

1

SOBEL FILTER: Software Implementation to RTL

using High Level Synthesis
Synthesizable C design and Synthesizable SystemC IP

Bhavna Aggarwal, CircuitSutra Technologies, Noida, India (bhavna.aggarwal@circuitsutra.com)

Umesh Sisodia, CircuitSutra Technologies, Noida, India (usisodia@circuitsutra.com)

Snigdha Tyagi, CircuitSutra Technologies, Noida, India (snigdha.tyagi@circuitsutra.com)

Abstract— This document discusses the effort of migrating an open source image processing algorithm

to a synthesizable design using the High-Level synthesizable library and HLS tool by Mentor, called

Catapult. It will inspect the software simulation timings & lines of code for Synthesizable C and

Synthesizable SystemC designs against the original C implementation. This paper intends to attract the

attention of all System/IP designers and Verification engineers towards the benefits of High-Level

Synthesis.

Keywords—High Level Synthesis (HLS), SystemC, Electronic System-level (ESL) Design, C/C++, SoC, RTL, Image

Processing, Algorithm

I. INTRODUCTION

High Level Synthesis (HLS), also referred to as C/C++ synthesis or ESL synthesis, offers an automated design

platform for developing scale algorithms that can transform to a hardware solution. It provides significant benefits

over traditional hardware description language flows, in terms of leveraging the software platform for

implementation of digital solutions for FPGAs and ASICs. The designer typically develops the behavior and the

inter-connect protocol. HLS tools transforms the untimed or partially timed functionality into fully timed RTL

implementations as well as creates a cycle accurate hardware module.

This paper showcases how the design engineers can become much more productive by learning how to

decouple design from behavior, reduce their design efforts by writing up to 10x less code, and benefiting from 10

to 1,000x faster simulation speeds. Many semiconductor companies are designing custom SoCs for emerging

domains like Vision, Speech, Video / Image processing, 5G, Deep learning, Artificial Intelligence, Machine

Learning etc. In these domains lots of algorithms are already available as software implementations, either as free

open source versions, or the companies have their own software implementations. Using HLS, designers can

leverage the available software implementations to develop RTL designs much quicker, instead of developing the

same from scratch.

Re-usability of C/C++ testbench for RTL verification will also be covered in this paper which presents a very

significant benefit of HLS to verification engineers.

Technically, it will examine the efforts in migrating an open source image processing algorithm (implemented

in vanilla C) to a synthesizable C design using the HLS synthesizable library and HLS tool by Mentor, called

Catapult. As the efforts bore fruit, the next idea was to develop a Synthesizable SystemC intellectual property (IP)

that encapsulates the Sobel’s algorithmic behavior. As this idea was successful, we gained the confidence to dive

deeper in this domain, also discussed briefly at the end.

To substantiate the work, we will share results that compare the software (C & SystemC) vs hardware (Verilog)

implementations of the Sobel Filter operator, in terms of Line of codes and simulation timings.

mailto:bhavna.aggarwal@circuitsutra.com
mailto:usisodia@circuitsutra.com
mailto:snigdha.tyagi@circuitsutra.com

2

II. SOBEL FILTER

Sobel filter, popularly called as SOBEL operator, is an edge detection image processing algorithm, commonly

used for image segmentation and data extraction in computer vision and machine vision, where it creates an image

emphasizing edges. The operator generates a 2D map of X and Y gradients of image intensity at each pixel, finds

the direction of largest increases from light to dark and rates the change in that direction. Here is an example

starting image shown on the left, the gradients, and the filtered result:

Figure 1. Sobel’s Grayscale Filtered Output

An open source C implementation of the algorithm is available on GitHub. Thanks to Pedero Melgueira &

Alessandro Capotondi for the contribution to open source world. This C based software design, invokes the

operator using the following interface (function call)-

int sobelFilter (byte* rgb, byte* contour_img, int width, int height);

Where,

• RGB = RGB data of any colored PNG image

• CONTOUR_IMG = Convoluted Output Stream (Gray Data)

• WIDTH = Input for Horizontal resolution

• HEIGHT = Input for Vertical resolution

Figure 2. Sobel Filter Interface

III. TAKING THROUGH HIGH LEVEL SYTHENSIS

At first glimpse, it may appear that high level synthesis is a new language or methodology, and to make the

most of it, this needs to be mastered like any other language/methodology. But that is not true. HLS is just a high-

level abstraction to both software and hardware design phases, which aims to minimize the industrial gap between

the two. Many companies like Mentor, Xilinx, etc. have come up with C/C++ based synthesizable libraries, that

provides constructs, which can be used while developing the functional behavior of the algorithm. These

constructs ensure that the software implementation can run through a tool, called as High-Level Synthesis tool,

and automatically generate the RTL (Verilog/VHDL) digital solution. The Accellera community has collectively

come up with a synthesizable subset of SystemC.

Now let us address the modifications that were required to open source C-implementation of Sobel Filter to

derive the hardware solution using Mentor’s synthesizable library and HLS tool – Catapult.

https://github.com/petermlm/SobelFilter

3

IV. SYNTHESIZABLE C IMPLEMENTATION

Firstly, the open source C implementation was modified to a synthesizable C design using the guidelines

provided by HLS.

Not all C/C++ structures can be synthesized. There exists a synthesizable subset of the language that engineers

utilize to write their code. Coding structures that cannot be synthesized include system calls, and input and output

structures such as Printf and Scanf. There are other restrictions such as usage of pointers and pthreads are not

allowed. Also, hardware is a static entity that serves to generate a well-defined behavior, hence no runtime

dynamic actions are allowed.

 Using Mentor’s Catapult HLS tool, the modified synthesizable C design could successfully extract an RTL

(Verilog/VHDL)

A. Heirarchical Design

Software design was converted to a hierarchical design with “sobelFilter” as the TOP module.

• Function calls inside the top operator, were marked as BLOCK, adding to the hierarchy of the design,

as sub-modules.

• The hierarchical design may contain few inline functions as well, if required.

• Multiple calls to the same function need to be distinguished using a template ID, that translates to

multiple instances of the same sub-modules. Refer “itConv” function interface in Figure 3.

Figure 3. Sobel’s Hierarchy View

Each software function call transforms to a RTL module, maintaining the design hierarchy.

B. Pointers to Pointer, Dynamic Memory Allocation, File IOs

Software implementation of algorithms tends to have pointers to pointers for inter-connection and

performance, which are not supported for RTL extraction. Such members were either modified to static arrays or

AC-channels, based on their usage.

• AC-channels are helpful in binding the function calls, as data streams from one function to other.

• Static arrays transform to registers, internal or external memory considering the MEM MAP

THRESHOLD configuration.

Likewise, any dynamic memory allocations or File IOs are not supported. Hardware should be aware of

memory requirements. Data to or out of the IP, should be made available in internal or external memories.

C. Float/Double Data

Floating point numbers in software are used to represent higher range of values for accuracy and precision.

Considering the hardware overhead for saturation logic of floating-point numbers, C based float/double data

members need to be modified to AC_FIXED or AC_FLOAT synthesizable constructs.

4

D. C/C++ Math Library

For commonly used math operations like square root, power, absolute etc. Mentor’s HLS library provides

equivalent math functions that can successfully transform to RTL logics. Hence, any C/C++ math functions used

in algorithm, was modified to synthesizable math function from the “ac_math” library.

Table I. Some examples of “ac_math” library functions

C/C++ Math Functions AC_MATH library synthesizable functions

pow ac_pow_pwl

sqrt ac_sqrt_pwl

abs ac_abs

V. SYNTHESIZABLE SYSTEMC IP

Successful migration of open source software algorithm to hardware solution, led to the idea of having a

SystemC IP that would encapsulate the functionality.

Growing popularity of SystemC for systems and hardware designs, motivated Accellera community to release

a Synthesizable SystemC subset. Following the guidelines in the subset and using Mentor’s Catapult HLS tool,

we developed a subset compliant SOBEL SystemC IP that synthesizes to RTL (Verilog/VHDL)

Figure 4. Sobel Filter SystemC IP block diagram

• Each THREAD/METHOD of the SystemC IP synthesizes to RTL module.

• Every thread and method should be sensitive at least one clock and one reset signal.

• For sharing data across threads, IP defines shared memory using Mentor’s CCS Sample memory

library.

• For bit-accuracy, it is advisable to use SystemC data types or AC algorithmic data types.

VI. VERIFICATION USING CATAPULT HLS TOOL

Verification holds utmost importance both in the hardware and software world. To validate intended design

behavior, functional verification is the first and the foremost step. Considering the same, we ensured the following-

• Synthesizable C design and the RTL generated is functionally correct

• Synthesizable SystemC IP and the RTL generated is functionally correct

How did we do the verification? What was the effort invested? Did we write separate test for each design? Did

we write a UVM or System Verilog stimulus to verify the RTL generated? Here are the answers:

5

High level synthesis tool offers a co-simulation verification environment “SCVerify” that uses same C/C++

testbench to verify both the software and hardware behavior. Thus, one C testbench and one SystemC Testbench

Module is required to functionally validate the C design and SystemC IP respectively. And the same testbench is

used to functionally validate the generated RTL. Thus, no new UVM or System Verilog stimulus was required.

Figure 5. HLS Verification Flow

VII. SOFTWARE SIMULATION

Table II. depicts the software simulation timings for all the software versions of the SOBEL operator, executed

using GCC. Undoubtedly C being one of the fastest programming languages, shall simulate the design in least

time, clearly visible from the table. Synthesizable C/C++ and SystemC libraries add features to pure C/C++

language, thus adding to simulation timings.

Table III. SW simulation real time

SW version REAL Time

Open Source C design 0m0.011s

Synthesizable C design 0m0.351s

Synthesizable SystemC design 0m0.970s

VIII. RTL (VERILOG) SIMULATION

Table III. depicts the RTL simulation timings for two variants of RTL generated from High level design of

SOBEL operator, using QuestaSim. RTL simulation results also demonstrates that synthesizable constructs in

SystemC offers better performance than ones available in synthesizable C/C++ library.

Table IIIII. HW simulation time

HW version Simulation Time

RTL from Synthesizable C design 12760123 NS

RTL from Synthesizable SystemC design 04439999 NS

6

IX. HW VS SW SIMULATION OF SYSTEMC DESIGN

 Table IV. compares the simulation timings for hardware and software simulation of the SystemC IP that

encapsulated the Sobel algorithm. Memory read and write latencies adds up to total clock cycles, during RTL

simulation.

Table IV. SW/HW simulation real time

Simulation Time

Software (using GCC) 1560006 NS

Generated RTL (using QuestaSim) 4439999 NS

X. LINES OF CODE (LOC)

 Table V. outlines the number of lines of code, a developer may write to develop various versions of the

same algorithm. It is distinctly visible that the RTL code would be 10-100x times more than the software version.

However, modification of pure C/C++ implementation to synthesizable implementation is relatively simple, only

1.5-2x times effort required.

Table V. SW vs HW lines of code

Lines of Code

Open Source C Implementation RTL (Verilog) Generated

~150 -

Synthesizable C Design RTL (Verilog) Generated

~210 ~10k

Synthesizable SystemC Design RTL (Verilog) Generated

~300 ~5k

XI. FUTURE SCOPE TO THE STUDY

• Optimize the RTL for Power Performance Analysis, by using HLS Tool directives, constraints, and

code re-structuring for macro architecture.

• Expand the Sobel’s SystemC design to use synthesizable hardware functions or components in

Nvidia’s open source HLS library, viz. MatchLib.

XII. CONCLUSION

This paper illuminates the benefits of High-Level synthesis in terms of automated RTL generation from an

open source Sobel Filter C/C++ design and providing a co-verification platform for functional equivalence of

software vs hardware. A software practitioner can easily take the original software implementation and generate

a functionally correct RTL, without requiring in-depth knowledge of RTL. They just need to understand the

synthesizable subset guidelines.

To maximize the HLS capabilities, both software and RTL design engineers can collaborate to develop the

ASIC/FPGA solutions at the earliest. Also software test engineers and RTL verifications engineers can collaborate

to validate and verify the solution in parallel, thus minimizing time to market by apportioning both RTL design

and verification responsibilities.

