short term
• The calculation is expensive with respect to other things at the same time

– A class object can be reused
• When consumers of an object will take only what they want (won’t keep a 

reference)
• When the object is heavy to create
• When the object has complex constraints (reuse of constraint construction)

© 2018 Cadence Design Systems, Inc. All rights reserved.



Example Algorithm Caching

function int unsigned hash(string key);
hash = 0;
for(int i=0; i<key.len(); ++i) begin
hash += key[i];
hash += (hash<<10);
hash ^= (hash>>6);

end  
hash += (hash<<3);
hash += (hash>>11);
hash += (hash<<15);

endtask

What’s the problem?

© 2018 Cadence Design Systems, Inc. All rights reserved.



Example Algorithm Caching

function int unsigned hash(string key);
hash = 0;
for(int i=0; i<key.len(); ++i) begin
hash += key[i];
hash += (hash<<10);
hash ^= (hash>>6);

end  
hash += (hash<<3);
hash += (hash>>11);
hash += (hash<<15);

endtask

Nothing (it is simple and 
fast), but, it is a linear 
algorithm so there is a 
possibility for improvement

© 2018 Cadence Design Systems, Inc. All rights reserved.



Example Algorithm Caching
function int unsigned hash(string key);
static int unsigned cache[string];
//if you need to manage the cache size. Use a static
//array as will be the fastest.
static string aged_list[MAXSIZE]; 
static int oldest = 0;
// This is the savings if the same key gets used alot
if(cache.exists(key)) return cache[key];

... //normal cache algorithm

// This is the cache overhead.
cache[key] = hash;
cache.delete(aged_lsit[oldest%MAXSIZE]);
aged_list[oldest%MAXSIZE] = key;
++oldest;

endfunction

A simple cache may 
make things faster

© 2018 Cadence Design Systems, Inc. All rights reserved.



Example Caching an Object

task mycomp::run(uvm_phase_object phase);
forever begin
@(posedge vif.clk);
if(txstart) begin
local_data = mydata::create(“data”,this);
data.randomize();
send_recv_data(data); //some time consuming work
$cast(shared_data, local_data.clone()); //copy it
txport.write(shared_data); //send it on

end
end

endtask

What’s the problem?

© 2018 Cadence Design Systems, Inc. All rights reserved.



Example Caching an Object

task mycomp::run(uvm_phase_object phase);
forever begin
@(posedge vif.clk);
if(txstart) begin
local_data = mydata::create(“data”,this);
data.randomize();
send_recv_data(data); //some time consuming work
$cast(shared_data, local_data.clone()); //copy it
txport.write(shared_data); //send it on

end
end

endtask

Data is created every 
time through the loop, 
but only used locally.
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Example Caching an Object

task mycomp::run(uvm_phase_object phase);
local_data = mydata::create(“data”,this);
forever begin
@(posedge vif.clk);  
if(txstart) begin
data.randomize();
send_recv_data(data); //some time consuming work
$cast(shared_data, local_data.clone()); //copy it
txport.write(shared_data); //send it on

end
end

endtask

Move data creation to 
only happen once.

© 2018 Cadence Design Systems, Inc. All rights reserved.



Efficient Algorithms

• Know the complexity of your algorithm
– Constant (O(1)), logarithmic (O(logn)), linear (O(n)), quadratic (O(n2)) ...
– Watch out for loops in loops

• A loop is O(n)
• A loop inside a loop is O(n2)
• A loop inside a loop inside a loop is O(n3) ...

• Watch out how often you are doing work
– A linear algorithm executed every cycle will likely be problematic

• Watch what you do when operating on larger data sets (higher values of n)
– Can algorithm be changed to be constant or logarithmic?
– Can executions of the algorithm be minimized?

© 2018 Cadence Design Systems, Inc. All rights reserved.



Example of a Problematic Algorithm

input real vin;
output real vout;
real vdata[512];
logic[8:0] ptr;
always@(posedge clk)
ptr<=ptr+1;

real sum;
always@(posedge clk) begin
vdata[ptr] <= vin;
sum=0.0; foreach(vdata[i]) sum+=vdata[i];
vout <= sum/512; 

end

What’s the problem?

© 2018 Cadence Design Systems, Inc. All rights reserved.



Example of a Problematic Algorithm

input real vin;
output real vout;
real vdata[512];
logic[8:0] ptr;
always@(posedge clk)
ptr<=ptr+1;

real sum;
always@(posedge clk) begin
vdata[ptr] <= vin;
sum=0.0; foreach(vdata[i]) sum+=vdata[i];
vout <= sum/512; 

end

Every edge we sum the 
array even though only 
one element changes
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Example of a Problematic Algorithm

input real vin;
output real vout;
real vdata[512];
logic[8:0] ptr;
real curr=0.0;
always@(posedge clk)
ptr<=ptr+1;

always@(posedge clk) begin
vdata[ptr] <= vin;
vout <= curr/512; 
curr <= curr-vdata[ptr]+vin;

end

Better to only do what 
is required each cycle

© 2018 Cadence Design Systems, Inc. All rights reserved.



Choosing the Best Data Structure
• This is related to memory management and algorithms
• Memory management

– Dynamic data structures (dynamic arrays, queues, associative arrays, classes) have heap management overhead.
– Static arrays and structs are pass by value (no heap management)
– This overhead can be significant depending on how an object is used

• Basic QDA Algorithms
– Search

• Associative arrays are O(logn)
• Everything else is O(n)

– Front/back insertion
• Associative arrays are O(logn)
• Queues are O(1)
• Static and dynamic arrays are O(n) (must be done manually)
• Queues auto-size when needed

– Random insertion
• Associative arrays are O(logn)
• Everything else is O(n)

© 2018 Cadence Design Systems, Inc. All rights reserved.



Choosing the Best Data Structure

• General recommendations

– Use associative arrays when searches dominate

– Use queues for most dynamically sizeable random access objects

– Use static arrays anytime it is reasonable

– Use structs instead of classes for tuples (or simple metadata)

© 2018 Cadence Design Systems, Inc. All rights reserved.



Data Structure Example
mydata datain[$];
task mycomp::write(mydata data);
data = data.clone();
datain.push_back(data);

endtask
task mycomp::check(mydata data);
foreach(datain[i]) begin
if(datain[i].unique_id == data.unique_id) begin
do_work(datain[i]);
datain.delete(i);
return;

end
end
do_error(data);

endtask

What is the problem with this? 
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Data Structure Example

mydata datain[$];
task mycomp::write(mydata data);
data = data.clone();
datain.push_back(data);

endtask
task mycomp::check(mydata data);
foreach(datain[i]) begin
if(datain[i].unique_id == data.unique_id) begin
do_work(datain[i]);
datain.delete(i);
return;

end
end
do_error(data);

endtask

Access is constant, deletion is 
linear

We are using the wrong data structure.
Queues are not good with random deletion and lookup!

© 2018 Cadence Design Systems, Inc. All rights reserved.



Data Structure Example

mydata datain[int];
task mycomp::write(mydata data);
data = data.clone();
datain[data.unique_id] = data;

endtask
task mycomp::check(mydata data);
if( datain.exists(data.unique_id) ) begin

do_work(datain[data.unique_id]);
datain.delete(data.unique_id);
return;

end
do_error(data);

endtask

Use an associative array instead
Lookup and deletion are 
O(log(n)) instead of O(n)!

Lookup and deletion are logN
with # of elements

© 2018 Cadence Design Systems, Inc. All rights reserved.



Another Data Structure Example
class data;
int aval;
int bval;
int extra;

endclass
data sparse_memory[int];

function add_elem(int addr, data d);
sparse_memory[addr] = d;

endfunction
function data get_elem(int addr);
data rval;
if(sparse_memory.exists(addr)) 
rval sparse_memory[addr];

else
rval = new;

return rval;
endfunction

© 2018 Cadence Design Systems, Inc. All rights reserved.

What is the problem with this? 



Another data Structure Example
class data;

int aval;
int bval;
int extra;

endclass
data sparse_memory[int];

function add_elem(int addr, data d);
sparse_memory[addr] = d;

endfunction
function data get_elem(int addr);

data rval;
if(sparse_memory.exists(addr)) 

rval sparse_memory[addr];
else begin

rval = new;
sparse_memory[addr] = rval;

end
return rval;

endfunction

There is no need for a class 
(no polymorphism or any 
class behaviors)

© 2018 Cadence Design Systems, Inc. All rights reserved.



Another Data Structure Example

typedef struct packed{
int aval;
int bval;
int extra;

} data;

data sparse_memory[int];

function add_elem(int addr, data d);
sparse_memory[addr] = d;

endfunction
function data get_elem(int addr);
return sparse_memory[addr];

endfunction

Change to a struct

© 2018 Cadence Design Systems, Inc. All rights reserved.



Coding for Max Simulation Speed

• General SystemVerilog Coding

• Coding for Multi-Core Simulation

• UVM Save / Restart Methodology
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Coding for Multi-core Simulation
• Multi-core simulation is similar to hardware acceleration except

– Uses standard servers
– Achieves acceleration by sending concurrent work to separate cores
– Some applications (such as wave dumping) also lend themselves to running in 

separate cores
• The same coding that works for acceleration works for multi-core

– Synthesizable code
• General guidelines

– Signal level activity should be in synthesizable bfms
– Reduce activity between accelerated and non-accelerated sections maximizes 

speed up
– Synchronized designs speed up the best but are not required

© 2018 Cadence Design Systems, Inc. All rights reserved.



Coding for Multi-core Simulation

• What multi-core 
wants is
– Lots of 

independent 
processes active 
at the same time

module somemod1 (input clk, ...)
always@(posedge clk)
...//complex expressions and assignments

always@(posedge clk)
...//more complex expressions and assignments

always_comb
...//best is to not have any timing

assign ... //best is to not have any timing
endmodule

module connector(input clk, ...)
clkgater g1(gclk,clk,cenable);
somemod1(gclk, ...);
othermod(clk, ...);
...

endmodule

Will attempt to associated 
processes with clock or gated 
version of clock

© 2018 Cadence Design Systems, Inc. All rights reserved.



• What multi-core doesn’t 
want is
– Behavioral code (things 

it can’t synthesize)
– Lots of independent 

timing (very few events 
at a given time slot)

Coding for Multi-core Simulation

module behav (myinterface mif, ...)
import vepkg::*;
//some rtl stuff
//some ve stuff

endmodule

module timedblock(...)
assign #1.1 w1 = ...
assign #0.3 w2 = ...
assign #2.6 w3 = ...
...

endmodule

All happen in different time slots so 
may not be able to be in parallel if 
there are interdependency

© 2018 Cadence Design Systems, Inc. All rights reserved.



Coding for Max Simulation Speed

• General SystemVerilog Coding

• Coding for Multi-Core Simulation

• UVM Save / Restart Methodology
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UVM Save/Restart Concept

• Test sets tend to do the same initialization work prior to doing test 
specific work

• Device setup may take as much as 80% of the simulation time
• Treat the device setup as an extension of the build

– Build a base simulation snapshot
– Run the simulation to time N (when device setup is complete)
– Save the simulation snapshot at time N
– Run the test set using the saved simulation snapshot
– Make use of reseeding to run the same tests with different seeds
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UVM Save/Restart Concept

© 2018 Cadence Design Systems, Inc. All rights reserved.

test 1Initialize XReset

Base Snapshot Config 1 Snapshot

test N+1Initialize YReset

test 2

test N

Config 2 Snapshot

test N+2



Mechanics

• Each configuration is a UVM test
– +UVM_TESTNAME=config_1

• Tests are virtual sequences 
loaded from command line arg
– +SEQUENCE=testseq

© 2018 Cadence Design Systems, Inc. All rights reserved.

class base_restart_test extends uvm_test;
...
task run(uvm_phase_object phase);
init_seq init_seq = init_seq::type_id::create(“init_seq”,null);
test_seq seq;
init_seq.start(null, null);
$save(init_seq.get_type_name());
$value$plusags(“SEQUENCE=%s”,restart_seq_str);
seq = test_seq::type_id::create(restart_seq_str,null);
void’(seq.randomize());
seq.start(seqr, null, -1, 0);

endtask
endtask



Questions?
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Low Power Mixed Signal Simulation 
Tutorial

• Discuss verification of mixed signal SoC that is powered by an off-chip regulator 
driving on-chip supplies
– Processor based design powered by on-chip power supplies
– Verify SPICE, RNM, AMS, Verilog models in the same environment
– All IP developed by Cadence
– Power intent specified in UPF 2.0

• Low Power Mixed Signal simulation run in UVM
– LDO (SPICE) driving UPF Power Supply Network
– Isolation, state retention, power shutoff

• Target Technology – Cadence 45 nm – GSCLIB045
© 2018 Cadence Design Systems, Inc. All rights reserved.



Low Power Basics

Concept Description
Power Domains Group the elements of logic hierarchy that share the same primary power supply

Supply Ports Provide the supply interface to power domains and switches

Supply Nets Connect supply ports

Power Switch Based on the value of the power control signal, the Power Switch connects / 

disconnects the input supply port to the output supply port of the switch

HDL Supply Net Control 

Functions

UPF provides functions which enable the user to drive Supply Ports in low power 

simulation:
supply_on, supply_off, supply_partial_on

Power Supply Network Consists of supply ports, supply nets and power switches and their interconnections

LDO Low-dropout regulator. DC/DC converter used for on-chip power supplies

© 2018 Cadence Design Systems, Inc. All rights reserved.



Low Power Basics

Concept Description
State Retention Allows the contents of registers to be saved prior to power shutoff and recovered 

when is power is restored
Usually performed on key control registers

Isolation Prevents corrupted values from propagating from shutoff power domains to power 
domains which are powered up

Power Shutoff (PSO) Power reduction method where power domains are shutoff. Shutoff can be 
performed by Power Switch or by turning off the power to the supply ports.

Isolation and State Retention are often used in Power Shutoff Domains
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Power Digital Logic

• Most Common
– HDL Supply Net Control Functions (supply_on)
– UPF Power Switches

• hdl_supply_net_type
– Drive UPF supply nets from HDL models
– UPF Package

• electrical / wreal Power Supply
(electrical/wreal)

Power Supply
(digital)

analog_1 digital_1

analog_2 digital_2b

VDD1
UPF Supply Net

vout

vout

PD1

PD2

VSS

VDD2 – UPF Supply Net with VCT

UPF Supply Net
supply_on

digital_3

PD3

SW1

SW2

VDD_SW1 VDD_SW2
VDD3

hdl_supply_net_type

SW1, SW2 – UPF Power Switches
VDD_SW1 – UPF Supply Net
VDD_SW2 – UPF Supply Net
VDD3 – UPF Supply Net with Resolution Function
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Driving PSN with electrical / wreal Ports

• UPF Supply Nets require a 
STATE and VOLTAGE
– STATE –

UNDETERMINED, 
PARTIAL_ON, 
FULL_ON, OFF

• wreal / electrical ports 
provide the VOLTAGE, but 
no STATE

• Add STATE through VCT 
(Value Conversion Table)

Power Supply
(electrical/wreal)

analog_2 digital_2b

vout

PD2

VSS

VDD2 – UPF Supply Net with VCT

UPF Supply Net
supply_on

create_supply_net VDD2
create_hdl2upf_vct VCTwr2upf_VDD2 \
-hdl_type {sv cds_rnm} \
-table {{>=4.8 FULL_ON} \

{>=4.5 PARTIAL_ON} \
{<4.5 OFF}}

STATE Digital Logic
FULL_ON Does not cause corruption

PARTIAL_ON Enable / Disable corruption 
through UPF command

OFF Corrupt

UNDETERMINED Corrupt
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Driving PSN with Electrical / wreal Ports

• The VOLTAGE from the UPF supply net is connected to the electrical signal by an 
internal R2E connect module

• The impedance of the R2E connect module is critical for analog block simulation

Power Supply
(electrical/wreal)

analog_2 digital_2b

vout

PD2

VSS

VDD2 – UPF Supply Net with VCT

UPF Supply Net
supply_on

amsd {
ie vsup=5.0 net=TB_CORE.CORE.ANALOG_TOP.VDD_5V 
rout=0

ie vsup=5.0 
net="TB_CORE.CORE.ANALOG_TOP.VSS 
TB_CORE.CORE.ANALOG_TOP.xOSCILLATOR.PLL.VSS 
TB_CORE.CORE.ANALOG_TOP.xOSCILLATOR.VSS" rout=0
}

Vice versa, if electrical supply drives UPF supply net, 
the E2R may need to be configured as higher impedance 
than default (200 Ohms) especially for non-ideal supply 
source 
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Block Diagram & Power Architecture
VDD_5V

CORE (PD_CORE)

b

TB_CORE

VREG

(RNM)

12 V -> 5 V, 
Programmable Load
RNM / EE Net
Off-Chip

LPM_

LDO

MASTER

(SPICE)
VSS

LDO

PROC

(SPICE)

Clock, POR Reset

OSCILLATOR

(Verilog)

BANDGAP

(RNM)

REFSYS

(RNM)

POR

(RNM)

PCM_ANA

(RNM)

Bias

ANALOG_TOP
PD_AON LDO

AON

(SPICE)

2.54 V

DIGITAL_TOP
PD_AON

SEQUENCER

(Partial

State Retention)

DCACHE

ICACHE

ALU

BUSARB

VDD_AON (1.24 V)

HBUS*[4]

HBUS*[1]

JTAG

SRAM

SPI 

Interface

PD_PROC
PROC

HBUS*[3]

HBUS*[2] HBUS*[0]

HBUS*[5]

VDD_PROC (0.93 V)

REGISTER

FILE

(Partial

State Retention)

PCM_DIG

(POWER CONTROL

CLOCK & RESET CONTROL)

PSO_PROCSW_PROC
RETN_PROC

ISO_PROC, ISO_HBUSM

ISOLATION

PRIMARY I/O

UPF

CLOCK, RESET

H
B
U
S

VDD_PROC_SW

SPICE
RNM
UPF
Verilog / SV

UPF Supply Net

VDD_5V
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Hierarchical UPF & Power / Ground 

Connections

VDD_5V

ANALOG_TOP.upf

VDD_5V

VSS

DIGITAL_TOP.upf

VDD_AON VDD_PROC

VDD_PROCVDD_AON

VSS

CORE.upf

LRC

vcap_wreal

$supply_on(“TB_CORE.CORE.VSS”, 0.0);

vin

regulator

$supply_on(“TB_CORE.regulator.vin”,12.0);

TB_CORE.upf

VSS

Programmable 

Load

pwm(real)

vcap(real)

load

Vout EEnet

(EEnet)

vsense,

isense

(EEnet)

RNM / EE Net Package
UPF
UPF Supply Net
EEnet
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ANALOG_TOP (PARTIAL UPF) 

LDO
MASTER
(SPICE)

VDD_5V

VSS
LDO
PROC
(SPICE)

OSCILLATOR
(Verilog)

BANDGAP
(RNM)

REFSYS
(RNM)

POR
(RNM)

PCM_ANA
(RNM)

Bias

ANALOG_TOP
PD_AON LDO

AON
(SPICE)

2.54 V

connect_supply_net VDD_AON                   
–ports {VDD_AON}

connect_supply_net VDD_PROC
-ports {VDD_PROC}

connect_supply_net VDD_5V
-ports {VDD_5V}

connect_supply_net VSS
-ports {VSS}

1.24 V

0.9 V

create_hdl2upf_vct 
VCTwr2upf_VDD_AON \
-hdl_type {sv cds_rnm} \
-table {{>=1.2 FULL_ON} \

{>=1.1 PARTIAL_ON} \
{<1.1 OFF}}

create_hdl2upf_vct 
VCTwr2upf_VDD_PROC \
-hdl_type {sv cds_rnm} \
-table {{>=0.9 FULL_ON} \

{>=0.7 PARTIAL_ON} \
{<0.7 OFF}}

SPICE
RNM

UPF
Verilog / SV

UPF Supply Net
Adds STATE to UPF Supply Net

create_hdl2upf_vct 
VCTwr2upf_VDD_5V \
-hdl_type {sv cds_rnm} \
-table {{>=4.8 FULL_ON} \

{>=4.5 PARTIAL_ON} \
{<4.5 OFF}}

Adds STATE to UPF Supply Net

© 2018 Cadence Design Systems, Inc. All rights reserved.



DIGITAL_TOP UPF (PARTIAL UPF) 
SPICE
RNM
UPF
Verilog / SV

UPF Supply Net

DIGITAL_TOP
PD_AON

SEQUENCER
(Partial

State Retention)

DCACHE

ICACHE

ALU

BUSARB

VDD_AON (1.24 V)

HBUS*[4]

HBUS*[1]

JTAG

SRAM

SPI 
Interface

PD_PROC
PROC

HBUS*[3]

HBUS*[2] HBUS*[0]

HBUS*[5]

VDD_PROC (0.93 V)

REGISTER
FILE

(Partial
State Retention)

PCM_DIG
(POWER CONTROL

CLOCK & RESET CONTROL)

PSO_PROCSW_PROC
RETN_PROC

ISO_PROC, ISO_HBUSM

ISOLATION
PRIMARY I/O

UPF

CLOCK, RESET

H
B
U
S

VDD_PROC_SW

VDD_AON VDD_PROC VSS

create_power_domain PD_PROC \
-supply {primary SS_PSO} \
-supply {default_isolation SS_PROC} \
-supply {default_retention SS_PROC} 

create_power_switch SW_PROC \
-input_supply_port {VIN VDD_PROC}\
-output_supply_port {VOUT VDD_PROC_SW} \
-control_port {EN PSO_PROC} \
-on_state {state_on VIN {EN}} \
-off_state {state_off {!EN}}

set_isolation iso_low \
-domain PD_PROC \
-isolation_signal ISO_PROC \
-isolation_sense  low \
-clamp_value 0 \
-applies_to both

set_isolation iso_hbusm_low \
-domain PD_PROC \
-isolation_signal ISO_HBUSM \
-isolation_sense  low \
-clamp_value 0 \
-elements {PROC/HBUSM_REQ …

set_retention retn_PD_PROC \
-domain PD_PROC \
-save_signal {RETN_PROC low}\
-restore_signal {RETN_PROC high} \
-elements {PROC/REGISTERFILE …
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Power States

Power State Description
Power Up LDO AON powers up, Power On Reset,

Clock Enabled, JTAG, BUSARB, PCM_DIG on

Load SRAM JTAG loads PROC object code

LDO_PROC powers up

PROC executes instruction thread

Power Down PROC LPM_ asserted. Cache flush started, clock gated, state saved, isolation enabled. 

Power Shutoff by Power Switch SW_PROC

Power Up

PROC

LPM_ released. PROC power on – SW_PROC turned on. Restore state, release state. 

LDO Shutdown Output of VREG is heavily loaded, causing LDO_AON and LDO_PROC to be shutoff. 

Load is removed, enter Power Up State.

After POR, enter into LOAD SRAM state

After LOAD SRAM – PROC executes instruction thread
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Switch in AMS Design Configuration
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PLL

PFD CP LPF VCO

DIV

config1

config2

config3

PLL in Virtuoso Database

driver

UVM
(TB)

monitor

VDD_

5VVREG
LDO

MASTER
LDO

PROC

PLL
BAND
GAP

REFSY
S

POR PCM
_ANA

ANALOG_TOP LDO
AON

DIGITAL_TOP

SEQ

DC

IC

ALU

BUSARB

JTAG

SRAM

SPI IF
REG

PCM_DIG
(POWER 

CONTROL
CLOCK & RESET 

CONTROL)

ISO

LDO_AON 

LDO_PRO

C

config1

config2

config3

LDO

LDO_MAS

TER 

LDO in Virtuoso 
Database

PLL

LDO



VDD_5V TRANSITIONS TO FULL_ON 

Power Up Power State Description
Beginning VDD_5V ramps for 0V (OFF) to < 4.8 V (PARTIAL_ON)  

(PARTIAL_ON -> OFF). Waveform not shown

Middle VDD_5V has multiple transitions between FULL_ON and 
PARTIAL_ON
Disable LDO_AON until VDD_5V is FULL_ON and BANDGAP 
output >= 1.2 V

4.8 V

VDD_5V not stable
Transitions from PARTIAL_ON to FULL_ON
Leave LDO_AON disabled 
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VDD_5V TRANSITIONS TO FULL_ON

Power Up Power State Description
End VDD_5V FULL_ON and bg_out >= 1.2 V

LDO_AON is powered up, enter LOAD SRAM Power State

4.8 V

1.2 V

Enable 
LDO_AON

Middle of Power Up Power State
(previous slide)
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LDO SHUTDOWN POWER STATE

LDO Shutdown
Power State

Description

Entire Range VDD_5V transitions between FULL_ON and PARTIAL_ON. LDO_AON gets 
disabled
LDO_AON is enabled after VDD_5V is FULL_ON and bg_out > 1.2 V

4.8 V

1.2 V

Enable 
LDO_AON
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Summary 1 of 2

• Low Power MS simulation allows user to verify the operation of on-chip 
power supplies, clock generation, reset, and digital logic concurrently

Issues Found Description
PSN Errors Debugged using SimVision Power Supply Network. Usually found at 

start of  LP verification cycle

Incorrect parameter setting 
on POR cell

VREF_LDO parameter was initially set to 2.4 v instead of 4.8 v. Result 
– LDO_AON turned on too soon produced wrong output voltage. 
Digital logic did not function.

Incorrect registers for state 
retention

PROC / UPF developers worked together to determine correct 
registers for state retention strategy

Staggering isolation enable 
signals

PROC / UPF developers decided to disable HBUS access (through 
isolation) until PROC was running.
Prevent accidental HBUS traffic

© 2018 Cadence Design Systems, Inc. All rights reserved.



Summary 2 of 2

• Cache Flush

– Contents of Data Cache had to be transferred to SRAM before power shutoff

– Required changes to Instruction / Data Cache and PCM_DIG

• Based on accuracy / simulation performance requirements – swap  models

– Oscillator – replaced Verilog AMS model of PLL with Verilog model

– LDO – replaced RNM model with SPICE model

• Recommendation - isolate handshaking signals (bus request, bus grant …) to their 

inactive state to prevent locking HBUS when PROC is shutoff
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• The Need for Speed

• Formal methods to avoid sim cycles
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BREAK!
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SoC HW Verification Next Level of 
Challenges For PSS

• Simulation speed
– A UVM TB, and in specific randomization, cannot be expedite
– Low ROI on multi-core simulation and emulation
– SV re-elaboration is a concern

• Coverage closer requires lots of work
– Virtual sequence creation is manual
– Example: cannot ask a tool “try all possible traffic in all legal configurations modes”
– Coverage holes requires reachability analysis

• UVM test creation requires expertise
– UVM sequences introduce a learning curve and protocol VIPs comes with manuals
– Debug contradictions or illegal tests analysis are time consuming

• Self-checking becomes a challenge 
• Portability and reuse

– Vertical reuse is a challenge
– Cannot leverage the efforts in terms of registers sequences, tests and coverage 

Connectivity

Short
Multi-IP 

Scenarios

Performance
And 

Stress

Low-power 
Use-Cases
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Is it Important Speeding-up the TB? 

1x

2x

3x

4x

5x

6x

7x

8x

9x

10
x

11
x

DUT 
Accel

TB
Accel

~2x~2x

DUT and 
TB Accel
~10X!!

10x accel of DUT gives 2x 
overall speedup10x acceleration of TB gives 

2x overall speedup

10x acceleration of TB and 
DUT gives 10x overall 
speedup!!!

Simulation PIE portions

DUT TB other

Amdhal’s Law - Amdahl’s law is a formula used to find the maximum improvement 
improvement possible by improving a particular part of a system.

How Can PSS Solution help?
© 2018 Cadence Design Systems, Inc. All rights reserved.



The PSS Input Format and Modeling 
Intuition

• Create an abstract behavioral model to capture the legal scenario space
– Automated self-checking test creation, coverage and debug

• Parsing the model allows leveraging it multiple ways:
– Example #1: portability and reuse
– Example #2: time and resource aware solving (virtual sequence)
– Example #3: coverage reachability
– Example #4: speed…

• Consider the challenge of randomizing
1M packets
– Randomization consumes time
– Do you really need 1M variations??

TB

SoC

USB controller

USB
VIP

CPU

Bus

GPX Audio

Display controller

Camera controller

CPU
CPUCPU

DDR Controller

DMA MODEMSRAM

Speaker Microphone

Step 2: Compose actions into 
activities to specify scenarios

Step 1: Define component types and 
their operations as actions with 
composition rules
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Automated Hi-Speed C TestBench
Xcelium + AVIP/VIP

DUT

Simulator + VIP

Host

Optimized C Optimized Cdistributed RT
framework

mem

Cadence VIP/AVIP AgentCadence VIP/AVIP BUS Agent

Collector

Seq

BFM

Monitor

Collector

Seq

BFM

Monitor

Fast scenarios on the host combining 
sophisticated constraints solving and run-
time reactive repetitions  

Vision
Can accelerate the AVIP BFMs for multi-
core
Overall easy multicore partition for 
Xcelium

No re-elaboration

We have created a new VIP 
interface to communicate 
fast to C

We have implemented a rich 
SOC library that works on 
top of transactors as well as 
embedded cores. 

User-defined  tests can be 
created via a UML GUI 

Use-cases

SOC
Suite

Talk directly to the BFM for 
optimized execution (can 
drive sequences for non 
portable tests)
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Automated 
Hi-Speed C 
TestBench *
Palladium + AVIP

DUT

AVIP Agent

Collector BFM

C code C code

Emulator + AVIPs

Host

Sync

AVIP BUS Agent

Collector BFM

Need to write C code for significant 
speed up

mem

What about test automation? Functional 
and use-case coverage? Organized 

process?
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Automated Hi-Speed C TestBench Palladium + AVIP

DUT

mem

AVIP Agent

Collector BFM

Optimized C Optimized C

Scenarios on the host combining 
sophisticated constraints solving and run-
time reactive repetitions  

Talk directly to the BFM for 
optimized execution (can 
drive sequences for non 
portable tests)

Host

The same SOC tests runs 
efficiently with emulation

High-speed and does not require re-
elaboration

distributed RT
framework

AVIP BUS Agent

Collector BFM

SoC
Suite

Emulator + AVIPs

We have created an interface 
for Cadence AVIPs

Yes! Use-case functional 
coverage on emulation

Use-cases
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Automated Hi-Speed C TestBench
Palladium/Protium + AVIP

DUT

Agent

Collector BFM

Optimized C’

Emulator + AVIPs

Host

Cadence AVIP BUS Agent

Collector BFM

Optimized C’ 

CPU

memOptimized C’ 

distr
ibuted RT fra

mework

distributed RT
framework

Generate the C code 
that can be cross 
compile for bare-metal 
execution

Sync and data 
communication preserved 
between SW and TB 
activities

Use-cases

Soc
Suite
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TB Speed-up Summary

• The potential of Testbench speed-up is large
– Perspec works with post-silicon environments that are million times faster than 

simulation
• Speed-up is achieve using:

– Legally parallel mixing of gen-time and with runtime reactiveness and repetition
– Parallelizing the BFM logic

• Cadence AVIP can be parallelized in MC
– Running procedural C on the host
– Eliminating re-elaboration step for new tests

• Cadence provides significant speedup on
– On Xcelium™, Palladium®, Protium™ and Post-silicon
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Simulation and Emulation Need to Go 
Hand in Hand

• Congruency and common 

environment

• Emulation

• Highest performance

• RTL/gates, assertions,

& coverage

• Supports 2-state logic
Simulation
• Fine-grained debug

• Behavioral testbench & models

• Supports 4-state logic

Common Compile

Testbench + 

Design + UPF 

Simulation

AVIP

Compile full emulation 
model first in simulation for 
initial bring-up and debug

After initial model bring-up 
in simulation, recompile 

model and co-simulate on 
emulation

Start simulation with 4-state 
logic until after reset X/Z 

propagation.  Then hotswap to 
emulation .

Fast forward to point of interest in 
emulation without timing and 

then swap back to simulation and 
annotate timing (gate-level and 

RTL subset)
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Emulation Market Trends
Migration to centralized emulation farm to maximize investment

• Data center density and connectivity
– Rack-based footprint
– High-speed 56Gbs optical interfaces
– Host expansion via Infiniband Switch

• Maximize availability and utilization
– Power module redundancy
– Hot-swappable power module
– Fine-grained user granularity of 4MG increments

• Cloud Readiness
– Enable shorter term access without the need to setup and host
– Ease adoption via advanced virtualization features

Data center ready
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Emulation Market Trends
Migration to centralized emulation farm to maximize investment

• Use model versatility and scalability 
– 22+ use models for RTL and netlist
– Scaling from 4MG to 9.2BG

• Debug platform
– FullVision, InfiniTrace, Virtual Verification Machine, 

Dynamic Probes, SDL, 

• Applications
– In-circuit emulation SpeedBridge® interface 
– Accelerated Verification IP (transactors for most popular 

interface for the purpose of acceleration)
– Emulation Development Kit
– Dynamic Power Analysis
– Virtual Emulation and Debug

Way beyond emulation

© 2018 Cadence Design Systems, Inc. All rights reserved.



HW-assisted Verification Productivity 
Loop

Build

Allocate

Run

Debug

Compile databases for different workloads
(Compile: speed, automation, # of workstations)

Allocate as many workloads as possible
(Utilization efficiency: # of parallel jobs, relocation)

Run workloads based on priorities
(Speed: use models, interface solutions)

Debug for both pre & post silicon bugs
(Visibility: trace depth, dynamic trigger)

© 2018 Cadence Design Systems, Inc. All rights reserved.



Workload Throughput Matters 

Build

Alloc
ate

Run

Deb
ug

Build

Alloc
ate

Run

Deb
ug

Build

Alloc
ate

Run

Deb
ug

• How often will this loop be repeated over the course of a project?
• What type/size of workloads and users will be using emulation?
• How many workloads will be required to verify and validate your design?
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Initial 

bring-up

Silicon 

tape-out

Feature

Set 1

Feature

Set 2

Feature

Set N

Build

Alloc
ate

Run

Deb
ug

Build

Alloc
ate

Run

Deb
ug

Build
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Run
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ug

Build

Alloc
ate

Run

Deb
ug

Design 

Maturity

Bug

Rates

interface

L2/L3 

Cache

Low

Power

Driver

OS 

Boot

Bench

mark

Power

Analysis

Workloads

© 2018 Cadence Design Systems, Inc. All rights reserved.



Scalability from Small to Large Payload Sizes

Application Specific Components

SoC interconnect fabric

Compute Subsystem

3D
GFX

DSP 
A/V

High speed, wired interface peripherals

DDR3

PHY

Other peripherals

SATA

MIPI

HDMI

WLAN

LTE
Low-speed peripheral 

subsystem

Low speed peripherals

PMU

MIPI

JTAG

INTC

I2C

SPI

Timer

GPIO

Display

UART

Boot 
processor
ARM M0

Modem

CPU

L2  cache

USB3.0

3.
0

P H Y

2.
0

P H Y

PCIe

Gen 2,3

PHY

Ether

net

PHY

CPU CPU

L2  cache

CPU

Cache coherent fabric

Low-Speed
Peripherals

General-
Purpose

Peripherals

High Speed,
Wired Interface

Peripherals

Customer’s
Application-Specific Components

Compute
Sub System

IP Subsystem SoC / System

Application Specific Components

3D
GFX

DSP 
A/V

Boot 
processor
ARM M0

ModemCustomer’s
Application-Specific IP

2-16M Gates 32-128M Gates 128-4096M Gates or more

Debug fixes trigger 
Re-run 

of test suites

Debug fixes trigger 
Re-run 

of test suites

System-level bugs may trigger
module-level changes (ECOs)

Bare-Metal Software

Application SW Stack

Bare Metal Software and Application SW Stack

Compute
Subsystem

CPU

L2  cache

CPU CPU

L2  cache

CPU

Cache coherent fabric

CPU

Emulation needs to scale 
beyond 4 billion gates while 

allowing resource to be 
shared with best user 

granularity of 4 million gates
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Virtual
Emulation

Emulation Choices
In-Circuit Emulation mature and vibrant, Virtual 
Emulation emerging

In-Circuit Emulation

• Highest performance

• High fidelity live traffic 

• Traffic generation and analysis 
with 3rd party testers

• Remote and re-locatable 
access 

• Post-silicon debug & reuse

• Migration path to FPGA 
prototyping

Virtual Emulation

• Virtual enablement of SW 
driven HW verification

• Flexible debug

• Earlier access with Hybrid 
verification

• Ease of replication

• Adoption path for simulation  
and simulation acceleration 
users

In-Circuit
Emulation
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Verification Flow Example

Unicov
Coverage 

DB

Runs
DB

Debug
DB

vManager™ 
Metrics 

Tracking

Indago™
Debug

Unified coverage analysis & 
unreachability between JasperGold, 

Xcelium, Palladium

Unified performance 
analysis across 

Xcelium, Palladium

Unified debug 
across Xcelium, 

Palladium, & Protium

IWB
Performance

JasperGold®

FORMAL

Xcelium™
SIMULATION

Palladium®

EMULATION

Protium™
FPGA PROTO

Hz Range 
Faster than 

traditional sim

MHz
Bring-up: days

TAT: hours

10’s of MHz
Bring-up: week

TAT: days

Stimulus
Perspec 

MicrokernelC Tests

VIP

Multi-engine automated portable 
stimulus generation across Xcelium, 

Palladium, Protium, and Silicon

Low-Speed
Peripherals

General-
Purpose

Peripherals

High Speed,
Wired Interface

Peripherals

Customer’s
Application-Specific 

Components

Compute
Sub System

SoC Interconnect Fabric

Modem

Application Specific ComponentsCPU Subsystem

3D
GFX

DSP 
A/V

High speed, wired interface peripherals

DDR

PHY

Other peripherals

SATA

MIPI

HDMI

WLAN

LTE Low-speed peripheral 
subsystem

Low speed peripherals

PMU

MIPI

JTAG

INTC

I2C

SPI

Timer

GPIO

Display

UART

Boot
CPU 

CPU

L2 Cache

USB

P
H
Y

P
H
Y

PCIe

PHY

ETH

PHY

CPU CPU

L2  Cache

CPU

Cache coherent fabric

SoC, Sub-System or IP

Low-Speed
Peripherals

General-
Purpose

Peripherals

High Speed,
Wired Interface

Peripherals

Customer’s
Application-Specific 

Components

Compute
Sub System

AVIP
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Emulation and FPGA Prototyping Need 
to Go Hand in Hand …

Compile

SpeedBridge®

Adapters

RTL

FPGA
• Highest performance
• Software development
• Hardware/software 

regressions

Users need Congruency and a common environment

Emulation
• Best debug
• SoC acceleration, 

hardware/software
• Power and performance 

analysis
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FPGA-Based Prototyping Is Fragmented
Disjointed, lacking integrated flow and automation

• FPGA-based prototyping 

Challenges:

• Fragmented

• Requires RTL modifications

• Lack auto compilation

• Memory and clocks

• Partitioning

• Lack of flow integration

• Emulation and prototyping

• Configuration reuse

• FPGA P&R
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FPGA-Based Prototyping Is Hard To Do…

Clocking Memories

Debug

Interfaces

Software
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Really, Really Hard To Do

FPGA-based prototyping has become the methodology of choice for early software 
development

BUT… 

Prototyping implementation and bring-up takes too long and there has, so far, not been any 
easy transition from simulation and emulation into FPGA-based prototyping

RTL
Preparation

Compile
Synthesis

Automatic / Manual
Multi-FPGA Partitioning FPGA Timing Closure (P&R) In-Circuit

Bring-Up
Memory

Remodeling

4-6 weeks 4-6 weeks 4 weeks 2 weeks

3 months…and more!
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Or Is It?
How to address the prototyping challenges

• No RTL modifications needed
– Clocking / number of clocks
– Automated memory compilation and modeling

• Fully automatic, multi-FPGA partitioning
– Optional manual optimization

• FPGA timing closure
– Multiple design integrations per day
– Avoids time-consuming FPGA P&R

• Fully integrated FPGA P&R
– Automatic constraint generation
– Guaranteed P&R success

RTL
Preparation

Compile
Synthesis

Automatic / Manual
Multi-FPGA Partitioning FPGA Timing Closure In-Circuit

Bring-Up
Memory

Remodeling

▲
Traditional

◄ Protium S1
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0 5 10 15 20 25 30 35

Mobile

Networking

Consumer

CPU

Consumer

Networking

Networking

Traditional
Protium S1

Fast Time-to
-Prototype (TTP)

Bring-up time (weeks)

◄ 81%

◄ 85%

◄ 88%

◄ 91%

◄ 89%

◄ 91%

◄ 79%

Note: Sample customer bring-up gains over traditional FPGA-based prototyping solutions
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No RTL Modifications – Clocking

• Automated Clocking
– No hold-time violations in user clock domains
– Removes any FPGA-specific clock limitations
– Supports unlimited # of design clocks
– Improves FPGA timing closure
– Accelerates FPGA P&R times 

• Traditional imitations:
– Gated clock, multiplexed clocks
– # of clocks
– Difficult to achieve FPGA timing closure
– Long iteration times / long FPGA P&R times
– Unpredictable results and prototype behavior

Clock distribution on the board Clock generation in the FPGA

© 2018 Cadence Design Systems, Inc. All rights reserved.



Users Need a Fully Integrated 
Implementation Flow

• Automated prototyping flow 
reduces time-to-prototype (TTP) 
from months to weeks

• Design changes have much 
lesser time impact on iterations

• Simpler single pass flow iterations 
are run in hours not days

• Software development gets a 
head start measured in months 
not days

Months

1-
2 

da
ys

 p
er

 it
er

at
io

n

Traditional FPGA-based
Prototyping Flow

ASIC RTL
(Verilog/VHDL/SV)

Prototype RTL
(Verilog/VHDL/SV)

TestFAIL

FPGA bit Files

FPGA Vendor
P&R

FPGA Partitioning
and Synthesis

Edit RTL

Probes
Waveforms

Independent re-run of 
selected tests for debug

1-
2h

 p
er

 it
er

at
io

n

ASIC RTL
(Verilog/VHDL/SV)

FPGA Partitioning
and Synthesis

FPGA Vendor
P&R

Verification model 
to validate FPGA 

functionality

Optional

FPGA bit Files

Protium S1 FPGA-based
Prototyping Flow

Weeks

Functional  
Assurance 
Before P&R
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No RTL Modifications - Memories
• No ASIC RTL changes

• Automatic conversion of latches and tri-states
• Automatic memory compilation and modeling
• Fully automated clock tree transformation

• Automatic conversion of gated and multiplexed clocks
FP

G
A block R

A
M
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Comprehensive, Automated Memory 
Support

Conversion and implementation of memories is one of the most challenging and time-consuming 
steps in bring-up of an FPGA-based prototype (often taking many weeks to complete).

