
SOBEL FILTER: Software Implementation to 
RTL using High Level Synthesis

Bhavna Aggarwal, CircuitSutra Technologies, Noida, India 
Umesh Sisodia, CircuitSutra Technologies, Noida, India 
Snigdha Tyagi, CircuitSutra Technologies, Noida, India

© Accellera Systems Initiative 1



High-Level Synthesis
Chip designing at Higher Level of Abstraction

• HLS Tool: RTL Implementation from abstract 
description
– 5 – 10x Less Code: Reduce design efforts
– 10 – 1000x Faster Simulation: Increased productivity

• Bridges Hardware & Software Domain
• Existing C / C++ implementations available to start 

with
• C/C++ based synthesizable libraries
• SystemC Synthesizable Subset by Accellera
• Re-usability of C/C++ testbench for RTL verification

HLS Tool

Technology Library
Cell functions, Area, 

Timing etc..

INPUT DESIGN

C / C++

OUTPUT RTL

Directives / 
Constraints

Clock, Pipelining, Latency, 
Memory Architecture

Verilog
VHDL



Sobel Filter – Taking through HLS

• Used in image processing and 
computer vision

• Used for edge detection
• 2D filtering operation
• Generates 2D Map of the gradient, 

X & Y Gradient of image intensity 
at each pixel

• Open Source Implementation
• Contributors: Pedro Melgueira, 

Alessandro Capotondi
© Accellera Systems Initiative 3



Sobel Filter
Architectural Interface : Open Source C

• int sobelFilter (byte* rgb, byte* contour_img, int width, int height);

© Accellera Systems Initiative 4



HLS Implementation 1: Synthesizable C 

• Created Hierarchical Design with SobelFilter as “Top”
• Sub-function calls marked as BLOCK
• Contains few inline functions
• Used AC_Channels as inter-connect between two blocks

© Accellera Systems Initiative 5

We modified the C code to make it compliant with Synthesizable Subset. 
Used Mentor Catapult to synthesize C code and generate Verilog



HLS Implementation 1: Synthesizable C 

© Accellera Systems Initiative 6

NOT SUPPORTED
• Pointers-to-pointer
• Dynamic Memory allocations 
• Float/Double
• C/C++ Math library functions

– abs
– pow
– sqrt

• Unbounded Loops (i.e. loops with 
termination condition dependent on some 
variable) are expected to give bad results.

• Multiple same function calls

CHANGED TO
• STATIC ARRAY or AC_CHANNEL 
• Bounded Arrays
• AC_FIXED
• Include <ac_math.h> library

– ac_abs
– ac_pow_pwl
– ac_sqrt_pwl

• Bounded Loops using constant integers
• Templated for ID to differentiate the 

call instance



HLS Implementation 2: Synthesizable SystemC

© Accellera Systems Initiative 7

• Top Level Design: 
– SystemC Module (DUT) 
– C++ class should be instantiated in top 

level C function.
– Identified using CCS_DESIGN construct

• Threads/Methods:
– One clock and reset
– Output ports must be part of RESET 

block in the THREAD
– Bounded Loops

We developed a SystemC IP that would encapsulate the functionality.
Used Mentor Catapult to synthesize SystemC code and generate Verilog



HLS Implementation 2: Synthesizable SystemC
(Cont.)

© Accellera Systems Initiative 8

• Arrays:
– Static Array
– Arrays synthesize to Memory: based on 

MEM_MAP_THRESHOLD configured

• SC Module Data Members:
– Cannot be shared across Threads/Methods
– Use shared memories, for sharing data.
– Used CCS sample memory : mem_1r1w

• Data Types
– ac_fixed
– sc_uint

• Math Operations
– Include <ac_math.h> library

• ac_abs
• ac_pow_pwl
• ac_sqrt_pwl



Encapsulated the Algorithm in a 
Semiconductor IP 

9

Sobel Filter IP

MEMORY

intr_proc_done

Clk
Reset

address
data_in
write_ready
write_valid

out_addr
data_out
read_ready
read_valid

Sobel_en

SoC Bus
WRITE Channel
(rgb stream)

READ Channel
(contour stream)