Protium S1
Memory compile capabilities :

– Smaller memories are 
automatically compiled into 
FPGA-internal resources

– For larger, off-FPGA memories, 
the Protium platform offers 
several automated solutions, 
see table

Type Size Palladium 
MMP

Upload/
Download Perform. Comments

FPGA-internal ~50Mbits / FPGA Yes Yes Full speed • Fully automatic compile

XSRAM (automated 
small external memory)

128 Mbytes per 
memory card

Some Yes <12MHz

• Fully automatic compile
• Extends ‘FPGA-internal’ 

memory to external SRAM
• Useful for Serial Parallel Interface (SPI)-flash 

and other 
small memories (e.g. boot ROM)

XDRAM (automated 
bulk memory)

16 GBytes per XDRAM 
card

DDR family
models Yes <16MHz

• semi automatic compile
• Leverages XDRAM hardware 

Support for DDR3/4, LPDDR3/4

DCMC (Direct Connected 
Memory Card)

x GBytes (depending 
on memories used)

No No Full design speed
• Design change may be required, depending 

on memory type
• App notes available

FCMC (Full-custom 
Memory Card)

Custom No No Full design speed • Fully custom development
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Innovative XDRAM & XSRAM 
Solution

• XSRAM

– Benefits:

• Increases FPGA internal memory from 80Mbits to 128MBytes (>10x)

• Automatic mapping of any memory type

• Support for multi-port memories

• Support for backdoor upload/download

• XDRAM

– Benefits:

• Adds DDRx bulk memories

• Supports LPDDR2/3/4; DDR3/4; HBM

• No change to design memory controller and firmware

• Support for backdoor upload/download

• Acts as memory SpeedBridge (timing, refresh, etc.)

DUT + DDR 
Controller

XDRAM FPGA

M
em

ory 
M

odel

Back
End

UDM
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Application Specific Components

SoC interconnect fabric

ARM V8 CPUSubsystem

3D
GFX

DSP 
A/V

High speed, wired interface peripherals

DDR
3

PHY

Other peripherals

SATA

MIPI

HDMI

WLAN

LTE Low-speed peripheral 
subsystem

Low speed peripherals

PMU

MIPI
JTA
G

INTC

I2C

SPI
Time

r

GPI
O

Display

UAR
T

Boot 
processo

r
ARM M0

Modem
Cortex
-A53

L2 cache

USB3.0

3.
0
P
H
Y

2.
0
P
H
Y

PCIe
Gen 2,3

PHY

Ethe
r

net

PHY

Cortex
-A53

Cortex
-A57

L2 cache

Cortex
A57

Cache coherent fabric

SoC, Subsystem, or IP

Low-Speed
Peripherals

General-
Purpose

Peripherals

High-Speed,
Wired Interface

Peripherals

Customer’s
Application-Specific 

Components

Compute
Subsystem

Operating Systems (OS)
Drivers

Applications
Middleware

Firmware / HAL

Software

Daughtercards and peripherals

Hardware Debug: RTL

Probes

• Waveforms across partitions
• Design-centric view vs. FPGA-centric

• Force/release
• Predefined signals (at compile time) to “0” 

or “1” during runtime
• Monitor signal

• Real-time monitoring of predefined (at 
compile time) signals

• External data capture card
• Thousands of signals for millions of cycles

• State read-back

Software Debug: C Code

JTAG

• Backdoor memory access
• Quickly change boot code, software, etc.

• Clock control 
• Start/stop the clock on demand

• Fully scriptable runtime environment
• Remote access

• Network resource anytime from anywhere
• Assertion checkers
• High-performance link to software model

Hardware and Software Debug
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Advanced Debug

• External data capture card
– Thousands of signals for millions of (DUT) clock cycles

• Force/release signal 
– Forces predefined signals (at compile time) into “0” or “1” during runtime 

• Memory upload and download 

• Monitor signal 
– Real-time monitoring of predefined (at compile time) signals

• State read-back without recompile

• Assertion checkers

• Runtime
– Start/stop clock capability (run “N” cycles)

• Probes
– Runtime data capture of predefined signals for offline waveform viewing

Unique to Protium™
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Scalable Performance

5MHz

10MHz

100MHz

Automatic mode

Phase 1

3MHz

Performance
(single board, multi-FPGA)

Automatic
for quick

functionality

Further Optimization

Phase 3

Design-based 
user manual 
refinement

Black-box

…

Phase 2

Higher effort
performance
optimization
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Software

FPGA  b it  f iles

Integrated Compile 
EngineH D L- IC E 

fo r fast
co m pile

Part it io

n ing  

FPGA  P& R  

M

e
m
o

r
y 

c
o

m
p
i

l
e

r

D

e
b
u

g  
i

n
s

e
r
t

e
r

B oard  rou ter

B

o
a
r

d  
f

i
l

e

A SIC  R TL

(Verilo g  / VH D L  / 
SV)

D ebug  

p robes and  
t rigger 

co n d it ions

Multi-fabric 
Compiler

Transaction 
Interface

Accessories

SpeedBridges

Memory Cards

Memory Models

Hardware

25MG
200MG

600MG

Protium S1 Prototyping Solution
Industry’s first comprehensive, fully integrated solution

© 2018 Cadence Design Systems, Inc. All rights reserved.



Agenda
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• The Need for Speed

• Formal methods to avoid sim cycles

• Coding for max sim speed

• Speeding power + mixed-signal SoC

• Break

• Portable Stimulus for faster verification

• Applying hardware to speed system verification

• Summary and call to action



Summary and Call to Action

• Every facet of SoC verification benefits from speed

• Faster engines, faster coding, more efficient cycles (MDV) and avoiding 
simulation cycles are all approaches to gain verification speed

• So tap into the verification speed-force today
– Add JasperGold® Apps
– Run more efficient code faster in Xcelium™
– Create more efficient stimulus faster in Perspec™
– Verify systems faster in Palladium ® and Protium®
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Questions?
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Thank you!
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