Trigger the Algorithm

R
200x200

FUNCTIONALITYI/O
Logic

G
200x200

B
200x200

C
200x200



Synthesis & Verification

© Accellera Systems Initiative 10

Sobel Filter : Original Code

Synthesizable HLS Model

FUNCTIONALITY
Synthesizable Subset: 
C/C++, SystemC

HLS Tool
CATAPULT

Functionally 
correct RTL

Well defined guidelines 
Software engineers can do it

Testbench

Co-
simulation

ScVerify

Testbench

Existing Software 
implementation 

(C / C++)

Testbench

C Level Validation
Validate that algorithm is correct

Ensure that algorithm is intact
Compare results: original 
implementation as golden

RTL Functional Verification
Same TestBench



Software Simulation REAL Time

SW version REAL Time

Open Source C design 0m0.011s

Synthesizable C design 0m0.351s

Synthesizable SystemC design 0m0.970s

© Accellera Systems Initiative 11



HW vs SW Simulation of SystemC Design

© Accellera Systems Initiative 12

Simulation Time
Software (using GCC) 1560006 NS

Generated RTL (using 
QuestaSim)

4439999 NS



RTL (Verilog) Simulation

© Accellera Systems Initiative 13

HW version Simulation Time
RTL from Synthesizable C 
design

12760123 NS

RTL from Synthesizable 
SystemC design

04439999 NS



Lines of Code (LoC)

© Accellera Systems Initiative 14

Lines of Code
Open Source C Implementation RTL (Verilog) Generated

~150 -
Synthesizable C Design RTL (Verilog) Generated

~210 ~10k
Synthesizable SystemC Design RTL (Verilog) Generated

~300 ~5k



Refining the code for HLS ..

© Accellera Systems Initiative15

Original Code

Synthesizable HLS Model
FUNCTIONALITY

Synthesizable Subset: 
C, C++, SystemC

HLS Tool

Functionally 
correct RTL

HLS Tool

OPTIMIZATION

Well defined guidelines 
Software engineers can do it Requires RTL Expertise

Further Code Restructuring

Optimization directives in the code: 
Loop unrolling, Loop pipelining etc..

Capture Macro architecture: 
Registers, Memory, Interfaces etc..)

HLS Tool:
Directives 
Constraints

Optimized 
RTL

TestbenchTest
Suite

Co-
simulation

Testbench

Existing Software 
implementation 

(C / C++)

Testbench

C Level Validation
Validate that algorithm is correct

Ensure that algorithm is intact
Use same Test Suite
Compare results: original 
implementation as golden

RTL Functional Verification
Same Test Suite

C Level validation
Faster Simulation
Less code to verify
Catch bugs early
Reduce efforts for RTL verification

Test Suite
Develop Comprehensive Test Suite 
for high functional coverage

Reuse: 
-Testsuite of original software
-Compliance test suite of protocols

REFINE

VALIDATE

OPTIMIZE



Future Scope to Study
• Optimize & Refine the RTL for Power Performance Analysis, by using HLS 

Tool directives, constraints, and code re-structuring for macro 
architecture.

• Expand the Sobel’s SystemC design to use synthesizable hardware 
functions or components in Nvidia’s open source HLS library, viz. 
MatchLib.

© Accellera Systems Initiative 16



© Accellera Systems Initiative 17

Thank you for your time.


	SOBEL FILTER: Software Implementation to RTL using High Level Synthesis
	High-Level Synthesis�Chip designing at Higher Level of Abstraction
	Sobel Filter – Taking through HLS
	Sobel Filter�Architectural Interface : Open Source C
	HLS Implementation 1: Synthesizable C 
	HLS Implementation 1: Synthesizable C 
	HLS Implementation 2: Synthesizable SystemC
	HLS Implementation 2: Synthesizable SystemC (Cont.)
	Encapsulated the Algorithm in a Semiconductor IP 
	Synthesis & Verification
	Software Simulation REAL Time�
	 HW vs SW Simulation of SystemC Design
	RTL (Verilog) Simulation
	Lines of Code (LoC)
	Refining the code for HLS ..
	Future Scope to Study
	Thank you for your time.�

